Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Evaluation of ERA-Interim, MERRA, NCEP-DOE R2 and CFSR Reanalysis precipitation Data using Gauge Observation over Ethiopia for a period of 33 years

Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India.

The vital demand of reliable climatic and hydrologic data of fine spatial and temporal resolution triggered the employment of reanalysis datasets as a surrogate in most of the hydrological modelling exercises. This study examines the performance of four widely used reanalysis datasets: ERA-Interim, NCEP-DOE R2, MERRA and CFSR, in reproducing the spatio-temporal characteristics of observed daily precipitation of different stations spread across Ethiopia, East Africa. The appropriateness of relying on reanalysis datasets for hydrologic modelling, climate change impact assessment and regional modelling studies is assessed using various statistical and non-parametric techniques. ERA-Interim is found to exhibit higher correlation and least root mean square error values with observed daily rainfall, which is followed by CFSR and MERRA in most of the stations. The variability of daily precipitation is better captured by ERA, CFSR and MERRA, while NCEP-DOE R2 overestimated the spread of the precipitation data. While ERA overestimates the probability of moderate rainfall, it is seemingly better in capturing the probability of low rainfall. CFSR captures the overall distribution reasonable well. NCEP-DOE R2 appears to be outperforming others in capturing the probabilities of higher magnitude rainfall. Climatological seasonal cycle and the characteristics of wet and dry spells are compared further, where ERA seemingly replicates the pattern more effectively. However, observed rainfall exhibits higher frequency of short wet spells when compared to that of any reanalysis datasets. MERRA relatively underperforms in simulating the wet spell characteristics of observed daily rainfall. CFSR overestimates the mean wet spell length and mean dry spell length. Spatial trend analysis indicates that the northern and central western Ethiopia show increasing trends, whereas the Central and Eastern Ethiopia as well as the Southern Ethiopia stations show either no trend or decreasing trend. Overall, ERA-Interim and CFSR are better in depicting various characteristics of daily rainfall in Ethiopian region.
  Figure/Table
  Supplementary
  Article Metrics

Keywords precipitation; spatial variability; trends; reanalysis; wet and dry spells; synoptic stations

Citation: Tewodros Woldemariam Tesfaye, C.T. Dhanya, A.K. Gosain. Evaluation of ERA-Interim, MERRA, NCEP-DOE R2 and CFSR Reanalysis precipitation Data using Gauge Observation over Ethiopia for a period of 33 years. AIMS Environmental Science, 2017, 4(4): 596-620. doi: 10.3934/environsci.2017.4.596

