
Quantitative Finance and Economics, 2018, 2(1): 137159. doi: 10.3934/QFE.2018.1.137
Research article Special Issue
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
The memory of volatility
Faculty of Economics and Management, Leibniz University Hannover, Königsworther Platz 1, 30167 Hannover, Germany
Received: , Accepted: , Published:
Special Issue: Volatility of Prices of Financial Assets
References
1.Andersen TG, Bollerslev T, Diebold FX, et al. (2001) The distribution of realized exchange rate volatility. J Am Statist Associ 96: 42–55.
2.Andersen TG, Bollerslev T, Diebold FX, et al. (2003) Modeling and forecasting realized volatility. Econom 71: 579–625.
3.Andrews DWK, Sun Y (2004) Adaptive Local Polynomial Whittle Estimation of Longrange Dependence. Econom 72: 569–614.
4.Arteche J (2004) Gaussian semiparametric estimation in long memory in stochastic volatility and signal plus noise models. J Econom 119: 131–154.
5.Arteche J, Orbe J (2016) A bootstrap approximation for the distribution of the Local Whittle estimator. Comput Stat Data Anal 100: 645–660.
6.BarndorffNielsen OE, Hansen PR, Lunde A, et al. (2009) Realized kernels in practice: Trades and quotes. Econom J 12: C1–C32.
7.BarndorffNielsen OE, Shephard N (2002) Econometric analysis of realized volatility and its use in estimating stochastic volatility models. J Royal Stat Soc: Ser B (Statist Methodol) 64: 253–280.
8.Chiriac R, Voev V (2011) Modelling and forecasting multivariate realized volatility. J Appl Econom 26: 922–947.
9.Corsi F (2009) A simple approximate longmemory model of realized volatility. J Financ Econom 7: 174–196.
10.Deo RS, Hurvich CM, Lu Y (2006) Forecasting realized volatility using a longmemory stochastic volatility model: estimation, prediction and seasonal adjustment. J Econom 131: 29–58.
11.Deo RS, Hurvich CM (2001) On the log periodogram regression estimator of the memory parameter in long memory stochastic volatility models. Econom Theory 17: 686–710.
12.Diebold FX, Inoue A (2001) Long memory and regime switching. J Econom 105: 131159.
13.Frederiksen P, Nielsen FS, Nielsen M (2012) Local polynomial Whittle estimation of perturbed fractional processes. J Econom 167: 426–447.
14.Geweke J, PorterHudak S (1983) The estimation and application of long memory time series models. J Time Ser Anal 4: 221–238.
15.Giraitis L, Leipus R, Surgailis D (2007) Recent advances in ARCH modelling. Long Memory Econom 3–38.
16.Giraitis L, Leipus R, Surgailis D (2009) ARCH infinity models and long memory properties. Handb Financ Time Ser 71–84.
17.Gourieroux C, Jasiak J (2001) Memory and infrequent breaks. Econom Lett 70: 29–41.
18.Granger CWJ, Ding Z (1996) Varieties of long memory models. J Econom 73: 61–77.
19.Granger CWJ, Hyung N (2004) Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns. J Empir Financ 11: 399–421.
20.Heber G, Lunde A, Shephard N, et al. (2009) OxfordMan Institutes realized library, version 0.2, OxfordMan Institute, University of Oxford.
21.Hou J, Perron P (2014) Modified local Whittle estimator for long memory processes in the presence of low frequency (and other) contaminations. J Econom 182: 309–328.
22.Hurvich CM, Moulines E, Soulier P (2005) Estimating long memory in volatility. Econom 73: 1283–1328.
23.Hurvich CM, Ray BK (2003) The local Whittle estimator of longmemory stochastic volatility. J Financ Econom 1: 445–470.
24.Iacone F (2010) Local Whittle estimation of the memory parameter in presence of deterministic components. J Time Ser Anal 31: 37–49.
25.Künsch HR (1987) Statistical aspects of selfsimilar processes. Proc First World Congr Bernoulli Soc 1: 67–74.
26.Leccadito A, Rachedi O, Urga G (2015) True versus spurious long memory: Some theoretical results and a monte carlo comparison. Econom Rev 34: 452–479.
27.Leschinski C, Sibbertsen P (2017) Origins of Spurious Long Memory. Hann Econ Pap.
28.Lu YK, Perron P (2010) Modeling and forecasting stock return volatility using a random level shift model. J Empir Financ 17: 138–156.
29.Martens M, Dijk DV, de Pooter M (2009) Forecasting S&P 500 volatility: Long memory, level shifts, leverage effects, dayoftheweek seasonality, and macroeconomic announcements. Int J Forecast 25: 282–303.
30.McCloskey A, Perron P (2013) Memory parameter estimation in the presence of level shifts and deterministic trends. Econom Theory 29: 1196–1237.
31.Mikosch T, Stărică C (2004) Nonstationarities in financial time series, the longrange dependence, and the IGARCH effects. Rev Econ Stat 86: 378–390.
32.Perron P, Qu Z (2010) Longmemory and level shifts in the volatility of stock market return indices. J Bus Econ Stat 28: 275–290.
33.Qu Z (2011) A test against spurious long memory. J Bus Econ Stat 29: 423–438.
34.Robinson PM (1995a) Gaussian semiparametric estimation of long range dependence. Annals Stat 23: 1630–1661.
35.Robinson PM (1995b) Logperiodogram regression of time series with long range dependence. Annals Stat 23: 1048–1072.
36.Sibbertsen P, Leschinski C, Busch M (2017) A multivariate test against spurious long memory. J Econom (in press).
37.Velasco C (1999) Gaussian Semiparametric Estimation of Nonstationary Time Series. J Time Ser Anal 20: 87–127.
38.Xu J, Perron P (2014) Forecasting return volatility: Level shifts with varying jump probability and mean reversion. Int J Forecast 30: 449–463.
© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)