Research article Topical Sections

Delirium screening in the intensive care unit using emerging QEEG techniques: A pilot study

  • Received: 15 October 2019 Accepted: 05 January 2020 Published: 13 January 2020
  • Delirium is an under-diagnosed yet frequently occurring clinical complication with potentially serious consequences for intensive care unit (ICU) patients. Diagnosis is currently reactive and based upon qualitative assessment of the patient's cognitive status by ICU staff. Here, we conducted a preliminary investigation into whether emerging quantitative electroencephalography (QEEG) analysis techniques can accurately discriminate between delirious and non-delirious patients in an ICU setting. Resting EEG recordings from 5 ICU patients in a state of delirium and 5 age matched control patients were analyzed using autoregressive spectral estimation for quantification of EEG power and renormalized partial directed coherence for analysis of directed functional connectivity. Delirious subjects exhibited pronounced EEG slowing as well as severe general loss of directed functional connectivity between recording sites. Distinction between groups based on these parameters was surprisingly clear given the low sample size employed. Furthermore, by targeting the electrode positions where effects were most apparent it was possible to clearly segregate patients using only 3 scalp electrodes. These findings indicate that quantitative diagnosis and monitoring of delirium is not only possible using emerging QEEG methods but is also accomplishable using very low-density electrode systems.

    Citation: Andrew Hunter, Barry Crouch, Nigel Webster, Bettina Platt. Delirium screening in the intensive care unit using emerging QEEG techniques: A pilot study[J]. AIMS Neuroscience, 2020, 7(1): 1-16. doi: 10.3934/Neuroscience.2020001

    Related Papers:

    [1] Adi Wijaya, Noor Akhmad Setiawan, Asma Hayati Ahmad, Rahimah Zakaria, Zahiruddin Othman . Electroencephalography and mild cognitive impairment research: A scoping review and bibliometric analysis (ScoRBA). AIMS Neuroscience, 2023, 10(2): 154-171. doi: 10.3934/Neuroscience.2023012
    [2] Evangelos Almpanis, Constantinos Siettos . Construction of functional brain connectivity networks from fMRI data with driving and modulatory inputs: an extended conditional Granger causality approach. AIMS Neuroscience, 2020, 7(2): 66-88. doi: 10.3934/Neuroscience.2020005
    [3] Tien-Wen Lee, Gerald Tramontano . Connectivity changes following transcranial alternating current stimulation at 5-Hz: an EEG study. AIMS Neuroscience, 2024, 11(4): 439-448. doi: 10.3934/Neuroscience.2024026
    [4] David I. Dubrovsky . “The Hard Problem of Consciousness”. Theoretical solution of its main questions. AIMS Neuroscience, 2019, 6(2): 85-103. doi: 10.3934/Neuroscience.2019.2.85
    [5] Charles R Larson, Donald A Robin . Sensory Processing: Advances in Understanding Structure and Function of Pitch-Shifted Auditory Feedback in Voice Control. AIMS Neuroscience, 2016, 3(1): 22-39. doi: 10.3934/Neuroscience.2016.1.22
    [6] Bayazit Karaman, R. Murat Demirer, Coskun Bayrak, M. Mert Su . Modeling the Antipodal Connectivity Structure of Neural Communities. AIMS Neuroscience, 2016, 3(2): 163-180. doi: 10.3934/Neuroscience.2016.2.163
    [7] Galina V. Portnova, Oxana Ivanova, Elena V. Proskurnina . Effects of EEG examination and ABA-therapy on resting-state EEG in children with low-functioning autism. AIMS Neuroscience, 2020, 7(2): 153-167. doi: 10.3934/Neuroscience.2020011
    [8] Fabrizio Turiaco, Fiammetta Iannuzzo, Giovanni Genovese, Clara Lombardo, Maria Catena Silvestri, Laura Celebre, Maria Rosaria Anna Muscatello, Antonio Bruno . Cognitive effects of brief and intensive neurofeedback treatment in schizophrenia: a single center pilot study. AIMS Neuroscience, 2024, 11(3): 341-351. doi: 10.3934/Neuroscience.2024021
    [9] Ronald Kamoga, Godfrey Zari Rukundo, Samuel Kalungi, Wilson Adriko, Gladys Nakidde, Celestino Obua, Johnes Obongoloch, Amadi Ogonda Ihunwo . Vagus nerve stimulation in dementia: A scoping review of clinical and pre-clinical studies. AIMS Neuroscience, 2024, 11(3): 398-420. doi: 10.3934/Neuroscience.2024024
    [10] Rozaziana Ahmad, Khairunnuur Fairuz Azman, Rosliza Yahaya, Nazlahshaniza Shafin, Norsuhana Omar, Asma Hayati Ahmad, Rahimah Zakaria, Adi Wijaya, Zahiruddin Othman . Brain-derived neurotrophic factor (BDNF) in schizophrenia research: a quantitative review and future directions. AIMS Neuroscience, 2023, 10(1): 5-32. doi: 10.3934/Neuroscience.2023002
  • Delirium is an under-diagnosed yet frequently occurring clinical complication with potentially serious consequences for intensive care unit (ICU) patients. Diagnosis is currently reactive and based upon qualitative assessment of the patient's cognitive status by ICU staff. Here, we conducted a preliminary investigation into whether emerging quantitative electroencephalography (QEEG) analysis techniques can accurately discriminate between delirious and non-delirious patients in an ICU setting. Resting EEG recordings from 5 ICU patients in a state of delirium and 5 age matched control patients were analyzed using autoregressive spectral estimation for quantification of EEG power and renormalized partial directed coherence for analysis of directed functional connectivity. Delirious subjects exhibited pronounced EEG slowing as well as severe general loss of directed functional connectivity between recording sites. Distinction between groups based on these parameters was surprisingly clear given the low sample size employed. Furthermore, by targeting the electrode positions where effects were most apparent it was possible to clearly segregate patients using only 3 scalp electrodes. These findings indicate that quantitative diagnosis and monitoring of delirium is not only possible using emerging QEEG methods but is also accomplishable using very low-density electrode systems.