References

  • 1. Kite GW, Haberlandt U (1999) Atmospheric model data for macroscale hydrology. J Hydrol 217: 303-313.    
  • 2. Stocker TF, Qin D, Plattner GK, et al (2013) Climate change 2013: The physical science basis. Intergovernmental Panel on Climate Change, Working Group I Contribution to the IPCC Fifth Assessment Report (AR5), New York: Cambridge Univ Press.
  • 3. ABABA A (2007) Climate change national adaptation programme of action (Napa) of Ethiopia. National Meteorological Services Agency, Ministry of Water Resources, Federal Democratic Republic of Ethiopia, Addis Ababa.
  • 4. Feyen J, Zambrano RFV (2015) Modeling hydrological consequences of climate and land use Change-Progress and Challenges. Maskana 2: 83-100.
  • 5. Kim J, Waliser DE, Mattmann CA, et al (2014) Evaluation of the CORDEX-Africa multi-RCM hindcast: systematic model errors. Climate dynamics 42: 1189-1202.    
  • 6. Wagner PD, Fiener P, Wilken F, et al (2012) Comparison and evaluation of spatial interpolation schemes for daily rainfall in data scarce regions. J Hydrol 464: 388-400.
  • 7. Kite GW, Haberlandt U (1999) Atmospheric model data for macroscale hydrology. J Hydrol 217: 303-313.    
  • 8. Petty GW, Krajewski WF (1996) Satellite estimation of precipitation over land. Hydrol Sci J Taylor & Francis 41: 433-451.
  • 9. Stisen S, Sandholt I (2010) Evaluation of remote‐sensing‐based rainfall products through predictive capability in hydrological runoff modelling. Hydrol Proc 24: 879-891.    
  • 10. Zhang X, Alexander L, Hegerl GC, et al (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip Rev Clim Change 2: 851-870.    
  • 11. Abdo KS, Fiseha BM, Rientjes THM, et al (2009) Assessment of climate change impacts on the hydrology of Gilgel Abay catchment in Lake Tana basin, Ethiopia. Hydrol Process 23: 3661-3669.
  • 12. Beyene T, Lettenmaier DP, Kabat P (2010) Hydrologic impacts of climate change on the Nile River Basin: implications of the 2007 IPCC scenarios. Clim Change 100: 433-461.    
  • 13. Dibike YB, Coulibaly P (2005) Hydrologic impact of climate change in the Saguenay watershed: comparison of downscaling methods and hydrologic models. J Hydrol 307: 145-163.    
  • 14. Hulme M, Doherty R, Ngara T, et al (2001) African climate change: 1900-2100. Clim Res 17: 145-168.    
  • 15. Fleming RJ, Kaneshige TM, McGovern WE (1979) The global weather experiment 1. The observational phase through the first special observing period. Bull Am Meteorol Soc 60: 649-661.
  • 16. Fellous JL (2008) Towards a global climate observing system. Interdiscip Sci Rev 33: 83-94.    
  • 17. Bengtsson L, Shukla J (1988) Integration of space and in situ observations to study global climate change. Bull Am Meteorol Soc 69: 1130-1143.    
  • 18. Bengtsson L, Hagemann S, Hodges KI (2004) Can climate trends be calculated from reanalysis data? J Geophys Res: Atmos 109: D11.
  • 19. Mooney PA, Mulligan FJ, Fealy R (2011) Comparison of ERA‐40, ERA‐Interim and NCEP/NCAR reanalysis data with observed surface air temperatures over Ireland. Int J Clim 31: 545-557.    
  • 20. Kistler R, Collins W, Saha S, et al (2001) The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82: 247-267.    
  • 21. Uppala SM, Kållberg PW, Simmons AJ, et al (2005) The ERA‐40 re‐analysis. Q J R Meteorol Soc 131: 2961-3012.    
  • 22. Dee DP, Uppala SM, Simmons AJ, et al (2011) The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Q J R Meteorol Soc 137: 553-597.    
  • 23. Rienecker MM, Suarez MJ, Gelaro R, et al (2011) MERRA: NASA's modern-era retrospective analysis for research and applications. J Clim 24: 3624-3648.    
  • 24. Ebita A, Kobayashi S, Ota Y, et al (2011) The Japanese 55-year Reanalysis "JRA-55": an interim report. Sola 7: 149-152.    
  • 25. Kobayashi S, Yukinari OTA, Harada Y, et al (2015) The JRA-55 reanalysis: General specifications and basic characteristics. J Meteorol Soc Japan Ser II 93: 5-48.    
  • 26. Kalnay E, Kanamitsu M, Kistler R, et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77: 437-471.    
  • 27. Kanamitsu M, Ebisuzaki W, Woollen J, et al (2002) Ncep-doe amip-ii reanalysis (r-2). Bull Am Meteorol Soc 83: 1631-1643.
  • 28. Saha S, Moorthi S, Pan H-L, et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91: 1015-1057.
  • 29. Saha S, Moorthi S, Wu X, et al (2014) The NCEP climate forecast system version 2. J Clim 27: 2185-2208.
  • 30. Dee DP, Uppala S (2009) Variational bias correction of satellite radiance data in the ERA‐Interim reanalysis. Q J R Meteorol Soc 135: 1830-1841.    
  • 31. Poli P, Healy SB, Dee DP (2010) Assimilation of Global Positioning System radio occultation data in the ECMWF ERA-Interim reanalysis. Q J R Meteorol Soc 136: 1972-1990.
  • 32. Behringer DW, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Proc. Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface.
  • 33. Penny SG, Behringer DW, Carton JA, Kalnay E (2015) A hybrid global ocean data assimilation system at NCEP. Mon Weather Rev 143: 4660-4677.    
  • 34. Diro GT, Grimes DIF, Black E, et al (2009) Evaluation of reanalysis rainfall estimates over Ethiopia. Int J Clim 29: 67-78.    
  • 35. Zhao Y, Li J (2006) Discrepancy of mass transport between the Northern and Southern Hemispheres among the ERA‐40, NCEP/NCAR, NCEP‐DOE AMIP‐2, and JRA‐25 reanalysis. Geophysical res letters 33.
  • 36. Thorne PW, Vose RS (2010) Reanalyses suitable for characterizing long-term trends. Bull Am Meteorol Soc 91: 353.
  • 37. Bosilovich MG (2013) Regional climate and variability of NASA MERRA and recent reanalyses: US summertime precipitation and temperature. J Appl Meteorol Clim 52: 1939-1951.    
  • 38. Chen G, Iwasaki T, Qin H, Sha W (2014) Evaluation of the warm-season diurnal variability over East Asia in recent reanalyses JRA-55, ERA-Interim, NCEP CFSR, and NASA MERRA. J Clim 27: 5517-5537.    
  • 39. Lin R, Zhou T, Qian Y (2014) Evaluation of global monsoon precipitation changes based on five reanalysis datasets. J Clim 27: 1271-1289.    
  • 40. Huang D, Zhu J, Zhang Y, et al (2016) Assessment of summer monsoon precipitation derived from five reanalysis datasets over East Asia. Q J R Meteorol Soc 142: 108-119.
  • 41. Hutchinson MF (1998) Interpolation of rainfall data with thin plate smoothing splines. Part I: Two dimensional smoothing of data with short range correlation. J Geogr Inf Decis Anal 2: 139-151.
  • 42. Tsidu GM (2012) High-resolution monthly rainfall database for Ethiopia: homogenization, reconstruction, and gridding. J Clim 25: 8422-8443.    
  • 43. Nijssen B, O'Donnell GM, Lettenmaier DP, et al (2001) Predicting the discharge of global rivers. J Clim 14: 3307-3323.    
  • 44. Prakash S, Gairola RM, Mitra AK (2015) Comparison of large-scale global land precipitation from multisatellite and reanalysis products with gauge-based GPCC data sets. Theor Appl Clim 121: 303-317.
  • 45. Sylla MB, Coppola E, Mariotti L, et al. (2010) Multiyear simulation of the African climate using a regional climate model (RegCM3) with the high resolution ERA-interim reanalysis. Clim Dyn 35: 231-247.
  • 46. Wu M-LC, Reale O, Schubert SD, et al. (2012) African easterly jet: Barotropic instability, waves, and cyclogenesis. J Clim 25: 1489-1510.    
  • 47. Güntner A (2008) Improvement of global hydrological models using GRACE data. Surv Geophysi 29: 375-397.    
  • 48. Diaconescu EP, Gachon P, Scinocca J, et al. (2015) Evaluation of daily precipitation statistics and monsoon onset/retreat over western Sahel in multiple data sets. Clim Dyn 45: 1325-1354.    
  • 49. Reda DT, Engida AN, Asfaw DH, et al. (2015) Analysis of precipitation based on ensembles of regional climate model simulations and observational databases over Ethiopia for the period 1989-2008. Int J Clim 35: 948-971.
  • 50. Sen PK (1968) Estimates of the regression coefficient based on Kendall's tau. J Am Stat Assoc 63: 1379-1389.    
  • 51. Cheung WH, Senay GB, Singh A (2008) Trends and spatial distribution of annual and seasonal rainfall in Ethiopia. Int J Clim 28: 1723-1734.    
  • 52. Seleshi Y, Zanke U (2004) Recent changes in rainfall and rainy days in Ethiopia. Int J Clim 24: 973-983.    
  • 53. Funk CC, Rowland J, Eilerts G, et al. (2012) A climate trend analysis of Ethiopia. US Geol Sur.
  • 54. Walker S, Getahun YG, Tesfaye K, et al. (2003) The use of agroclimatic zones as a basis for tailored seasonal rainfall forecasts for the cropping systems in the Central Rift-valley of Ethiopia. Insights and Tools for Adaptation: Learning from Climate Variability.
  • 55. Tadesse T (2000) Drought and its predictability in Ethiopia, In: Wilhite, D.A, Drought: A Global Assessment 135-142.
  • 56. National Meteorological Services Agency (NMSA) (1996) Climate and Agro climatic Resources of Ethiopia. Meteorological research report series 1.
  • 57. Xue X, Hong Y, Limaye AS, et al. (2013) Statistical and hydrological evaluation of TRMM-based Multi-satellite Precipitation Analysis over the Wangchu Basin of Bhutan: Are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? J Hydrol 499: 91-99.    
  • 58. Belachew A (2002) Practical approach to upgrade the hydro-meteorological network in Ethiopia. Ethiopian J. Water Sci Tech 3.
  • 59. Barnett V, Lewis T (1994) Outliers in statistical data, New York: Wiley.
  • 60. Zaroug MAH, Giorgi F, Coppola E, et al. (2014) Simulating the connections of ENSO and the rainfall regime of East Africa and the upper Blue Nile region using a climate model of the Tropics. Hydrol Earth Syst Sci Discuss 11: 2233-2262.    
  • 61. Lanzante JR (1996) Resistant, robust and non-parametric techniques for the analysis of climate data: theory and examples, including applications to historical radiosonde station data. Int J Clim 16: 1197-1226.    
  • 62. González-Rouco JF, Jiménez JL, Quesada V, et al. (2001) Quality control and homogeneity of precipitation data in the southwest of Europe. J Clim 14: 964-978.    
  • 63. Wagesho N, Goel NK, Jain MK (2013) Temporal and spatial variability of annual and seasonal rainfall over Ethiopia. Hydrol Sci J 58: 354-373.    
  • 64. AghaKouchak A, Mehran A (2013) Extended contingency table: Performance metrics for satellite observations and climate model simulations. Water Resour Res 49: 7144-7149.    
  • 65. Kennedy AD, Dong X, Xi B, et al (2011) A comparison of MERRA and NARR reanalyses with the DOE ARM SGP data. J Clim 24: 4541-4557.    
  • 66. Dawit A, Future climate of Ethiopia from PRECIS Regional Climate Model Experimental Design 2010. Available from: http://www. metoffice. gov. uk/media/pdf/o/9/PRECIS_Experimental_ Design_Dawit. pdf.
  • 67. Suarez MJ, Rienecker MM, Todling R, et al (2008) The GEOS-5 Data Assimilation System-Documentation of Versions 5.0.1, 5.1.0, and 5.2.0.
  • 68. Hartkamp AD, De Beurs K, Stein A, et al. (1999) Interpolation techniques for climate variables. Geographic Information Systems Series 99-01.
  • 69. Ratan R, Venugopal V (2013) Wet and dry spell characteristics of global tropical rainfall. Water Resour Res 49: 3830-3841.    
  • 70. Douguedroit A (1987) The variations of dry spells in Marseilles from 1865 to 1984. J Clim 7: 541-551.

 

Reader Comments

your name: *   your email: *  

Copyright Info: © 2017, C.T. Dhanya, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved