Review Special Issues

Enzymatic transesterification of lipids from microalgae into biodiesel: a review

  • Received: 28 June 2016 Accepted: 29 September 2016 Published: 18 October 2016
  • Biodiesel is considered as a potential interesting alternative diesel substitute due to its many advantages, such as biodegradability and non-toxicity. Biodiesel production worldwide is low and does not meet the needs of society. Therefore, biodiesel production policies have been implemented by various countries. This paper addresses the issues of plant materials containing lipids for biodiesel production and explores also the avenue of microalgae as an alternative. Various conversion technologies of lipids into biodiesel are also described and compared. Enzymatic transesterification would be most appropriate when microalgae oils are used because of their high free fatty acids content. The optimization of the enzymatic process depends on several parameters such as the catalyst, temperature, reaction time and the alcohol: oil molar ratio.

    Citation: Maria del Pilar Rodriguez, Ryszard Brzezinski, Nathalie Faucheux, Michèle Heitz. Enzymatic transesterification of lipids from microalgae into biodiesel: a review[J]. AIMS Energy, 2016, 4(6): 817-855. doi: 10.3934/energy.2016.6.817

    Related Papers:

  • Biodiesel is considered as a potential interesting alternative diesel substitute due to its many advantages, such as biodegradability and non-toxicity. Biodiesel production worldwide is low and does not meet the needs of society. Therefore, biodiesel production policies have been implemented by various countries. This paper addresses the issues of plant materials containing lipids for biodiesel production and explores also the avenue of microalgae as an alternative. Various conversion technologies of lipids into biodiesel are also described and compared. Enzymatic transesterification would be most appropriate when microalgae oils are used because of their high free fatty acids content. The optimization of the enzymatic process depends on several parameters such as the catalyst, temperature, reaction time and the alcohol: oil molar ratio.

    [1] Nationmaster, 2009. Energy Statistic «Oil Consumption» Million tons (most recent) by country. Available from:
    [2] Maity SK (2015) Opportunities, recent trends and challenges of integrated biorefinery: Part I. Renew Sust Energ Rev 43: 1427-1445. doi: 10.1016/j.rser.2014.11.092
    [3] Fairless D (2007) Biofuel: the little shrub that could - maybe. Nature 449: 652-655. doi: 10.1038/449652a
    [4] Jatropha World, 2011. Castor bean-a fuel source for the future. Available from
    [5] Chamoumi M, Veillette M, Faucheux N, et al. (2014) Biodiesel production from used frying oil and microalgae: a preliminary study. Proceedings from the 7th International Conference on Waste Management and the Environment VII, Wessex, Ancona, Italy, in WIT Transactions on Ecology and the Environment, Eds., C.A. Brebbia, Wessex Institute of Technology, UK, 180, 453-461.
    [6] Ghosh A, Khanra S, Mondal M, et al. (2016) Progress toward isolation of strains and genetically engineered strains of microalgae for production of biofuel and other value added chemicals: A review. Energ Convers Manage 113: 104-118. doi: 10.1016/j.enconman.2016.01.050
    [7] Schenk PM, Thomas-Hall SR, Stephens E, et al. (2008) Second generation biofuels: High-efficiency microalgae for biodiesel production. Bioenerg Res 1: 20-43. doi: 10.1007/s12155-008-9008-8
    [8] Robles-Medina A, González-Moreno PA, Esteban-Cerdán L, et al. (2009) Biocatalysis: Towards ever greener biodiesel production. Biotechnol Adv 27: 398-408. doi: 10.1016/j.biotechadv.2008.10.008
    [9] Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresource Technol 97: 841-846. doi: 10.1016/j.biortech.2005.04.008
    [10] Lai C, Zullaikah S, Vali SR, et al. (2005) Lipase-catalyzed production of biodiesel from rice bran oil. J Chem Technol Biot 80: 331-337. doi: 10.1002/jctb.1208
    [11] Samukawa T, Kaieda M, Matsumoto T, et al. (2000) Pretreatment of immobilized Candida antarctica lipase for biodiesel fuel production from vegetable oil. J Biosci Bioeng 90: 180-183. doi: 10.1016/S1389-1723(00)80107-3
    [12] Nikiema J, Heitz M (2008) Biodiesel. I. Characteristics, assets and limitations—A synthesis. Can J Civil Eng 35: 95-106.
    [13] Veillette M, Giroir-Fendler A, Faucheux N, et al. (2016) Biodiesel from microalgae lipids: From inorganic carbon to energy production, Biofuel, accepted September 2016.
    [14] Sahoo PK, Das LM, Babu MKG, et al. (2007) Biodiesel development from high acid value polanga seed oil and performance evaluation in a CI engine. Fuel 86: 448-454. doi: 10.1016/j.fuel.2006.07.025
    [15] Demirbas A (2008) Relationships derived from physical properties of vegetable oil and biodiesel fuels. Fuel 87: 1743-1748. doi: 10.1016/j.fuel.2007.08.007
    [16] Pereira RG, Oliveira CD, Oliveira JL, et al. (2007) Exhaust emissions and electric energy generation in a stationary engine using blends of diesel and soybean biodiesel. Renew Energ 32: 2453-2460. doi: 10.1016/j.renene.2006.05.007
    [17] Qi DH, Chen H, Geng LM, et al. (2010) Performance and combustion characteristics of biodiesel-diesel-methanol blend fueled engine. Appl Energ 87: 1679-1686. doi: 10.1016/j.apenergy.2009.10.016
    [18] Kulkarni MG, Dalai AK, Bakhshi NN (2007) Transesterification of canola oil in mixed methanol/ethanol system and use of esters as lubricity additive. Bioresource Technol 98: 2027-2033. doi: 10.1016/j.biortech.2006.08.025
    [19] Srivastava A, Prasad R (2000) Triglycerides-based diesel fuels. Renew Sust Energ Rev 4: 111-133. doi: 10.1016/S1364-0321(99)00013-1
    [20] Ramadhas AS, Jayaraj S, Muraleedharan C (2005) Biodiesel production from high FFA rubber seed oil. Fuel 84: 335-340. doi: 10.1016/j.fuel.2004.09.016
    [21] Guldhe A, Singh P, Kumari S, et al. (2016) Biodiesel synthesis from microalgae using immobilized Aspergillus niger whole cell lipase biocatalyst. Renew Energ 85: 1002-1010. doi: 10.1016/j.renene.2015.07.059
    [22] OPEC (Organization of the Petroleum Exporting Countries), 2016 OPEC share of world crude oil reserves, 2015. Available from: Logged in June 2016.
    [23] Exxonmobil, Annual report 2010, Taking on the world’s toughest energy challenges, 2010. Available from:
    [24] Eur-Lex (2009) Directive 2009/28/ce du parlement européen et du conseil du 23 avril 2009 relative à la promotion de l’utilisation de l’énergie produite à partir de sources renouvelables et modifiantes puis abrogeant les directives 2001/77/CE et2003/30/CE [on line] Official Journal of the European Union. Available from:
    [25] Nextfuel (2006) Argentina’s congress, Loi 26.093. “Regimen de regulacion y promocion para la producción y uso sustentable de biocombustibles” Nextfuel, Portal news and information on renewable energy. Available from:
    [26] Biodiesel Magazine (2010) Global biodiesel production and market report September 01, 2010. Available from:
    [27] NBB (2005) U.S. Navy Calls for Broad Use of Biodiesel at Navy and Marine Facilities “New B20 Policy Will Lead to Greater Use of Domestically Produced Alternative Fuel” National Biodiesel Board. Available from:
    [28] Biodiesel Magazine (2005) Brazil: “Presidência da República Casa Civil Subchefia para Assuntos Jurídicos LEI No 11.097, de 13 de Janeiro de 2005” National Program for Biodiesel Production and use Standards and Legislation on Biodiesel. Available from:
    [29] Environnement Canada, Règlement fédéral sur les carburants renouvelables, principaux éléments et prochaine étape, Government of Canada, Ottawa, 2006. Available from:
    [30] Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25: 294-306. doi: 10.1016/j.biotechadv.2007.02.001
    [31] JAOCS, Oils and fats in the market place. Biodiesel. Journal of the American Oil Chemists’s Society, 2011. Available from:
    [32] Eia, Monthly biodiesel production report December 2009. Energy Information Administration, Department of Energy, 2009. Available from:
    [33] Renewable Energy Magazine, Brazil Ups Mandatory Biodiesel Blend to 5% in 2010. Renewable energy world, 2009. Available from:
    [34] Lin L, Cunshan Z, Vittayapadung S, et al. (2011) Opportunities and challenges for biodiesel fuel. Appl Energ 88: 1020-1031. doi: 10.1016/j.apenergy.2010.09.029
    [35] Biodiesel Magazine, Gov’t agencies project even higher prices for diesel, soy oil. 2011. Available from:
    [36] Biodiesel Magazine, Winds of change: German biodiesel industry faces challenges. 2009. Available from:
    [37] Biodiesel Magazine, Continued Strength in Oil Prices, 2008. Available from:
    [38] Indexmundi, Commodity Price indices Coconut oil monthly price, 2009. Available from:
    [39] Biodiesel Magazine (2010) Mission triples jatropha oil sales to power co, 2010. Available from:
    [40] Biodiesel Magazine, Budding Opportunities in Canola, 2007. Available from:
    [41] Castoroil (2010) Preview of comprehensive castor oil report 2010. Available from:
    [42] FAO (1999) Modern coconut management, palm cultivation and products. Food and Agriculture Organization of the United Nations. Available from:
    [43] Indexmundi (2009) Commodity Price Indices Sunflower oil monthly price. Available from:
    [44] Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid esters. Fuel Process Technol 86: 1059-1070. doi: 10.1016/j.fuproc.2004.11.002
    [45] Siddiqui M, Kumar A, Farooqui A, et al. (2011) Biodiesel production from crude oil of Jatropha curcas and Pongamia pinnata by transesterification process. Int J Oil Gas Coal Technol 4: 192-206. doi: 10.1504/IJOGCT.2011.038929
    [46] Gui MM, Lee KT, Bhatia S (2008) Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 33: 1646-1653.
    [47] Pc (2003) Report of the Committee on the Development of Bio-fuel. Planning Commission. Planning commission, Government of India, New Delhi. Available from:
    [48] Khani M, Awang RM, Omar D, et al. (2011)Tropical medicinal vegetable extracts against rice weevil, Sitophilus oryzae L. J Med Vegetable Res 5: 259-265.
    [49] Pinzi S, Gandía LM, Arzamendi G, et al. (2011) Influence of vegetable oils fatty acid composition on reaction temperature and glycerides conversion to biodiesel during transesterification. Bioresource Technol 102: 1044-1050. doi: 10.1016/j.biortech.2010.08.029
    [50] Vlad E, Bildea CS, Pleşu V, et al (2010) Process design of biodiesel production from rapeseed oil. Chem Eng Trans 21: 1267-1272.
    [51] Yazdi ZK, Alemzadeh I (2011) Improvement of palm oil and sunflower oil blends by enzymatic interesterification. Int J Food Sci Technol 46: 1093-1099. doi: 10.1111/j.1365-2621.2011.02596.x
    [52] Xiong W, Li X, Xiang J, et al. (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biot 78: 29-36. doi: 10.1007/s00253-007-1285-1
    [53] Day AG, Brinkmann D, Franklin S, et al. (2009) Safety evaluation of a high-lipid algal biomass from Chlorella protothecoides. Regul Toxicol Pharm 55: 166-180. doi: 10.1016/j.yrtph.2009.06.014
    [54] Miao X, Wu Q (2004) High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol 110: 85-93. doi: 10.1016/j.jbiotec.2004.01.013
    [55] Heredia-Arroyo T, Wei W, Hu B (2010) Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Appl Biochem Biotechnol 162: 1978-1995. doi: 10.1007/s12010-010-8974-4
    [56] Lu Y, Zhai Y, Liu M, et al. (2010) Biodiesel production from algal oil using cassava (Manihot esculenta crantz) as feedstock. J Appl Phycol 22: 573-578. doi: 10.1007/s10811-009-9496-8
    [57] Cheng Y, Lu Y, Gao C, et al. (2009 a) Alga-based biodiesel production and optimization using sugar cane as the feedstock. Energ Fuel 23: 4166-4173.
    [58] Cheng Y, Zhou W, Gao C, et al. (2009) Biodiesel production from Jerusalem artichoke (Helianthus tuberosus L.) tuber by heterotrophic microalgae Chlorella protothecoides. J Chem Technol Biotechnol 84: 777-781.
    [59] Sydney EB, Da Silva TE, Tokarski A, et al. (2010) Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Appl Energ 88: 3291-3294.
    [60] Ehteshami F, Christianus A, Rameshi H, et al. (2011) Proximate and fatty acid composition of the gonads of wild versus hatchery-conditioned Pinctada margaritifera broodstock. Aquacult Nutr 17: 675-682. doi: 10.1111/j.1365-2095.2010.00821.x
    [61] Rodolfi L, Zittelli GC, Bassi N, et al. (2009) Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102: 100-112. doi: 10.1002/bit.22033
    [62] Martínez-Fernández E, Acosta-Salmón H, Southgate PC (2006) The nutritional value of seven species of tropical microalgae for black-lip pearl oyster (Pinctada margaritifera, L.) larvae. Aquaculture 257: 491-503. doi: 10.1016/j.aquaculture.2006.03.022
    [63] Drira N, Piras A, Rosa A, et al. (2016) Microalgae from domestic wastewater facility’s high rate algal pond: lipids extraction, characterization and biodiesel production. Bioresource Technol 206: 239-244. doi: 10.1016/j.biortech.2016.01.082
    [64] Soyinfo C (2007) History of Soybean Crushing: Soy Oil and Soybean Meal - Part 1. Available from:
    [65] Zhao J, Becker HC, Zhang D, et al. (2006) Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to vegetable development and grain yield. Theor Appl Genet 113: 33-38 doi: 10.1007/s00122-006-0267-5
    [66] Chen C, Yeh K, Aisyah R, et al. (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technol 102: 71-81. doi: 10.1016/j.biortech.2010.06.159
    [67] Kim KH, Lee OK, Kim CH, et al. (2016) Lipase-catalyzed in-situ biosynthesis of glycerol-free biodiesel from heterotrophic microalgae, Aurantiochytrium sp. KRS101 biomass. Bioresource Technol 211: 472-477. doi: 10.1016/j.biortech.2016.03.092
    [68] Huang JJ, Cheung PC (2011) +UVA treatment increases the degree of unsaturation in microalgal fatty acids and total carotenoid content in Nitzschia closterium (Bacillariophyceae) and Isochrysis zhangjiangensis (Chrysophyceae). Food Chem 129: 783-791. doi: 10.1016/j.foodchem.2011.05.021
    [69] Mata T, Martins A, Caetano N (2010) Microalgae for biodiesel production and other applications: A review. Renew Sust Energ Rev 14: 217-232. doi: 10.1016/j.rser.2009.07.020
    [70] Minhas AK, Hodgson P, Barrow CJ, et al. (2016) The isolation and identification of new microalgal strains producing oil and carotenoid simultaneously with biofuel potential. Biores Technol 211: 556-565. doi: 10.1016/j.biortech.2016.03.121
    [71] Nextfuel (2010) Oil Fox S.A. Fox opened its vegetable in biodiesel from algae. Available from:
    [72] Amaro HM, Guedes AC, Malcata FX (2011) Advances and perspectives in using microalgae to produce biodiesel. Appl Energ 88: 3402-3410. doi: 10.1016/j.apenergy.2010.12.014
    [73] Gupta SS, Shastri Y, Bhartiya S (2016) Model-based optimisation of biodiesel production from microalgae. Comput Chem Eng 89: 222-249. doi: 10.1016/j.compchemeng.2016.01.014
    [74] Tubino M, Rocha Jr JG, Bauerfeldt GF (2016) Biodiesel synthesis: A study of the triglyceride methanolysis reaction with alkaline catalysts. Catal Commun 75: 6-12. doi: 10.1016/j.catcom.2015.10.033
    [75] Andrade JE, Pérez A, Sebastian PJ, et al. (2011) A review of bio-diesel production processes. Biomass Bioenerg 19: 1008-1020.
    [76] Leung DYC, Wu X, Leung MKH (2010) A review on biodiesel production using catalyzed transesterification. Appl Energ 87: 1083-1095. doi: 10.1016/j.apenergy.2009.10.006
    [77] Koh MY, Mohd Ghazi TI (2011) A review of biodiesel production from Jatropha curcas L. oil. Renew Sust Energ Rev 15: 2240-2251. doi: 10.1016/j.rser.2011.02.013
    [78] Leung DYC, Guo Y (2006) Transesterification of neat and used frying oil: Optimization for biodiesel production. Fuel Process Technol 87: 883-890. doi: 10.1016/j.fuproc.2006.06.003
    [79] Kumar Tiwari A, Kumar A, Raheman H (2007) Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process. Biomass Bioenerg 31: 569-575. doi: 10.1016/j.biombioe.2007.03.003
    [80] Narasimharao K, Brown DR, Lee AF, et al. (2007) Structure-activity relations in Cs-doped heteropolyacid catalysts for biodiesel production. J Catal 248: 226-234. doi: 10.1016/j.jcat.2007.02.016
    [81] Arzamendi G, Arguiñarena E, Campo I, et al. (2008) Alkaline and alkaline-earth metals compounds as catalysts for the methanolysis of sunflower oil. Catal Today 133-135: 305-313. doi: 10.1016/j.cattod.2007.11.029
    [82] Vicente G, Martínez M, Aracil J (2004) Integrated biodiesel production: A comparison of different homogeneous catalysts systems. Bioresource Technol 92: 297-305. doi: 10.1016/j.biortech.2003.08.014
    [83] Huang G, Chen F, Wei D, et al. (2010). Biodiesel production by microalgal biotechnology. Appl Energ 87: 38-46. doi: 10.1016/j.apenergy.2009.06.016
    [84] Turkay S, Civelekoglu H (1991) Deacidification of sulfur olive oil. I. Single-stage liquid-liquid extraction of miscella with ethyl alcohol. J Am Oil Chem Soc 68: 83-86.
    [85] Pina CG, Meirelles AJA (2000) Deacidification of corn oil by solvent extraction in a perforated rotating disc column. JAOCS 77: 553-559.
    [86] Cai ZZ, Wang Y, Teng YL, et al. (2015) A two-step biodiesel production process from waste cooking oil via recycling crude glycerol esterification catalyzed by alkali catalyst. Fuel Process Technol 137: 186-193. doi: 10.1016/j.fuproc.2015.04.017
    [87] Rashid U, Anwar F, Moser BR, et al. (2008) Production of sunflower oil methyl esters by optimized alkali-catalyzed methanolysis. Biomass Bioenerg 32: 1202-1205. doi: 10.1016/j.biombioe.2008.03.001
    [88] Encinar JM, González JF, Rodríguez-Reinares A (2005) Biodiesel from used frying oil. Variables affecting the yields and characteristics of the biodiesel. Ind Eng Chem Res 44: 5491-5499.
    [89] Puhan S, Vedaraman N, Ram BVB, et al. (2005) Mahua oil (Madhuca Indica seed oil) methyl ester as biodiesel-preparation and emission characteristics. Biomass Bioenerg 28: 87-93. doi: 10.1016/j.biombioe.2004.06.002
    [90] Muniyappa PR, Brammer SC, Noureddini H (1996) Improved conversion of vegetable oils and animal fats into biodiesel and co-product. Bioresource Technol 56: 19-24. doi: 10.1016/0960-8524(95)00178-6
    [91] Karmee SK, Chadha A (2005) Preparation of biodiesel from crude oil of Pongamia pinnata. Bioresource Technol 96: 1425-1429. doi: 10.1016/j.biortech.2004.12.011
    [92] Rashid U, Anwar F (2008) Production of biodiesel through optimized alkaline-catalyzed transesterification of rapeseed oil. Fuel 87: 265-273. doi: 10.1016/j.fuel.2007.05.003
    [93] Bo X, Guomin X, Lingfeng C, et al. (2007) Transesterification of palm oil with methanol to biodiesel over a KF/Al2O3 heterogeneous base catalyst. Energ Fuel 21: 3109-3112. doi: 10.1021/ef7005035
    [94] Sun H, Hu K, Lou H, et al. (2008) Biodiesel production from transesterification of rapeseed oil using KF/Eu2O3 as a catalyst. Energ Fuels 22: 2756-2760. doi: 10.1021/ef700778r
    [95] Xie W, Peng H, Chen L (2006) Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst. Appl Catal A-Gen 300: 67-74. doi: 10.1016/j.apcata.2005.10.048
    [96] Liu X, Piao X, Wang Y, et al. (2008) Calcium ethoxide as a solid base catalyst for the transesterification of soybean oil to biodiesel. Energ Fuel 22: 1313-1317. doi: 10.1021/ef700518h
    [97] Hameed BH, Lai LF, Chin LH (2009) Production of biodiesel from palm oil (Elaeis guineensis) using heterogeneous catalyst: An optimized process. Fuel Process Technology 90: 606-610. doi: 10.1016/j.fuproc.2008.12.014
    [98] Arzamendi G, Arguiñarena E, Campo I, et al. (2008) Alkaline and alkaline-earth metals compounds as catalysts for the methanolysis of sunflower oil. Catal Today 133-135: 305-313. doi: 10.1016/j.cattod.2007.11.029
    [99] Veillette M, Giroir-Fendler A, Faucheux N, et al. (2017) Factors influencing the esterification of free fatty acid with methanol to biodiesel using heterogeneous catalysts: From model acid oil to microalgae lipids, J Chem Technol Biotechnol, in press.
    [100] Shuit SH, Lee KT, Kamaruddin AH, et al. (2009) Reactive extraction and in situ esterification of jatropha curcas L. seeds for the production of biodiesel. Fuel 89: 527-530.
    [101] Goff MJ, Bauer NS, Lopes S, et al. (2004) Acid-catalyzed alcoholysis of soybean oil. J Am Oil Chem Soc 81: 415-420. doi: 10.1007/s11746-004-0915-6
    [102] Li P, Miao X, Li R, et al. (2011) In situ biodiesel production from fast-growing and high oil content Chlorella pyrenoidosa in rice straw hydrolysate. J Biomed Biotechnol doi:10.1155/2011/141207.
    [103] Wang Y, Ou S, Liu P, et al. (2006) Comparison of two different processes to synthesize biodiesel by waste cooking oil. J Mol Catal A-Chem 252: 107-112. doi: 10.1016/j.molcata.2006.02.047
    [104] Garcia CM, Teixeira S, Marciniuk LL, et al. (2008) Transesterification of soybean oil catalyzed by sulfated zirconia. Bioresource Technol 99: 6608-6613. doi: 10.1016/j.biortech.2007.09.092
    [105] Park JY, Park MS, Lee YC, et al. (2015) Advances in direct transesterification of algal oils from wet biomass. Bioresource Technol 184: 267-275. doi: 10.1016/j.biortech.2014.10.089
    [106] Lai JQ, Hu ZL, Wang PW, et al. (2011) Enzymatic production of microalgal biodiesel in ionic liquid [BMIm] [PF6]. Fuel 95: 329-333.
    [107] Cao H, Zhang Z, Wu X, et al. (2013) Direct biodiesel production from wet microalgae biomass of Chlorella pyrenoidosa through in situ transesterification. BioMed Res Int 2013: 1-6.
    [108] Choi WY, Kang DH, Lee SY, et al. (2015). High quality biodiesel from marine microalga, Scenedesmus sp. through in situ acid transesterification. J Chem Technol Biotechnol 90: 1245-1252.
    [109] Sathish A, Smith BR, Ronald CS (2014) Effect of moisture on in situ transesterification of microalgae for biodiesel production. J Chem Technol Biotechnol 89: 137-142. doi: 10.1002/jctb.4125
    [110] Velasquez-Orta SB, Lee JGM, Harvey A (2013) Evaluation of FAME Production from Wet Marine and Freshwater Microalgae by in Situ Transesterification. Biochem Eng J 76: 83-89. doi: 10.1016/j.bej.2013.04.003
    [111] Patil PD, Gude VG, Mannarswamy A, et al. (2011) Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. Bioresource Technol 102: 118-122. doi: 10.1016/j.biortech.2010.06.031
    [112] Cheng J, YuT, Li T, et al. (2013) Using wet microalgae for direct biodiesel production via microwave irradiation. Bioresource Technol 131: 531-535. doi: 10.1016/j.biortech.2013.01.045
    [113] Lotti M, Pleiss J, Valero F, et al. (2015) Effect of methanol on lipases: molecular, kinetic and process issues in the production of biodiesel. Biotechnol J 10: 22 -30. doi: 10.1002/biot.201400158
    [114] Iso M, Chen B, Eguchi M, et al. (2001) Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. J Mol Catal B-Enzym 16: 53-58. doi: 10.1016/S1381-1177(01)00045-5
    [115] Linko Y, Lämsä M, Wu X, et al. (1998) Biodegradable products by lipase biocatalysis. J Biotechnol 66: 41-50. doi: 10.1016/S0168-1656(98)00155-2
    [116] Wu XY, Jääskeläinen S, Linko Y (1996) An investigation of crude lipases for hydrolysis, esterification, and transesterification. Enzyme Microb Tech 19: 226-231. doi: 10.1016/0141-0229(95)00239-1
    [117] Yang J, Zhang B, Yan Y (2009) Cloning and expression of Pseudomonas fluorescens 26-2 lipase gene in Pichia pastoris and characterizing for transesterification. Appl Biochem Biotechnol 159: 355-365. doi: 10.1007/s12010-008-8419-5
    [118] Guan F, Peng P, Wang G, et al. (2010). Combination of two lipases more efficiently catalyzes methanolysis of soybean oil for biodiesel production in aqueous medium. Process Biochem 45: 1677-1682. doi: 10.1016/j.procbio.2010.06.021
    [119] Kaieda M, Samukawa T, Matsumoto T, et al. (1999) Biodiesel fuel production from vegetable oil catalyzed by Rhizopus oryzae lipase in a water-containing system without an organic solvent. J Biosci Bioeng 88: 627-631. doi: 10.1016/S1389-1723(00)87091-7
    [120] Chattopadhyay S, Karemore A, Das S, et al. (2011) Biocatalytic production of biodiesel from cottonseed oil: Standardization of process parameters and comparison of fuel characteristics. Appl Energ 88: 1251-1256. doi: 10.1016/j.apenergy.2010.10.007
    [121] Liu Y, Yan Y, Xu L, et al. (2010) Enzymatic transesterification for production of biodiesel from waste baked duck oil. International Conference on Mechanic Automation and Control Engineering, MACE2010. 5535909, 3990-3993.
    [122] Séverac E, Galy O, Turon F, et al. (2011) Continuous lipase-catalyzed production of esters from crude high-oleic sunflower oil. Bioresource Technol 102: 4954-4961. doi: 10.1016/j.biortech.2011.01.041
    [123] Köse O, Tüter M, Aksoy HA (2002) Immobilized Candida antarctica lipase-catalyzed alcoholysis of cotton seed oil in a solvent-free medium. Bioresource Technol 83: 125-129. doi: 10.1016/S0960-8524(01)00203-6
    [124] Shimada Y, Watanabe Y, Sugihara A, et al. (2002) Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J Mol Catal B-Enzym 17(3-5): 133-142.
    [125] Salis A, Pinna M, Monduzzi M, et al. (2005) Biodiesel production from triolein and short chain alcohols through biocatalysis. J Biotechnol 119: 291-299. doi: 10.1016/j.jbiotec.2005.04.009
    [126] Talukder MMR, Das P, Fang TS, et al. (2011) Enhanced enzymatic transesterification of palm oil to biodiesel. Biochem Eng J 55: 119-122. doi: 10.1016/j.bej.2011.03.013
    [127] Royon D, Daz M, Ellenrieder G, et al. (2007) Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresource Technol 98: 648-653. doi: 10.1016/j.biortech.2006.02.021
    [128] Coggon R, Vasudevan PT, Sanchez F (2007) Enzymatic transesterification of olive oil and its precursors. Biocatal Biotransfor 25: 135-143. doi: 10.1080/10242420701379163
    [129] Xu Y, Du W, Liu D, et al. (2003) A novel enzymatic route for biodiesel production from renewable oils in a solvent-free medium. Biotechnol Lett 25: 1239-1241.130. Watanabe Y, Shimada Y, Sugihara A, et al. (2001) Enzymatic conversion of waste edible oil to biodiesel fuel in a fixed-bed bioreactor. J Am Oil Chem Soc 78: 703-707. doi: 10.1007/s11746-001-0329-5
    [130] 131. Modi MK, Reddy JRC, Rao BVSK, et al. (2006) Lipase-mediated transformation of vegetable oils into biodiesel using propan-2-ol as acyl acceptor. Biotechnol Lett 28: 637-640. doi: 10.1007/s10529-006-0027-2
    [131] 132. Watanabe Y, Pinsirodom P, Nagao T, et al. (2007) Conversion of acid oil by-produced in vegetable oil refining to biodiesel fuel by immobilized Candida antarctica lipase. J Mol Catal B- Enzym 44: 99-105. doi: 10.1016/j.molcatb.2006.09.007
    [132] 133. Raita M, Champreda V, Laosiripojana N (2010) Biocatalytic ethanolysis of palm oil for biodiesel production using microcrystalline lipase in tert-butanol system. Process Biochem 45: 829-834. doi: 10.1016/j.procbio.2010.02.002
    [133] 134. Du W, Xu Y, Liu D, et al. (2004) Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J Mol Catal B-Enzym 30: 125-129. doi: 10.1016/j.molcatb.2004.04.004
    [134] 135. Shimada Y, Watanabe Y, Samukawa T, et al. (1999) Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. J Am Oil Chem Soc 76: 789-793. doi: 10.1007/s11746-999-0067-6
    [135] 136. Watanabe Y, Shimada Y, Sugihara A, et al. (2002) Conversion of degummed soybean oil to biodiesel fuel with immobilized Candida antarctica lipase. J Mol Catal B-Enzym 17: 151-155.
    [136] 137. Li L, Du W, Liu D, et al. (2006) Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium. J Mol Catal B-Enzym 43: 58-62. doi: 10.1016/j.molcatb.2006.06.012
    [137] 138. Rodrigues AR, Paiva A, Da Silva MG, et al. (2011) Continuous enzymatic production of biodiesel from virgin and waste sunflower oil in supercritical carbon dioxide. J Supercrit Fluid 56: 259-264. doi: 10.1016/j.supflu.2010.10.031
    [138] 139. Encinar JM, González JF, Martínez G, et al. (2010) Biodiesel by enzymatic transesterification of sunflower oil with ethanol. J Biobased Mater Bio 4: 87-94. doi: 10.1166/jbmb.2010.1070
    [139] 140. Tongboriboon K, Cheirsilp B, H-Kittikun A (2010) Mixed lipases for efficient enzymatic synthesis of biodiesel from used palm oil and ethanol in a solvent-free system. J Mol Catal B- Enzym 67: 52-59. doi: 10.1016/j.molcatb.2010.07.005
    [140] 141. Yücel Y, Demir C, Dizge N, et al. (2011) Lipase immobilization and production of fatty acid methyl esters from canola oil using immobilized lipase. Biomass Bioenerg 35: 1496-1501. doi: 10.1016/j.biombioe.2010.12.018
    [141] 142. Du W, Xu Y, Liu D (2003) Lipase-catalysed transesterification of soya bean oil for biodiesel production during continuous batch operation. Biotechnol Appl Biochem 38: 103-106. doi: 10.1042/BA20030032
    [142] 143. Lee JH, Kim SB, Kang SW, et al. (2011) Biodiesel production by a mixture of Candida rugosa and Rhizopus oryzae lipases using a supercritical carbon dioxide process. Bioresource Technol 102: 2105-2108 doi: 10.1016/j.biortech.2010.08.034
    [143] 144. Li X, Xu H, Wu Q (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98: 764-771. doi: 10.1002/bit.21489
    [144] 145. Nie K, Xie F, Wang F, et al. (2006) Lipase catalyzed methanolysis to produce biodiesel: Optimization of the biodiesel production. J Mol Catal B-Enzym 43: 142-147. doi: 10.1016/j.molcatb.2006.07.016
    [145] 146. Li Z, Deng L, Lu J, et al. (2010) Enzymatic synthesis of fatty acid methyl esters from crude rice bran oil with immobilized Candida sp. 99-125. Chinese J Chem Eng 18: 870-875. doi: 10.1016/S1004-9541(09)60141-5
    [146] 147. Hama S, Yamaji H, Fukumizu T, et al. (2007) Biodiesel-fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilized within biomass support particles. Biochem Eng J 34: 273-278. doi: 10.1016/j.bej.2006.12.013
    [147] 148. Raghuvanshi S, Gupta R (2010) Advantages of the immobilization of lipase on porous supports over free enzyme. Protein Peptide Lett 17: 1412-1416. doi: 10.2174/0929866511009011412
    [148] 149. Szczesna Antczak M, Kubiak A, Antczak T, et al. (2009) Enzymatic biodiesel synthesis—Key factors affecting efficiency of the process. Renew Energ 34: 1185-1194. doi: 10.1016/j.renene.2008.11.013
    [149] 150. Rodrigues J, Canet A, Rivera I, et al. (2016) Biodiesel production from crude Jatropha oil catalyzed by non-commercial immobilized heterologous Rhizopus oryzae and Carica papaya lipases. Bioresource Technol 213: 88-95. doi: 10.1016/j.biortech.2016.03.011
    [150] 151. Canet A, Bonet-Ragel K, Benaiges MD, et al. (2016) Lipase-catalysed transesterification: Viewpoint of the mechanism and influence of free fatty acids. Biomass Bioener 85: 94-99. doi: 10.1016/j.biombioe.2015.11.021
    [151] 152. Jachmanián I, Martínez N, Segura N (2015) Enhancing the enzymatic synthesis of alkyl esters by coupling transesterification to an efficient glycerol separation. Fuel 153: 13-18. doi: 10.1016/j.fuel.2015.02.080
    [152] 153. Sanchez F, Vasudevan P (2006) Enzyme catalyzed production of biodiesel from olive oil. Appl Biochem Biotechnol 135: 1-14. doi: 10.1385/ABAB:135:1:1
    [153] 154. Salihu A, Alam Z (2015) Solvent tolerant lipases: A review. Process Biochem 50: 86-96. doi: 10.1016/j.procbio.2014.10.019
    [154] 155. Saranya P, Sukanya Kumari H, Rao P, et al. (2014) Lipase production from a novel thermo-tolerant and extreme acidophile Bacillus pumilus using palm oil as the substrate and treatment of palm oil-containing wastewater. Environ Sci Pollut Res 21: 3907-3919. doi: 10.1007/s11356-013-2354-x
    [155] 156. Navarro-López E, Robles Medina A, González Moreno PA, et al. (2015) Biodiesel production from Nannochloropsis gaditana lipids through transesterification catalyzed by Rhizopus oryzae lipase. Bioresource Technol 187: 346-353. doi: 10.1016/j.biortech.2015.03.126
    [156] 157. Christopher LP, Kumar H, Zambare VP (2014) Enzymatic biodiesel: Challenges and opportunities. Appl Energ 119: 497-520. doi: 10.1016/j.apenergy.2014.01.017
    [157] 158. Surendhiran D, Vijay M, Razack Sirajunnisa A (2014) Biodiesel production from marine microalga Chlorella salina using whole cell yeast immobilized on sugarcane bagasse. J Envir Chem Eng 2: 1294-1300. doi: 10.1016/j.jece.2014.05.004
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (
通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索


Article views(2830) PDF downloads(1316) Cited by(9)

Article outline

Figures and Tables

Figures(6)  /  Tables(12)


DownLoad:  Full-Size Img  PowerPoint