    Abbreviation ARI: Aberdeen Royal Infirmary; ANOVA: Analysis of Variance; AR: Auto-regression/Auto-regressive; CAM-ICU: Confusion Assessment Method for the Intensive Care Unit; dPLI: Directed Phase Lag Index; DSM-V: Diagnostic and Statistical Manual of Mental Disorders–Version 5; EEG: Electroencephalography; ICU: Intensive Care Unit; NHS: National Health Service; NICE: National Institute for Health and Care Excellence; PTE: Phase Transfer Entropy; QEEG: Quantitative Electroencephalography; RASS: Richmond Agitation-Sedation Score; rPDC: Renormalized Partial Directed Coherence; REC: Research Ethics Committee; SEM: Standard Error of Mean; SFPR: Slow to Fast Frequency Power Ratio;
    Acknowledgments



    This work was supported by an Alzheimer's Society grant (project grant number AS-PG-14-039 to BP) and a British Journal of Anaesthesia / Royal College of Anaesthetists funded John Snow Anaesthesia iBSc Award (to AH).

    Conflicts of interest



    All authors declare no conflicts of interest in this paper.

    [1] American Psychiatric Association (APA) (2013)  Diagnostic and statistical manual of mental disorders (5th ed.).
    [2] Truman B, Ely EW (2003) Monitoring delirium in critically ill patients. Using the confusion assessment method for the intensive care unit. Crit Care Nurse 23: 25-28. doi: 10.4037/ccn2003.23.2.25
    [3] Ely EW, Stephens RK, Jackson JC, et al. (2004) Current opinions regarding the importance, diagnosis, and management of delirium in the intensive care unit: A survey of 912 healthcare professionals. Crit Care Med 32: 106-112. doi: 10.1097/01.CCM.0000098033.94737.84
    [4] Boot R (2012) Delirium: A review of the nurses role in the intensive care unit. Intensive Crit Care Nurs 28: 185-189. doi: 10.1016/j.iccn.2011.11.004
    [5] Ely EW, Margolin R, Francis J, et al. (2001) Evaluation of delirium in critically ill patients: Validation of the Confusion Assessment Method for the intensive care unit (CAM-ICU). Crit Care Med 29: 1370-1379. doi: 10.1097/00003246-200107000-00012
    [6] Ely EW, Shintani A, Truman B, et al. (2004) Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. J Am Med Assoc 291: 1753-1762. doi: 10.1001/jama.291.14.1753
    [7] Han JH, Wilson A, Graves AJ, et al. (2014) Validation of the confusion assessment method for the intensive care unit in older emergency department patients. Acad Emerg Med 21: 180-187. doi: 10.1111/acem.12309
    [8] Van Eijk MM, Van Den Boogaard M, Van Marum RJ, et al. (2011) Routine use of the confusion assessment method for the intensive care unit: A multicenter study. Am J Respir Crit Care Med 184: 340-344. doi: 10.1164/rccm.201101-0065OC
    [9] Jacobson S, Jerrier H (2000) EEG in delirium. Semin Clin Neuropsychiatry 5: 86-92.
    [10] Shafi MM, Santarnecchi E, Fong TG, et al. (2017) Advancing the neurophysiological understanding of delirium. J Am Geriatr Soc 65: 1114-1118. doi: 10.1111/jgs.14748
    [11] Koponen H, Partanen J, Pääkkönen A, et al. (1989) EEG spectral analysis in delirium. J Neurol Neurosurg Psychiatry 52: 980-985. doi: 10.1136/jnnp.52.8.980
    [12] Jacobson SA, Leuchter AF, Walter DO, et al. (1993) Serial quantitative EEG among elderly subjects with delirium. Biol Psychiatry 34: 135-140. doi: 10.1016/0006-3223(93)90382-N
    [13] Whitham EM, Pope KJ, Fitzgibbon SP, et al. (2007) Scalp electrical recording during paralysis: Quantitative evidence that EEG frequencies above 20 Hz are contaminated by EMG. Clin Neurophysiol 118: 1877-1888. doi: 10.1016/j.clinph.2007.04.027
    [14] Van Dellen E, Van Der Kooi AW, Numan T, et al. (2014) Decreased functional connectivity and disturbed directionality of information flow in the electroencephalography of intensive care unit patients with delirium after cardiac surgery. Anesthesiology 121: 328-335. doi: 10.1097/ALN.0000000000000329
    [15] Crouch B, Sommerlade L, Veselcic P, et al. (2018) Detection of time-, frequency- and direction-resolved communication within brain networks. Sci Rep 8: 1825. doi: 10.1038/s41598-018-19707-1
    [16] Choi SH, Lee H, Chung TS, et al. (2012) Neural network functional connectivity during and after an episode of delirium. Am J Psychiatry 169: 498-507. doi: 10.1176/appi.ajp.2012.11060976
    [17] Numan T, Slooter AJC, van der Kooi AW, et al. (2017) Functional connectivity and network analysis during hypoactive delirium and recovery from anesthesia. Clin Neurophysiol 128: 914-924. doi: 10.1016/j.clinph.2017.02.022
    [18] Schelter B, Timmer J, Eichler M (2009) Assessing the strength of directed influences among neural signals using renormalized partial directed coherence. J Neurosci Methods 179: 121-130. doi: 10.1016/j.jneumeth.2009.01.006
    [19] Sommerlade L, Thiel M, Mader M, et al. (2015) Assessing the strength of directed influences among neural signals: An approach to noisy data. J Neurosci Methods 239: 47-64. doi: 10.1016/j.jneumeth.2014.09.007
    [20] Granger CWJ (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37: 424-438. doi: 10.2307/1912791
    [21] Stam CJ, van Straaten ECW (2012) Go with the flow: Use of a directed phase lag index (dPLI) to characterize patterns of phase relations in a large-scale model of brain dynamics. Neuroimage 62: 1415-1428. doi: 10.1016/j.neuroimage.2012.05.050
    [22] Guevara R, Velazquez JLP, Nenadovic V, et al. (2005) Phase synchronization measurements using electroencephalographic recordings: What can we really say about neuronal synchrony? Neuroinformatics 3: 301-314. doi: 10.1385/NI:3:4:301
    [23] Hillebrand A, Tewarie P, van Dellen E, et al. (2016) Direction of information flow in large-scale resting-state networks is frequency-dependent. Proc Natl Acad Sci 113: 3867-3872. doi: 10.1073/pnas.1515657113
    [24] Lee H, Mashour GA, Noh GJ, et al. (2013) Reconfiguration of network hub structure after propofol-induced unconsciousness. Anesthesiology 119: 1347-1359. doi: 10.1097/ALN.0b013e3182a8ec8c
    [25] Ku SW, Lee U, Noh GJ, et al. (2011) Preferential inhibition of frontal-to-parietal feedback connectivity is a neurophysiologic correlate of general anesthesia in surgical patients. PLoS One 6: e25155. doi: 10.1371/journal.pone.0025155
    [26] Lee U, Müller M, Noh GJ, et al. (2011) Dissociable network properties of anesthetic state transitions. Anesthesiology 114: 872-881. doi: 10.1097/ALN.0b013e31821102c9
    [27] Hudetz A (2009) Cortical disintegration mechanism of anesthetic-induced unconsciousness. Suppressing the Mind USA: Humana Press, 99-125. doi: 10.1007/978-1-60761-462-3_5
    [28] Pal D, Silverstein BH, Sharba L, et al. (2017) Propofol, sevoflurane, and ketamine induce a reversible increase in Delta-Gamma and Theta-Gamma phase-amplitude coupling in frontal cortex of rat. Front Syst Neurosci 11: 41.
    [29] Seifert HA, Blouin RT, Conard PF, et al. (1993) Sedative doses of propofol increase beta activity of the processed electroencephalogram. Anesth Analg 76: 976-978. doi: 10.1213/00000539-199305000-00010
    [30] Brown KE, Mirrakhimov AE, Yeddula K, et al. (2013) Propofol and the risk of delirium: exploring the anticholinergic properties of propofol. Med Hypotheses 81: 536-539. doi: 10.1016/j.mehy.2013.06.027
    [31] Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res Rev 29: 169-195. doi: 10.1016/S0165-0173(98)00056-3
    [32] Cassani R, Estarellas M, San-Martin R, et al. (2018) Systematic review on resting-state EEG for Alzheimer's disease diagnosis and progression assessment. Dis Markers 2018: 5174815. doi: 10.1155/2018/5174815
    [33] Engels MMA, Stam CJ, van der Flier WM, et al. (2015) Declining functional connectivity and changing hub locations in Alzheimer's disease: An EEG study. BMC Neurol 15: 145. doi: 10.1186/s12883-015-0400-7
    [34] van der Kooi AW, Zaal IJ, Klijn FA, et al. (2015) Delirium detection using EEG. Chest 147: 94-101. doi: 10.1378/chest.13-3050
  • neurosci-07-01-001-s001.pdf
  • This article has been cited by:

    1. Yoram Vodovotz, Gary An, Agent‐based models of inflammation in translational systems biology: A decade later, 2019, 11, 1939-5094, 10.1002/wsbm.1460
    2. Mohamed Ghalwash, Vladan Radosavljevic, Zoran Obradovic, 2013, Early Diagnosis and Its Benefits in Sepsis Blood Purification Treatment, 978-0-7695-5089-3, 523, 10.1109/ICHI.2013.81
    3. Gary An, Judy Day, 2021, 9780128160787, 318, 10.1016/B978-0-12-801238-3.11513-2
    4. Gregory Zitelli, Seddik M. Djouadi, Judy D. Day, Combining robust state estimation with nonlinear model predictive control to regulate the acute inflammatory response to pathogen, 2015, 12, 1551-0018, 1127, 10.3934/mbe.2015.12.1127
    5. Ivan Stojkovic, Zoran Obradovic, 2017, Predicting Sepsis Biomarker Progression under Therapy, 978-1-5386-1710-6, 19, 10.1109/CBMS.2017.16
    6. Jan Ewald, Patricia Sieber, Ravindra Garde, Stefan N. Lang, Stefan Schuster, Bashar Ibrahim, Trends in mathematical modeling of host–pathogen interactions, 2020, 77, 1420-682X, 467, 10.1007/s00018-019-03382-0
    7. Ivan Ramirez-Zuniga, Jonathan E. Rubin, David Swigon, Gilles Clermont, Mathematical modeling of energy consumption in the acute inflammatory response, 2019, 460, 00225193, 101, 10.1016/j.jtbi.2018.08.033
    8. O. Bara, S.M. Djouadi, J.D. Day, S. Lenhart, Immune therapeutic strategies using optimal controls with L 1 and L 2 type objectives, 2017, 290, 00255564, 9, 10.1016/j.mbs.2017.05.010
    9. Ouassim Bara, Michel Fliess, Cedric Join, Judy Day, Seddik M. Djouadi, 2016, Model-free immune therapy: A control approach to acute inflammation, 978-1-5090-2591-6, 2102, 10.1109/ECC.2016.7810602
    10. Gary An, Chase Cockrell, Judy Day, 2021, Chapter 5, 978-3-030-56509-1, 71, 10.1007/978-3-030-56510-7_5
    11. Ouassim Bara, Seddik M. Djouadi, Judy Day, 2016, Immune therapy using optimal control with L1 type objective, 978-1-4673-8682-1, 4895, 10.1109/ACC.2016.7526128
    12. Ouassim Bara, Judy Day, Seddik M. Djouadi, 2013, Nonlinear state estimation for complex immune responses, 978-1-4673-5717-3, 3373, 10.1109/CDC.2013.6760399
    13. Ouassim Bara, Judy Day, Seddik M. Djouadi, 2015, Optimal control of an inflammatory immune response model, 978-1-4799-7886-1, 1283, 10.1109/CDC.2015.7402388
    14. A. Bayani, J. L. Dunster, J. J. Crofts, M. R. Nelson, Mechanisms and Points of Control in the Spread of Inflammation: A Mathematical Investigation, 2020, 82, 0092-8240, 10.1007/s11538-020-00709-y
    15. Yuyang Chen, Kaiming Bi, Chih-Hang (John) Wu, David Ben-Arieh, A new evidence-based optimal control in healthcare delivery: A better clinical treatment management for septic patients, 2019, 137, 03608352, 106010, 10.1016/j.cie.2019.106010
    16. Vladan Radosavljevic, Kosta Ristovski, Zoran Obradovic, 2012, A data mining approach for optimization of acute inflammation therapy, 978-1-4673-2560-8, 1, 10.1109/BIBM.2012.6392659
    17. Judy D. Day, Diana M. Metes, Yoram Vodovotz, Mathematical Modeling of Early Cellular Innate and Adaptive Immune Responses to Ischemia/Reperfusion Injury and Solid Organ Allotransplantation, 2015, 6, 1664-3224, 10.3389/fimmu.2015.00484
    18. Yoram Vodovotz, Ashley Xia, Elizabeth L. Read, Josep Bassaganya-Riera, David A. Hafler, Eduardo Sontag, Jin Wang, John S. Tsang, Judy D. Day, Steven H. Kleinstein, Atul J. Butte, Matthew C. Altman, Ross Hammond, Stuart C. Sealfon, Solving Immunology?, 2017, 38, 14714906, 116, 10.1016/j.it.2016.11.006
    19. J. Tallon, B. Browning, F. Couenne, C. Bordes, F. Venet, P. Nony, F. Gueyffier, V. Moucadel, G. Monneret, M. Tayakout-Fayolle, Dynamical modeling of pro- and anti-inflammatory cytokines in the early stage of septic shock, 2020, 13, 13866338, 101, 10.3233/ISB-200474
    20. Meric CETİN, Selami BEYHAN, Robust Constrained Drug Dosage Regulation of Acute Inflammation Response Under Disturbances, 2020, 2147-8228, 256, 10.18100/ijamec.815606
    21. Olivier Joannes-Boyau, A. Dewitte, Patrick M. Honoré, 2019, 9780323449427, 1034, 10.1016/B978-0-323-44942-7.00171-0
    22. Kun Wang, Stanley Langevin, Corey S. O’Hern, Mark D. Shattuck, Serenity Ogle, Adriana Forero, Juliet Morrison, Richard Slayden, Michael G. Katze, Michael Kirby, Jieru Wang, Anomaly Detection in Host Signaling Pathways for the Early Prognosis of Acute Infection, 2016, 11, 1932-6203, e0160919, 10.1371/journal.pone.0160919
    23. Dulce Calçada, Dario Vianello, Enrico Giampieri, Claudia Sala, Gastone Castellani, Albert de Graaf, Bas Kremer, Ben van Ommen, Edith Feskens, Aurelia Santoro, Claudio Franceschi, Jildau Bouwman, The role of low-grade inflammation and metabolic flexibility in aging and nutritional modulation thereof: A systems biology approach, 2014, 136-137, 00476374, 138, 10.1016/j.mad.2014.01.004
    24. Ouassim Bara, Michel Fliess, Cédric Join, Judy Day, Seddik M. Djouadi, Toward a model-free feedback control synthesis for treating acute inflammation, 2018, 448, 00225193, 26, 10.1016/j.jtbi.2018.04.003
    25. Pantelis Sopasakis, Panagiotis Patrinos, Haralambos Sarimveis, Robust model predictive control for optimal continuous drug administration, 2014, 116, 01692607, 193, 10.1016/j.cmpb.2014.06.003
    26. Sebastian Jendrek, Xin Lai, Gabriela Riemekasten, Julio Vera-González, Bernd Schmeck, Wilhelm Bertrams, 2021, 9780128160787, 581, 10.1016/B978-0-12-801238-3.11643-5
    27. Laura D. Weinstock, James E. Forsmo, Alexis Wilkinson, Jun Ueda, Levi B. Wood, Experimental Control of Macrophage Pro-Inflammatory Dynamics Using Predictive Models, 2020, 8, 2296-4185, 10.3389/fbioe.2020.00666
    28. Vladan Radosavljevic, Kosta Ristovski, Zoran Obradovic, A data-driven acute inflammation therapy, 2013, 6, 1755-8794, 10.1186/1755-8794-6-S3-S7
    29. Ivan Ramirez-Zuniga, Jonathan. E. Rubin, David Swigon, Heinz Redl, Gilles Clermont, A data-driven model of the role of energy in sepsis, 2022, 533, 00225193, 110948, 10.1016/j.jtbi.2021.110948
    30. Rami A. Namas, Maxim Mikheev, Jinling Yin, Derek Barclay, Bahiyyah Jefferson, Qi Mi, Timothy R. Billiar, Ruben Zamora, Jorg Gerlach, Yoram Vodovotz, An adaptive, negative feedback circuit in a biohybrid device reprograms dynamic networks of systemic inflammation in vivo, 2023, 2, 2674-0702, 10.3389/fsysb.2022.926618
    31. Gary An, Chase Cockrell, Ruben Zamora, Yoram Vodovotz, 2021, 9780128214404, 251, 10.1016/B978-0-12-821440-4.00009-8
    32. Judy D. Day, Chase Cockrell, Rami Namas, Ruben Zamora, Gary An, Yoram Vodovotz, Inflammation and disease: Modelling and modulation of the inflammatory response to alleviate critical illness, 2018, 12, 24523100, 22, 10.1016/j.coisb.2018.08.008
    33. Daniel Jonas, Michael Kirby, Alan R. Schenkel, Gerhard Dangelmayr, Modeling of adaptive immunity uncovers disease tolerance mechanisms, 2023, 00225193, 111498, 10.1016/j.jtbi.2023.111498
    34. Robert Parker, Justin Hogg, Anirban Roy, John Kellum, Thomas Rimmelé, Silvia Daun-Gruhn, Morgan Fedorchak, Isabella Valenti, William Federspiel, Jonathan Rubin, Yoram Vodovotz, Claudio Lagoa, Gilles Clermont, Modeling and Hemofiltration Treatment of Acute Inflammation, 2016, 4, 2227-9717, 38, 10.3390/pr4040038
    35. Panteleimon D. Mavroudis, Jeremy D. Scheff, John C. Doyle, Yoram Vodovotz, Ioannis P. Androulakis, The Impact of Stochasticity and Its Control on a Model of the Inflammatory Response, 2018, 7, 2079-3197, 3, 10.3390/computation7010003
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6442) PDF downloads(592) Cited by(16)

Article outline

Figures and Tables

Figures(4)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog