Review Special Issues

Reversing the nutrient drain through urban insect farming—opportunities and challenges

  • Received: 05 September 2018 Accepted: 19 November 2018 Published: 28 November 2018
  • Cities consume the majority of proteins produced globally but have unsustainable, linear food systems from production to consumption to disposal, resulting in significant nutrient losses. The industrial rearing of insects is a promising strategy for converting otherwise lost nutrients back into protein-rich animal feed and fertilizer, particularly to supplement local food production. The black soldier fly (BSF), Hermetia illucens, has been identified as a candidate for industrial rearing. BSF has a superior feed conversion ratio and cycle-time compared to other edible insects and can convert and recover nutrients from a vast variety of organic materials to protein, oil and chitin making it an attractive solution for the management of urban organic solid waste. With an increasing awareness of the environmental urgency and interest in the economic potential of the technology, this review discusses the technological factors confounding the upscaling of insect farming in urban and peri-urban contexts using BSF as a case study. These include the challenges of feed homogenisation and pre-treatment, of integrating insect life-cycle factors (e.g. mating) with bioprocess engineering concepts (which complicates automation), of meeting the nutritional requirements of the larvae at different stages of growth in order to maximize bioconversion and product quality, and of elucidating the impact of microbiome on complex behaviours and bioconversion. A multidisciplinary effort is therefore required to lead urban insect farming to full development to ultimately contribute to future food security.

    Citation: Yingyu Law, Leo Wein. Reversing the nutrient drain through urban insect farming—opportunities and challenges[J]. AIMS Bioengineering, 2018, 5(4): 226-237. doi: 10.3934/bioeng.2018.4.226

    Related Papers:

    [1] M. Hafiz Uddin, M. Ali Akbar, Md. Ashrafuzzaman Khan, Md. Abdul Haque . New exact solitary wave solutions to the space-time fractional differential equations with conformable derivative. AIMS Mathematics, 2019, 4(2): 199-214. doi: 10.3934/math.2019.2.199
    [2] Weiping Gao, Yanxia Hu . The exact traveling wave solutions of a class of generalized Black-Scholes equation. AIMS Mathematics, 2017, 2(3): 385-399. doi: 10.3934/Math.2017.3.385
    [3] Huaji Cheng, Yanxia Hu . Exact solutions of the generalized (2+1)-dimensional BKP equation by the G'/G-expansion method and the first integral method. AIMS Mathematics, 2017, 2(3): 562-579. doi: 10.3934/Math.2017.2.562
    [4] M. Mossa Al-Sawalha, Rasool Shah, Kamsing Nonlaopon, Imran Khan, Osama Y. Ababneh . Fractional evaluation of Kaup-Kupershmidt equation with the exponential-decay kernel. AIMS Mathematics, 2023, 8(2): 3730-3746. doi: 10.3934/math.2023186
    [5] Yunmei Zhao, Yinghui He, Huizhang Yang . The two variable (φ/φ, 1/φ)-expansion method for solving the time-fractional partial differential equations. AIMS Mathematics, 2020, 5(5): 4121-4135. doi: 10.3934/math.2020264
    [6] M. Ali Akbar, Norhashidah Hj. Mohd. Ali, M. Tarikul Islam . Multiple closed form solutions to some fractional order nonlinear evolution equations in physics and plasma physics. AIMS Mathematics, 2019, 4(3): 397-411. doi: 10.3934/math.2019.3.397
    [7] Guowei Zhang, Jianming Qi, Qinghao Zhu . On the study of solutions of Bogoyavlenskii equation via improved $ G'/G^2 $ method and simplified $ \tan(\phi(\xi)/2) $ method. AIMS Mathematics, 2022, 7(11): 19649-19663. doi: 10.3934/math.20221078
    [8] Harivan R. Nabi, Hajar F. Ismael, Nehad Ali Shah, Wajaree Weera . W-shaped soliton solutions to the modified Zakharov-Kuznetsov equation of ion-acoustic waves in (3+1)-dimensions arise in a magnetized plasma. AIMS Mathematics, 2023, 8(2): 4467-4486. doi: 10.3934/math.2023222
    [9] Jalil Manafian, Onur Alp Ilhan, Sizar Abid Mohammed . Forming localized waves of the nonlinearity of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model. AIMS Mathematics, 2020, 5(3): 2461-2483. doi: 10.3934/math.2020163
    [10] M. TarikulIslam, M. AliAkbar, M. Abul Kalam Azad . Traveling wave solutions in closed form for some nonlinear fractional evolution equations related to conformable fractional derivative. AIMS Mathematics, 2018, 3(4): 625-646. doi: 10.3934/Math.2018.4.625
  • Cities consume the majority of proteins produced globally but have unsustainable, linear food systems from production to consumption to disposal, resulting in significant nutrient losses. The industrial rearing of insects is a promising strategy for converting otherwise lost nutrients back into protein-rich animal feed and fertilizer, particularly to supplement local food production. The black soldier fly (BSF), Hermetia illucens, has been identified as a candidate for industrial rearing. BSF has a superior feed conversion ratio and cycle-time compared to other edible insects and can convert and recover nutrients from a vast variety of organic materials to protein, oil and chitin making it an attractive solution for the management of urban organic solid waste. With an increasing awareness of the environmental urgency and interest in the economic potential of the technology, this review discusses the technological factors confounding the upscaling of insect farming in urban and peri-urban contexts using BSF as a case study. These include the challenges of feed homogenisation and pre-treatment, of integrating insect life-cycle factors (e.g. mating) with bioprocess engineering concepts (which complicates automation), of meeting the nutritional requirements of the larvae at different stages of growth in order to maximize bioconversion and product quality, and of elucidating the impact of microbiome on complex behaviours and bioconversion. A multidisciplinary effort is therefore required to lead urban insect farming to full development to ultimately contribute to future food security.


    Nonlinear evolution equations (NLEEs) model many complex phenomena in physics including plasma, solid state, chemical and optical fibers, nonlinear optics, fluid mechanics, etc. Exploring exact traveling wave solutions plays a significant role in nonlinear physics. For this purpose, a number of techniques were developed including method of modified Khater [1,2], first integral [3,4], functional variable [5], expansions [6,7] of new generalized $ (G'/G) $ [8,9,10], new $ \Phi6 $-model [11], Jacobi elliptic function [12,13], sine-Gordon [14], bifurcation [15,16], exp-function [17,18], new auxiliary equation [19], exp(-$ \phi (\xi) $)-expansion [20,21], fan sub-equation [22,23], inverse scattering [24], generalized Kudryshov [25,26,27], Hirota's bilinear [28,29], extended direct algebraic [30], Lie group [31].

    Consider the (2+1)-dimensional KK equations [32]

    $ 9ut+u5x+15uuxxx+752uxuxx+45u2ux+5σuxxy5σ1xuyy+15σuuy+15σux1xuy=0.
    $
    (1.1)

    where $ \sigma^2 = 1, \, \, \partial_x^{-1} = \int dx. $ This equation has been widely applied in many branches of physics like plasma physics, fluid dynamics, nonlinear optics, and so forth. If we take $ u(x, y, t) = u(x, t), $ Eq (1.1) becomes the (1+1)-dimensional KK equation [32]

    $ 9ut+u5x+15uuxxx+752uxuxx+45u2ux=0,
    $
    (1.2)

    In [33], method of exp-function was applied to Eq (1.2). In [32], symmetric method was applied to the nonlinear (2+1)-KK equation.

    The method of the present paper, a candid, succinct and efficient technique, considered as a generalization of ($ G' $/$ G $)-expansion technique [34,35,36,37] was developed in [38,39,40,41,42,43,44,45]. Main purpose of this paper is to investigate the applicability of the method to (1+1)-dimensional KK equation which was not considered in the history of research so far.

    We shortly overview the method in such a fashion that maintains four remarks and five basic postulates:

    Remark I. If we set up

    $ ϕ=G/G,ψ=1/G,
    $
    (2.1)

    in

    $ G(ξ)+λG(ξ)=β,
    $
    (2.2)

    then we must have the relations

    $ ϕ=ϕ2+βψλ,φ=φψ,
    $
    (2.3)

    wherein $ \lambda $ and $ \beta $ are parameters.

    Remark II. If $ \lambda $ is negative, general solution of (2.2) is:

    $ G(ξ)=D1sinh(ξλ)+D2cosh(ξλ)+βλ.
    $
    (2.4)

    and we receive the following relation

    $ ψ2=λλ2α1+β2(φ22βψ+λ),
    $
    (2.5)

    wherein $ D_{1} $ and $ D_{2} $ are arbitrary constants and $ \alpha _{1} = D_{1} ^{2} -D_{2} ^{2} $.

    Remark III. If $ \lambda $ is positive, general solution of (2.2) is:

    $ G(ξ)=D1sin(ξλ)+D2cos(ξλ)+βλ,
    $
    (2.6)

    consequently, we obtain

    $ ψ2=λλ2α2β2(φ22βψ+λ),
    $
    (2.7)

    wherein $ \alpha _{2} = D_{1} ^{2}+D_{2} ^{2} $.

    Remark IV. If $ \lambda = 0 $, the general solution of (2.2),

    $ G(ξ)=β2ξ2+D1ξ+D2,
    $
    (2.8)

    and therefore we get,

    $ ψ2=φ22βψD212βD2.
    $
    (2.9)

    Now let us consider:

    $ R(u,ut,ux,uy,utt,uxx,uyy,uxt,)=0,
    $
    (2.10)

    wherein $ R $ is a polynomial function in $ u $ and $ u_{t} = \frac{\partial u}{\partial t} $, $ u_{x} = \frac{\partial u}{\partial x} $, $ u_{y} = \frac{\partial u}{\partial y} $, $ u_{xx} = \frac{\partial ^{2} u}{\partial x^{2} } $, $ u_{yy} = \frac{\partial ^{2} u}{\partial y^{2} } $, $ u_{xy} = \frac{\partial ^{2} u}{\partial x \partial y} $ and so on.

    Postulate 1. Consider:

    $ u(x,y,t)=u(ξ),andξ=ηx+ωy+ct,
    $
    (2.11)

    wherein $ \eta $, $ \omega $ and $ c $ are parameters. By traveling wave transformations (2.11), the Eq.(2.10) can be reduced to:

    $ T(u,cu,ηu,ωu,c2u,η2u,ω2u,ηωu,cηu,)=0,
    $
    (2.12)

    wherein $ T $ is a polynomial.

    Postulate 2. Let us assume that the following relation is the general solution expressed by a polynomial:

    $ u(ξ)=a0+Ni=1(aiφi(ξ)+biφi1(ξ)ψ(ξ)),
    $
    (2.13)

    wherein $ a_{0} $, $ a_{i} $ and $ b_{i} (i = 1, 2, 3, ..., N) $ are the constant coefficients such that $ a_{N}^{2} +b_{N}^{2} \ne 0 $.

    Postulate 3. By homogeneous balance, we determine $ N $ in Eq (2.13).

    Postulate 4. To convert the left-hand-side of Eq (2.12) into a polynomial function in $ \psi $ and $ \phi $, we write Eq (2.13) into Eq (2.12) with Eq (2.3) and Eq (2.5). By solving polynomial, we obtain the system: in $ a_{0} $, $ a_{i} $, $ b_{i} (i = 1, 2, 3, ..., N) $, $ \lambda (<0) $, $ \beta $, $ \eta $, $ \omega $, $ c $, $ D_{1} $ and $ D_{2} $. We solve this system with Mathematica. Setting values of above algebraic constants in Eq (2.13), solutions by hyperbolic functions in Eq (2.12) are obtained.

    Postulate 5. Similar to Postulate 4, substituting Eq (2.13) into Eq (2.12), using Eq (2.3) and Eq (2.5) (or Eq (2.3) and Eq (2.7)), we obtain the exact traveling wave solutions of Eq (2.12) demonstrated by trigonometric functions.

    Let us consider transformation:

    $ u(x,t)=u(ξ),ξ=x+ct,
    $
    (3.1)

    wherein $ c $ is a parameter, which reduces Eq (1.2) to:

    $ 9cu+u(5)+15uu+752uu+45u2u=0.
    $
    (3.2)

    According to postulate 2, the positive number $ N = 2 $ is obtained by balancing between $ u^{(5)} $ and $ u^{2}u' $, thus general solutions of Eq (3.2) is:

    $ u(ξ)=a0+a1φ(ξ)+a2φ2(ξ)+b1ψ(ξ)+b2φ(ξ)ψ(ξ),
    $
    (3.3)

    wherein$ a_{0} $, $ a_{i} $ and $ b_{i} (i = 1, 2) $ are constant coefficients such that$ a_{N} ^{2}+b_{N} ^{2} \ne 0 (N = 1, 2) $, $ \phi (\xi) $ and $ \psi (\xi) $ are satisfied by the Eq (2.3). Now, there are three categories of solutions of Eq (3.2):

    Category 1: When $ \lambda < 0 $ (solutions by hyperbolic functions):

    Writing Eq (3.3) with Eq (2.3) and Eq (2.5) into Eq (3.2), Eq (3.2) forms a polynomial in $ \psi (\xi) $ and $ \phi (\xi) $. Solving this polynomial, we obtain a system: $ a_{0} $, $ a_{1} $, $ a_{2} $, $ b_{1} $, $ b_{2} $, $ \lambda (<0) $, $ \beta $, $ c $ and $ \alpha _{1} $. Solving this system with Mathematica, we obtain the values of $ a_{0} $ $ a_{1} $, $ a_{2} $, $ b_{1} $, $ b_{2} $, $ \beta $ and $ c $ as:

    Result 1:

    $ a0=10λ3,a1=0,a2=4,b1=4β,b2=±4β2+λ2α1λ,c=11λ29,β=β.
    $
    (3.4)

    Writing these constants from Eq (3.4) into (3.3) and by Eq (2.1) and Eq (2.4), we obtain explicit solutions of Eq (1.2):

    $ u(ξ)=10λ3+4λ{D1cosh(ξλ)D2sinh(ξλ)}2{D1sinh(ξλ+D2cosh(ξλ)+βλ}2+4β{D1sinh(ξλ+D2cosh(ξλ)+βλ}±4β2+λ2α1λ{D1cosh(ξλ)D2sinh(ξλ)}2{D1sinh(ξλ+D2cosh(ξλ)+βλ}2
    $
    (3.5)

    wherein $ \xi = x-\frac{11\lambda ^{2} t}{9} $ and $ \alpha _{1} = D_{1} ^{2} -D_{2} ^{2} $.

    In particular, if we choose $ D_{1} \ne 0 $, $ D_{2} = 0 $ and $ \beta = 0 $ in Eq (3.5), we get:

    $ u(x,t)=10λ3+4λcoth(λ(x11λ2t9)){coth(λ(x11λ2t9))±csch(λ(x11λ2t9))}.
    $
    (3.6)

    Similarly, if we choose $ D_{2} \ne 0 $, $ D_{1} = 0 $ and $ \beta = 0 $ in Eq (3.5), we get:

    $ u(x,t)=10λ3+4λtanh(λ(x11λ2t9)){tanh(λ(x11λ2t9))±isech(λ(x11λ2t9))},
    $
    (3.7)
    Figure 1.  3D, contour and 2D surfaces of absolute Eq (3.7) when $ \lambda = -1 $.

    wherein $ i = \sqrt{-1} $.

    Result 2:

    $ a0=5λ12,a1=0,a2=12, b1=β2,b2=±β2+λ2α12λ,c=λ2144,β=β.
    $
    (3.8)

    Explicit solutions of Eq (1.2) are given by:

    $ u(ξ)=5λ12+λ{D1cosh(ξλ)+D2sinh(ξλ)}22{D1sinh(ξλ)+D2cosh(ξλ)+βλ}2+β2{D1sinh(ξλ)+D2cosh(ξλ)+βλ}±β2+λ2α1{D1cosh(ξλ)+D2sinh(ξλ)}2{D1sinh(ξλ)+D2cosh(ξλ)+βλ}2,
    $
    (3.9)

    wherein $ \xi = x-\frac{\lambda ^{2} t}{144} $ and $ \alpha _{1} = D_{1} ^{2} -D_{2} ^{2} $.

    In particular, if we choose $ D_{1} \ne 0 $, $ D_{2} = 0 $ and $ \beta = 0 $ in Eq (3.9), we get:

    $ u(x,t)=5λ12+λ2coth(λ(xλ2t144)){coth(λ(xλ2t144))±csch(λ(xλ2t144))}.
    $
    (3.10)

    Similarly, if we choose $ D_{2} \ne 0 $, $ D_{1} = 0 $ and $ \beta = 0 $ in Eq (3.9), we get:

    $ u(x,t)=5λ12+λ2tanh(λ(xλ2t144)){tanh(λ(xλ2t144))±isech(λ(xλ2t144))},
    $
    (3.11)

    wherein $ i = \sqrt{-1} $.

    Result3:

    $ a0=11λβ2+8λ3α112(β2+λ2α1),a1=0,a2=1,b1=β,b2=0,c=λ2(β428λ2β2α1+16λ4α21)144(β2+λ2α1)2,β=β.
    $
    (3.12)

    wherein $ \beta ^{2} +\lambda ^{2} \alpha _{1} \ne 0 $.

    We get explicit solutions of Eq (1.2) as:

    $ u(ξ)=11λβ2+8λ3α112(β2+λ2α1)+λ{D1cosh(ξλ)+D2sinh(ξλ)}2{D1sinh(ξλ)+D2cosh(ξλ)+βλ}2+β{D1sinh(ξλ)+D2cosh(ξλ)+βλ},
    $
    (3.13)

    wherein $ \xi = x-\frac{\lambda ^{2} t (\beta ^{4} -28 \lambda ^{2} \beta ^{2} \alpha _{1} +16 \lambda ^{4} \alpha _{1}^{2})}{144 (\beta ^{2} +\lambda ^{2} \alpha _{1})^{2} } $ and $ \alpha _{1} = D_{1} ^{2} -D_{2} ^{2} $.

    In particular, if we choose $ D_{1} \ne 0 $, $ D_{2} = 0 $ and $ \beta = 0 $ in Eq (3.13), we get:

    $ u(x,t)=2λ3+λcoth2(λ(xλ2t9)).
    $
    (3.14)
    Figure 2.  3D, contour and 2D surfaces of absolute Eq (3.14) when $ \lambda = -5. $.

    Similarly, if we choose $ D_{2} \ne 0 $, $ D_{1} = 0 $ and $ \beta = 0 $ in Eq (3.14), we get:

    $ u(x,t)=2λ3+λtanh2(λ(xλ2t9)).
    $
    (3.15)

    Category 2: For $ \lambda > 0, $ (i.e. trigonometric functions),

    According to Postulate 5, if we execute as the category 1, we attain the values of $ a_{0} $, $ a_{1} $, $ a_{2} $, $ b_{1} $, $ b_{2} $, $ \beta $ and $ c $ as the following results:

    Result 1:

    $ a0=10λ3,a1=0,a2=4,b1=4β,b2=±4β2+λ2α1λ,c=11λ29,β=β.
    $
    (3.16)

    Writing constants in Eq (3.16) into Eq (3.3) and by Eq (2.1) and Eq (2.6), we get explicit solutions of Eq (1.2):

    $ u(ξ)=10λ34λ{D1cos(ξλ)D2sin(ξλ)}2{D1sin(ξλ)+D2cos(ξλ)+βλ}2+4βD1sin(ξλ)+D2cos(ξλ)+βλ±4β2+λ2α2{D1cos(ξλ)D2sin(ξλ)}{D1sin(ξλ)+D2cos(ξλ)+βλ}2,
    $
    (3.17)

    wherein $ \xi = x-\frac{ 11 \lambda ^{2} t }{9} $ and $ \alpha _{2} = D_{1} ^{2} +D_{2} ^{2} $.

    Result 2:

    $ a0=5λ12,a1=0,a2=12,b1=β2,b2=±β2+λ2α12λ,c=λ2144,β=β.
    $
    (3.18)

    We get explicit solutions of Eq (1.2) as:

    $ u(ξ)=5λ12λ{D1cos(ξλ)D2sin(ξλ)}22{D1sin(ξλ)+D2cos(ξλ)+βλ}2+β2{D1sin(ξλ)+D2cos(ξλ)+βλ}±β2+λ2α2{D1cos(ξλ)D2sin(ξλ)}2{D1sin(ξλ)+D2cos(ξλ)+βλ}2,.
    $
    (3.19)

    wherein $ \xi = x-\frac{ \lambda ^{2} t }{144} $ and $ \alpha _{2} = D_{1} ^{2} +D_{2} ^{2} $.

    Result 3:

    $ a0=11λβ28λ3α212(β2+λ2α2),a1=0,a2=1,b1=β,b2=0,c=λ2(β4+28λ2β2α2+16λ4α22)144(β2+λ2α2)2,β=β.
    $
    (3.20)

    wherein $ -\beta ^{2} +\lambda ^{2} \alpha _{2} \ne 0 $.

    We get explicit solutions of Eq (1.2) as:

    $ u(ξ)=11λβ28λ3α212(β2+λ2α2)λ{D1cos(ξλ)D2sin(ξλ)}2{D1sin(ξλ)+D2cos(ξλ)+βλ}2+β{D1sin(ξλ)+D2cos(ξλ)+βλ},
    $
    (3.21)
    Figure 3.  3D, contour and 2D surfaces of Eq (3.21) when $ \lambda = 3, D_{1} = 0.8 , D_{2} = 0.5, \beta = 3 $.

    wherein $ \xi = x-\frac{\lambda ^{2} t (\beta ^{4} +28 \lambda ^{2} \beta ^{2} \alpha _{2} +16 \lambda ^{4} \alpha _{2}^{2})}{144 (-\beta ^{2} +\lambda ^{2} \alpha _{2})^{2} } $ and $ \alpha _{2} = D_{1} ^{2} +D_{2} ^{2} $.

    Category 3: For $ \lambda = 0, $ (i.e.rational functions),

    According to Postulate 5, if we execute as the category 1, we attain the values of $ a_{0} $, $ a_{1} $, $ a_{2} $, $ b_{1} $, $ b_{2} $, $ \beta $ and $ c $ as the following results:

    $ a0=β24(D21+2βD2),a1=0,a2=1,b1=β,b2=0,c=5β416(D21+2βD)2,β=β.
    $
    (3.22)

    We get explicit solutions of Eq (1.2) as:

    $ u(ξ)=β24(D21+2βD2)(βξ+D1)2(β2ξ2+D1ξ+D2)2+β(β2ξ2+D1ξ+D2),
    $
    (3.23)

    wherein $ \xi = x-\frac{5 \beta ^{4} t}{16 (-D_{1} ^{2} +2 \beta D)^{2} } $ and $ -D_{1} ^{2} +2 \beta D\ne 0 $.

    If we set up the particular values of the arbitrary constants if we choose $ D_{1} $, $ D_{2} $ and $ \beta $in the above Eq (3.17), Eq (3.19), Eq (3.21) and Eq (3.23), we attain abundant new explicit wave solutions of KK equation which are unexposed for minimalism of length of the paper.

    We obtained new explicit solutions for the (1+1)-dimensional KK equation. We achieved solitary wave solutions for analogous traveling wave solutions of Eq (1.2). These affluent solutions including bell and anti-bell solitons, kink and anti-kink solitons, periodic and rational functions of KK equation indicate that double $ (G'/G, 1/G) $-expansion technique is more powerful than the method of $ (G'/G, 1/G) $-expansion. Comparing the solutions with the ones in [33], we presume that all the solutions are renewed which are un-indicted elsewhere. Our mentioned method is more powerful and also an offering method to demonstrate many higher order nonlinear PDEs. We will investigate the applicability of the method to (2+1)-dimensional KK equation in a future extension of the present work.

    The work was supported by the Natural Science Foundation of China (Grant Nos. 61673169, 11301127, 11701176, 11626101, 11601485).

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    [1] Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: The 2012 revision. ESA Working Paper No. 12-03, Food and Agriculture Organization of the United Nations (FAO) , Rome.
    [2] Godfray HCJ, Beddington JR, Crute IR, et al. (2010) Food security: The challenge of feeding 9 billion people. Science 327: 812–818. doi: 10.1126/science.1185383
    [3] Oliva-Teles A, Enes P, Peres H (2015) Replacing fishmeal and fish oil in industrial aquafeeds for carnivorous fish, In: Davis DA, Feed and Feeding Practices in Aquaculture, 8 Eds., Oxford: Woodhead Publishing, 203–233.
    [4] Skøt J, Lipper L, Thomas G, et al. (2016) The state of food and agriculture: Climate change, agriculture and food security. Food and Agriculture Organization of the United Nations (FAO), Rome.
    [5] Food and Agriculture Organization of the United Nations (FAO) (2013) Food wastage footprint: Impact on natural resources. Summary report. Rome.
    [6] Tilman D, Fargione J, Wolff B, et al. (2001) Forecasting agriculturally driven global environmental change. Science 292: 281–284. doi: 10.1126/science.1057544
    [7] Zhao C, Liu B, Piao S, et al. (2017) Temperature increase reduces global yields of major crops in four independent estimates. P Natl Acad Sci USA 114: 9326–9331. doi: 10.1073/pnas.1701762114
    [8] Adhikari B, Barrington S, Martinez J (2009) Urban food waste generation: Challenges and opportunities. Int J Environ Waste Manage 3: 4–21. doi: 10.1504/IJEWM.2009.024696
    [9] Hoornweg D, Bhada-Tata P, Kennedy C (2013) Environment: Waste production must peak this century. Nature 502: 615–617. doi: 10.1038/502615a
    [10] Gustavsson J, Cederberg C, Sonesson U, et al. (2011) Global fodd losses and food waste. extent, causes and prevention. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.
    [11] Diener S, Zurbrügg C, Tockner K (2009) Conversion of organic material by black soldier fly larvae: Establishing optimal feeding rates. Waste Manag Res 27: 603–610. doi: 10.1177/0734242X09103838
    [12] St-Hilaire S, Sheppard C, Tomberlin JK, et al. (2007) Fly Prepupae as a Feedstuff for Rainbow Trout, Oncorhynchus mykiss. J World Aquacul Soc 38: 59–67. doi: 10.1111/j.1749-7345.2006.00073.x
    [13] Newton GL, Booram CV, Barker RW, et al. (1977) Dried Hermetia illucens larvae meal as a supplement for swine. J Anim Sci 44: 395–400. doi: 10.2527/jas1977.443395x
    [14] Lee J, Kim YM, Park YK, et al. (2018) Black soldier fly (Hermetia illucens) larvae enhances immune activities and increases survivability of broiler chicks against experimental infection of Salmonella Gallinarum. J Vet Med Sci 80: 736–740. doi: 10.1292/jvms.17-0236
    [15] Kupferschmidt K (2015) Feature: Why insects could be the ideal animal feed. Science.
    [16] Alltech (2017) 7th Annual Alltech Global Feed Survey 2018. Available from: https://go.alltech.com/alltech-feed-survey.
    [17] Gilbert R (2004) The world animal feed industry. Protein Sources for the Animal Feed Industry. Food and Agriculture Organization of the United Nations (FAO). Rome, Italy.
    [18] SEAFISH (2016) Fishmeal and fish oil facts and figures. Available from: http://www.seafish.org/media/Publications/SeafishFishmealandFishOilFactsandFigures_201612.pdf.
    [19] Food and Agriculture Organization of the United Nations (FAO) (2018)The State of World Fisheries and Aquaculture: Meeting the sustainable development goals. Rome.
    [20] Masuda T, Goldsmith PD (2009) World soybean production: Area harvested, yield, and long-term projections. Int Food Agribus Man 12: 143–163.
    [21] Department of Agriculture (US) (2018) Fish Meal Production by Country in 1000 MT. Available from: https://www.indexmundi.com/agriculture/?commodity=fish-meal: Index Mundi.
    [22] Tacon AGJ, Metian M (2008) Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture 285: 146–158. doi: 10.1016/j.aquaculture.2008.08.015
    [23] Trostle R (2010) Global Agricultural Supply and Demand: Factors Contributing to the Recent Increase in Food Commodity Prices. Available from: https://www.hsdl.org/?abstract&did=485652.
    [24] Verkerk MC, Tramper J, van Trijp JCM, et al. (2007) Insect cells for human food. Biotechnol Adv 25: 198–202. doi: 10.1016/j.biotechadv.2006.11.004
    [25] Dobermann D, Swift JA, Field LM (2017) Opportunities and hurdles of edible insects for food and feed. Nutr Bull 42: 293–308. doi: 10.1111/nbu.12291
    [26] van Huis A (2013) Potential of insects as food and feed in assuring food security. Annu Rev Entomol 58: 563–583. doi: 10.1146/annurev-ento-120811-153704
    [27] Hilkens W, de Klerk B (2017) The cultivation of insects: A small sector with great opportunities. Netherlands: ABN AMRO and BOM.
    [28] Tomberlin JK, Sheppard DC, Joyce JA (2002) Selected Life-History Traits of Black Soldier Flies (Diptera: Stratiomyidae) Reared on Three Artificial Diets. Ann Entomol Soc Am 95: 379–386. doi: 10.1603/0013-8746(2002)095[0379:SLHTOB]2.0.CO;2
    [29] Sheppard C (1983) House Fly and Lesser Fly Control Utilizing the Black Soldier Fly in Manure Management Systems for Caged Laying Hens. Environ Entomol 12: 1439–1442. doi: 10.1093/ee/12.5.1439
    [30] Čičková H, Newton GL, Lacy RC, et al. (2015) The use of fly larvae for organic waste treatment. Waste Manage 35: 68–80. doi: 10.1016/j.wasman.2014.09.026
    [31] Nguyen TTX, Tomberlin JK, Vanlaerhoven S (2015) Ability of Black Soldier Fly (Diptera: Stratiomyidae) larvae to recycle food waste. Environ Entomol 44: 406–410. doi: 10.1093/ee/nvv002
    [32] Li W, Li Q, Zheng L, et al. (2015) Potential biodiesel and biogas production from corncob by anaerobic fermentation and black soldier fly. Bioresource Technol 194: 276–282. doi: 10.1016/j.biortech.2015.06.112
    [33] Spranghers T, Ottoboni M, Klootwijk C, et al. (2016) Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J Sci Food Agr 97: 2594–2600.
    [34] Cammack AJ, Tomberlin KJ (2017) The impact of diet protein and carbohydrate on select life-history traits of the black soldier fly Hermetia illucens (L.) (Diptera: Stratiomyidae). Insects 8: 56.
    [35] Cheng JYK, Chiu SLH, Lo IMC (2017) Effects of moisture content of food waste on residue separation, larval growth and larval survival in black soldier fly bioconversion. Waste Manage 67: 315–323.
    [36] Lardé G (1989) Investigation on some factors affecting larval growth in a coffee-pulp bed. Biol Wastes 30: 11–19. doi: 10.1016/0269-7483(89)90139-0
    [37] Gupta S, Lee JJL, Chen WN (2018) Analysis of improved nutritional composition of potential functional food (Okara) after probiotic solid-state fermentation. J Agr Food Chem 66: 5373–5381. doi: 10.1021/acs.jafc.8b00971
    [38] Jucker C, Erba D, Leonardi MG, et al. (2017) Assessment of vegetable and fruit substrates as potential rearing media for Hermetia illucens (diptera: stratiomyidae) larvae. Environ Entomol 46: 1415–1423. doi: 10.1093/ee/nvx154
    [39] Rehman Ku, Rehman A, Cai M, et al. (2017) Conversion of mixtures of dairy manure and soybean curd residue by black soldier fly larvae (Hermetia illucens L.). J Clean Prod 154: 366–373.
    [40] Tschirner M, Simon A (2015) Influence of different growing substrates and processing on the nutrient composition of black soldier fly larvae destined for animal feed. J Insects Food Feed 1: 249–259. doi: 10.3920/JIFF2014.0008
    [41] Ma J, Lei Y, Rehman KU, et al. (2018) Dynamic effects of initial pH of substrate on biological growth and metamorphosis of black soldier fly (Diptera: Stratiomyidae). Environ Entomol 47: 159–165. doi: 10.1093/ee/nvx186
    [42] Paz ASP, Carrejo NS, Rodríguez CHG (2015) Effects of larval density and feeding rates on the bioconversion of vegetable waste using black soldier fly larvae Hermetia illucens (L.), (Diptera: Stratiomyidae). Waste Biomass Valorization 6: 1059–1065. doi: 10.1007/s12649-015-9418-8
    [43] Harnden LM, Tomberlin JK (2016) Effects of temperature and diet on black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae), development. Forensic Sci Int 266: 109–116. doi: 10.1016/j.forsciint.2016.05.007
    [44] Liu X, Chen X, Wang H, et al. (2017) Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. PLoS One 12: e0182601. doi: 10.1371/journal.pone.0182601
    [45] Dortmans B, Diener S, Verstappen B, et al. (2017) Black soldier fly biowaste processing. A step-by step guide.
    [46] Kok R (2017) Insect Production and Facility Design, In: Van Huis A, Tomberlin JK, Insects as food and feed: From production to consumption, 8 Eds., Wageningen: Wageningen Academic Publishers, 143–172.
    [47] Basset Y, Cizek L, Cuénoud P, et al. (2012) Arthropod diversity in a tropical forest. Science 338: 1481–1484. doi: 10.1126/science.1226727
    [48] Engel P, Moran NA (2013) The gut microbiota of insects-diversity in structure and function. FEMS Microbiol Rev 37: 699–735. doi: 10.1111/1574-6976.12025
    [49] The Human Microbiome Project C (2012) Structure, function and diversity of the healthy human microbiome. Nature 486: 207–214. doi: 10.1038/nature11234
    [50] Chaucheyras-Durand F, Durand H (2010) Probiotics in animal nutrition and health. Benefic Microbes 1: 3–9. doi: 10.3920/BM2008.1002
    [51] Zheng L, Crippen TL, Holmes L, et al. (2013) Bacteria mediate oviposition by the black soldier fly, Hermetia illucens (L.), (Diptera: Stratiomyidae). Sci Rep 3: 2563.
    [52] Chandler JA, Lang JM, Bhatnagar S, et al. (2011) Bacterial communities of diverse drosophila species: Ecological context of a host–microbe model system. PLoS Genet 7: e1002272. doi: 10.1371/journal.pgen.1002272
    [53] Klammsteiner T, Walter A, Heussler C, et al. (2018) Hermetia illucens (Diptera: Stratiomyidae) larvae in waste valorization and diet-based shifts in their gut microbiome. Available from: http://uest.ntua.gr/naxos2018/proceedings/pdf/86_NAXOS2018_Klammsteiner_etal.pdf.
    [54] Vogel H, Muller A, Heckel DG, et al. (2018) Nutritional immunology: Diversification and diet-dependent expression of antimicrobial peptides in the black soldier fly Hermetia illucens. Dev Comp Immunol 78: 141–148. doi: 10.1016/j.dci.2017.09.008
    [55] Erickson MC, Islam M, Sheppard C, et al. (2004) Reduction of Escherichia coli O157:H7 and Salmonella enterica serovar Enteritidis in chicken manure by larvae of the black soldier fly. J Food Prot 67: 685–690. doi: 10.4315/0362-028X-67.4.685
    [56] Liu Q, Tomberlin JK, Brady JA, et al. (2008) Black soldier fly (Diptera: Stratiomyidae) larvae reduce Escherichia coli in dairy manure. Environ Entomol 37: 1525–1530. doi: 10.1603/0046-225X-37.6.1525
  • This article has been cited by:

    1. M. Akher Chowdhury, M. Mamun Miah, H.M. Shahadat Ali, Yu-Ming Chu, M.S. Osman, An investigation to the nonlinear (2 + 1)-dimensional soliton equation for discovering explicit and periodic wave solutions, 2021, 23, 22113797, 104013, 10.1016/j.rinp.2021.104013
    2. Behzad Ghanbari, Abundant exact solutions to a generalized nonlinear Schrödinger equation with local fractional derivative, 2021, 0170-4214, 10.1002/mma.7302
    3. Nehad Ali Shah, Mustafa Inc, An Analytical View of Fractional-Order Fisher’s Type Equations within Caputo Operator, 2021, 2021, 1563-5147, 1, 10.1155/2021/5516392
    4. Behzad Ghanbari, Chun-Ku Kuo, Abundant wave solutions to two novel KP-like equations using an effective integration method, 2021, 96, 0031-8949, 045203, 10.1088/1402-4896/abde5a
    5. Mostafa M. A. Khater, Behzad Ghanbari, On the solitary wave solutions and physical characterization of gas diffusion in a homogeneous medium via some efficient techniques, 2021, 136, 2190-5444, 10.1140/epjp/s13360-021-01457-1
    6. H.M. Shahadat Ali, M.A. Habib, Md. Mamun Miah, M. Mamun Miah, M. Ali Akbar, Diverse solitary wave solutions of fractional order Hirota-Satsuma coupled KdV system using two expansion methods, 2023, 66, 11100168, 1001, 10.1016/j.aej.2022.12.021
    7. Lanre Akinyemi, Mohammad Mirzazadeh, Seyed Amin Badri, Kamyar Hosseini, Dynamical solitons for the perturbated Biswas–Milovic equation with Kudryashov's law of refractive index using the first integral method, 2022, 69, 0950-0340, 172, 10.1080/09500340.2021.2012286
    8. SHAO-WEN YAO, A RIGID PENDULUM IN A MICROGRAVITY: SOME SPECIAL PROPERTIES AND A TWO-SCALE FRACTAL MODEL, 2021, 29, 0218-348X, 2150127, 10.1142/S0218348X21501279
    9. Lanre Akinyemi, Hadi Rezazadeh, Qiu-Hong Shi, Mustafa Inc, Mostafa M.A. Khater, Hijaz Ahmad, Adil Jhangeer, M. Ali Akbar, New optical solitons of perturbed nonlinear Schrödinger–Hirota equation with spatio-temporal dispersion, 2021, 29, 22113797, 104656, 10.1016/j.rinp.2021.104656
    10. Arzu Akbulut, Mir Sajjad Hashemi, Hadi Rezazadeh, New conservation laws and exact solutions of coupled Burgers' equation, 2021, 1745-5030, 1, 10.1080/17455030.2021.1979691
    11. Lanre Akinyemi, Udoh Akpan, Pundikala Veeresha, Hadi Rezazadeh, Mustafa Inc, Computational techniques to study the dynamics of generalized unstable nonlinear Schrödinger equation, 2022, 24680133, 10.1016/j.joes.2022.02.011
    12. Lanre Akinyemi, Mehmet Şenol, Emad Az-Zo’bi, P. Veeresha, Udoh Akpan, Novel soliton solutions of four sets of generalized (2+1)-dimensional Boussinesq–Kadomtsev–Petviashvili-like equations, 2022, 36, 0217-9849, 10.1142/S0217984921505308
    13. H.I. Abdel-Gawad, M. Tantawy, M.S. Mani Rajan, Similariton regularized waves solutions of the (1+2)-dimensional non-autonomous BBME in shallow water and stability, 2022, 7, 24680133, 321, 10.1016/j.joes.2021.09.002
    14. Guoan Xu, Jibin Li, Yi Zhang, Exact Solutions and Dynamical Behaviors of the Raman Soliton Model with Anti-Cubic Nonlinearity, 2022, 21, 1575-5460, 10.1007/s12346-022-00642-6
    15. Fan Sun, Propagation of solitons in optical fibers with generalized Kudryashov’s refractive index, 2021, 28, 22113797, 104644, 10.1016/j.rinp.2021.104644
    16. Hira Tariq, Maasoomah Sadaf, Ghazala Akram, Hadi Rezazadeh, Jamel Baili, Yu-Pei Lv, Hijaz Ahmad, Computational study for the conformable nonlinear Schrödinger equation with cubic–quintic–septic nonlinearities, 2021, 30, 22113797, 104839, 10.1016/j.rinp.2021.104839
    17. Adivi Sri Venkata Ravi Kanth, Kirubanandam Aruna, Kondooru Raghavendar, Natural transform decomposition method for the numerical treatment of the time fractional Burgers–Huxley equation , 2022, 0749-159X, 10.1002/num.22983
    18. Shahram Rezapour, Muhammad Imran Liaqat, Sina Etemad, Kolade M. Owolabi, An Effective New Iterative Method to Solve Conformable Cauchy Reaction-Diffusion Equation via the Shehu Transform, 2022, 2022, 2314-4785, 1, 10.1155/2022/4172218
    19. Md Ashik Iqbal, Ye Wang, Md Mamun Miah, Mohamed S. Osman, Study on Date–Jimbo–Kashiwara–Miwa Equation with Conformable Derivative Dependent on Time Parameter to Find the Exact Dynamic Wave Solutions, 2021, 6, 2504-3110, 4, 10.3390/fractalfract6010004
    20. Lanre Akinyemi, Two improved techniques for the perturbed nonlinear Biswas–Milovic equation and its optical solitons, 2021, 243, 00304026, 167477, 10.1016/j.ijleo.2021.167477
    21. Siyuan Liu, S. Rezaei, S.A. Najati, Mohamed S. Mohamed, Novel wave solutions to a generalized third-order nonlinear Schrödinger’s equation, 2022, 37, 22113797, 105457, 10.1016/j.rinp.2022.105457
    22. Shao-Wen Yao, Lanre Akinyemi, Mohammad Mirzazadeh, Mustafa Inc, Kamyar Hosseini, Mehmet Şenol, Dynamics of optical solitons in higher-order Sasa–Satsuma equation, 2021, 30, 22113797, 104825, 10.1016/j.rinp.2021.104825
    23. Erdogan Mehmet Ozkan, New Exact Solutions of Some Important Nonlinear Fractional Partial Differential Equations with Beta Derivative, 2022, 6, 2504-3110, 173, 10.3390/fractalfract6030173
    24. Behzad Ghanbari, Employing Hirota’s bilinear form to find novel lump waves solutions to an important nonlinear model in fluid mechanics, 2021, 29, 22113797, 104689, 10.1016/j.rinp.2021.104689
    25. Fei Long, Shami A.M. Alsallami, S. Rezaei, Kamsing Nonlaopon, E.M. Khalil, New interaction solutions to the (2+1)-dimensional Hirota–Satsuma–Ito equation, 2022, 37, 22113797, 105475, 10.1016/j.rinp.2022.105475
    26. Mostafa M. A. Khater, Adil Jhangeer, Hadi Rezazadeh, Lanre Akinyemi, M. Ali Akbar, Mustafa Inc, Hijaz Ahmad, New kinds of analytical solitary wave solutions for ionic currents on microtubules equation via two different techniques, 2021, 53, 0306-8919, 10.1007/s11082-021-03267-2
    27. F. Samsami Khodadad, S. M. Mirhosseini-Alizamini, B. Günay, Lanre Akinyemi, Hadi Rezazadeh, Mustafa Inc, Abundant optical solitons to the Sasa-Satsuma higher-order nonlinear Schrödinger equation, 2021, 53, 0306-8919, 10.1007/s11082-021-03338-4
    28. M. Mamun Miah, 2022, Chapter 94, 978-3-030-99791-5, 1113, 10.1007/978-3-030-99792-2_94
    29. Abdul Hamid Ganie, Lamiaa H. Sadek, M.M. Tharwat, M. Ashik Iqbal, M. Mamun Miah, Md Mamunur Rasid, Nasser S. Elazab, M.S. Osman, New investigation of the analytical behaviors for some nonlinear PDEs in mathematical physics and modern engineering, 2024, 9, 26668181, 100608, 10.1016/j.padiff.2023.100608
    30. Mohammed Shaaf Alharthi, Extracting solitary solutions of the nonlinear Kaup–Kupershmidt (KK) equation by analytical method, 2023, 21, 2391-5471, 10.1515/phys-2023-0134
    31. M. Ashik Iqbal, M. Mamun Miah, Md Mamunur Rasid, Hashim M. Alshehri, M. S. Osman, An investigation of two integro-differential KP hierarchy equations to find out closed form solitons in mathematical physics, 2023, 30, 2576-5299, 535, 10.1080/25765299.2023.2256049
    32. M. Mamun Miah, 2023, 2931, 0094-243X, 030002, 10.1063/5.0178567
    33. Zahra Eidinejad, Reza Saadati, Chenkuan Li, Mustafa Inc, Javad Vahidi, The multiple exp-function method to obtain soliton solutions of the conformable Date–Jimbo–Kashiwara–Miwa equations, 2024, 38, 0217-9792, 10.1142/S0217979224500437
    34. M. Mamun Miah, Faisal Alsharif, Md. Ashik Iqbal, J. R. M. Borhan, Mohammad Kanan, Chaotic Phenomena, Sensitivity Analysis, Bifurcation Analysis, and New Abundant Solitary Wave Structures of The Two Nonlinear Dynamical Models in Industrial Optimization, 2024, 12, 2227-7390, 1959, 10.3390/math12131959
    35. U. Akram, Z. Tang, S. Althobaiti, A. Althobaiti, Dynamics of optical dromions in concatenation model, 2024, 112, 0924-090X, 14321, 10.1007/s11071-024-09810-6
    36. Syed T. R. Rizvi, Aly R. Seadawy, Sarfaraz Ahmed, Farrah Ashraf, Novel rational solitons and generalized breathers for (1+1)-dimensional longitudinal wave equation, 2023, 37, 0217-9792, 10.1142/S0217979223502697
    37. Tongshuai Liu, Tiecheng Xia, Darboux transformation and explicit solutions for the Kaup-Kupershmidt equation, 2023, 98, 0031-8949, 105244, 10.1088/1402-4896/acfa41
    38. M Mamun Miah, M Ashik Iqbal, M S Osman, A study on stochastic longitudinal wave equation in a magneto-electro-elastic annular bar to find the analytical solutions, 2023, 75, 0253-6102, 085008, 10.1088/1572-9494/ace155
    39. Abdul S. Awan, Sultan Hussain, Differential–anti-differential equations and their solutions, 2023, 1016-2526, 313, 10.52280/pujm.2023.55(7-8)04
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(9111) PDF downloads(2514) Cited by(15)

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog