Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Longitudinal tDCS: Consistency across Working Memory Training Studies

Memory and Brain Lab, Program in Cognitive and Brain Sciences, Dept. of Psychology, University of Nevada, Reno, NV 89557

There is great interest in enhancing and maintaining cognitive function. In recent years, advances in noninvasive brain stimulation devices, such as transcranial direct current stimulation (tDCS), have targeted working memory in particular. Despite controversy surrounding outcomes of single-session studies, a growing field of working memory training studies incorporate multiple sessions of tDCS. It is useful to take stock of these findings because there is a diversity of paradigms employed and the outcomes observed between research groups. This will be important in assessing cognitive training programs paired with stimulation techniques and identifying the more useful and less effective approaches. Here, we treat the tDCS+ working memory training field as a case example, but also survey training benefits in other neuromodulatory techniques (e.g., tRNS, tACS). There are challenges associated with the broad parameter space including: individual differences, stimulation intensity, duration, montage, session number, session spacing, training task selection, timing of follow up testing, near and far transfer tasks. In summary, although the field of assisted cognitive training is young, some design choices are more favorable than others. By way of heuristic, the current evidence supports including more training/tDCS sessions (5+), applying anodal tDCS targeting prefrontal regions, including follow up testing on trained and transfer tasks after a period of no contact. What remains unclear, but important for future translational value is continuing work to pinpoint optimal values for the tDCS parameters on a per cognitive task basis. Importantly the emerging literature shows notable consistency in the application of tDCS for WM across various participant populations compared to single session experimental designs.
  Article Metrics


1.  Dedoncker J, Brunoni AR, Baeken C, et al. (2016) The effect of the interval-between-sessions on prefrontal transcranial direct current stimulation (tDCS) on cognitive outcomes: a systematic review and meta-analysis. J Neural Transm (Vienna) 123: 1159-1172.    

2.  Dedoncker J, Brunoni AR, Baeken C, et al. (2016) A Systematic Review and Meta-Analysis of the Effects of Transcranial Direct Current Stimulation (tDCS) Over the Dorsolateral Prefrontal Cortex in Healthy and Neuropsychiatric Samples: Influence of Stimulation Parameters. Brain Stimul 9: 501-517.    

3.  Hill AT, Fitzgerald PB, Hoy KE (2016) Effects of Anodal Transcranial Direct Current Stimulation on Working Memory: A Systematic Review and Meta-Analysis of Findings From Healthy and Neuropsychiatric Populations. Brain Stimul 9: 197-208.    

4.  Elmasry J, Loo C, Martin D (2015) A systematic review of transcranial electrical stimulation combined with cognitive training. Restor Neurol Neurosci 33: 263-278.    

5.  Parasuraman R, McKinley RA (2014) Using noninvasive brain stimulation to accelerate learning and enhance human performance. Human factors 56: 816-824.    

6. Berryhill ME, Peterson DJ, Jones KT, et al. (2014) Hits and misses: leveraging tDCS to advance cognitive research. Front Psychol 5: 800.

7.  Reinhart RM, Cosman JD, Fukuda K, et al. (2017) Using transcranial direct-current stimulation (tDCS) to understand cognitive processing. Atten Percept Psychophys 79: 3-23.    

8.  Filmer HL, Dux PE, Mattingley JB (2014) Applications of transcranial direct current stimulation for understanding brain function. Trends Neurosci 37: 742-753.    

9.  Parkin BL, Ekhtiari H, Walsh VF (2015) Non-invasive Human Brain Stimulation in Cognitive Neuroscience: A Primer. Neuron 87: 932-945.    

10. Reinhart RM, Cosman JD, Fukuda K, et al. (2016) Using transcranial direct-current stimulation (tDCS) to understand cognitive processing. Atten Percept Psychophys.

11.  Woods AJ, Antal A, Bikson M, et al. (2016) A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol 127: 1031-1048.    

12.  Nitsche MA, Cohen LG, Wassermann EM, et al. (2008) Transcranial direct current stimulation: State of the art 2008. Brain Stimul 1: 206-223.    

13.  Nitsche MA, Paulus W (2000) Excitability changes induced in the humanmotor cortex by weak transcranial direct current stimulation. J Physiol 527: 633-639.    

14.  Nitsche MA, Paulus W (2001) Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57: 1899-1901.    

15.  Paulus W (2003) Transcranial direct current stimulation (tDCS). Suppl Clin Neurophysiol 56: 249-254.    

16.  Berryhill ME, Chein JM, Olson IR (2011) At the intersection of attention and memory: the mechanistic role of the posterior parietal lobe in working memory. Neuropsycholgia 49: 1306-1315.    

17.  Berryhill ME, Olson IR (2008) Is the posterior parietal lobe involved in working memory retrieval. Evidence from patients with bilateral parietal lobe damage. Neuropsychologia 46: 1775-1786.

18.  Berryhill ME, Olson IR (2008) The right parietal lobe is critical for visual working memory. Neuropsychologia 46: 1767-1774.    

19.  Berryhill ME, Wencil EB, Coslett HB, et al. (2010) A selective working memory impairment after transcranial direct current stimulation to the right parietal lobe. Neurosci Lett 479: 312-316.    

20.  Berryhill ME, Jones KT (2012) tDCS selectively improves working memory in older adults with more education. Neurosci Lett 521: 148-151.    

21. Jones KT, Berryhill ME (2012) Parietal contributions to visual working memory depend on task difficulty. Front Psychiatry 3: 81.

22. Horvath JC, Carter O, Forte JD (2014) Transcranial direct current stimulation: five important issues we aren't discussing (but probably should be). Front Syst Neurosci 8: 2.

23. Hsu TY, Juan CH, Tseng P (2016) Individual Differences and State-Dependent Responses in Transcranial Direct Current Stimulation. Frontiers Human Neurosci 10: 643.

24. Katz B, Au J, Buschkuehl M, et al. (2017) Individual Differences and Long-term Consequences of tDCS-augmented Cognitive Training. J Cogn Neurosci 1-11.

25. Li LM, Uehara K, Hanakawa T (2015) The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Front Cell Neurosci 9: 181.

26.  London RE, Slagter HA (2015) Effects of Transcranial Direct Current Stimulation over Left Dorsolateral pFC on the Attentional Blink Depend on Individual Baseline Performance. J Cogn Neurosci 27: 2382-2393.    

27.  Puri R, Hinder MR, Canty AJ, et al. (2016) Facilitatory non-invasive brain stimulation in older adults: the effect of stimulation type and duration on the induction of motor cortex plasticity. Exp Brain Res 234: 3411-3423.    

28. Talsma LJ, Kroese HA, Slagter HA (2016) Boosting Cognition: Effects of Multiple Session Transcranial Direct Current Stimulation on Working Memory. J Cogn Neurosci 1-14.

29. Kim JH, Kim DW, Chang WH, et al. (2014) Inconsistent outcomes of transcranial direct current stimulation may originate from anatomical differences among individuals: Electric field simulation using individual MRI data. Neurosci Letters.

30. Russell M, Goodman T, Wang Q, et al. (2014) Gender Differences in Current Received during Transcranial Electrical Stimulation. Front Psychiatry 5: 104.

31. Krause B, Cohen Kadosh R (2014) Not all brains are created equal: the relevance of individual differences in responsiveness to transcranial electrical stimulation. Front Syst Neurosci 8: 25.

32.  Brunoni AR, Vanderhasselt MA (2014) Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex: A systematic review and meta-analysis. Brain Cognition 86C: 1-9.

33.  Horvath JC, Forte JD, Carter O (2015) Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: A systematic review. Neuropsychologia 66: 213-236.    

34.  Horvath JC, Forte JD, Carter O (2015) Quantitative Review Finds No Evidence of Cognitive Effects in Healthy Populations From Single-session Transcranial Direct Current Stimulation (tDCS). Brain Stimul 8: 535-550.    

35.  Hsu WY, Ku Y, Zanto TP, et al. (2015) Effects of noninvasive brain stimulation on cognitive function in healthy aging and Alzheimer's disease: a systematic review and meta-analysis. Neurobiol Aging 36: 2348-2359.    

36.  Jacobson L, Koslowsky M, Lavidor M (2012) tDCS polarity effects in motor and cognitive domains: a meta-analytical review. Experiment Brain Res Experimentelle Hirnforschung Experimentation Cerebrale 216: 1-10.    

37. Mancuso LE, Ilieva IP, Hamilton RH, et al. (2016) Does Transcranial Direct Current Stimulation Improve Healthy Working Memory?: A Meta-analytic Review. J Cogn Neurosci 1-27.

38.  Antal A, Keeser D, Priori A, et al. (2015) Conceptual and Procedural Shortcomings of the Systematic Review "Evidence That Transcranial Direct Current Stimulation (tDCS) Generates Little-to-no Reliable Neurophysiologic Effect Beyond MEP Amplitude Modulation in Healthy Human Subjects: A Systematic Review" by Horvath and Co-workers. Brain Stimul 8: 846-849.    

39.  Price AR, Hamilton RH (2015) A Re-evaluation of the Cognitive Effects From Single-session Transcranial Direct Current Stimulation. Brain Stimul 8: 663-665.    

40.  Summers JJ, Kang N, Cauraugh JH (2016) Does transcranial direct current stimulation enhance cognitive and motor functions in the ageing brain. A systematic review and meta-analysis. Ageing Res Rev 25: 42-54.

41.  Tremblay S, Lepage JF, Latulipe-Loiselle A, et al. (2014) The uncertain outcome of prefrontal tDCS. Brain Stimul 7: 773-783.    

42.  Steenbergen L, Sellaro R, Hommel B, et al. (2016) "Unfocus" on foc. us: commercial tDCS headset impairs working memory. Exp Brain Res 234: 637-643.

43. Brehmer Y, Westerberg H, Backman L (2012) Working-memory training in younger and older adults: training gains, transfer, and maintenance. Frontiers Human Neurosci 6: 63.

44.  Constantinidis C, Klingberg T (2016) The neuroscience of working memory capacity and training. Nat Rev Neurosci 17: 438-449.

45.  Karbach J, Verhaeghen P (2014) Making working memory work: a meta-analysis of executive-control and working memory training in older adults. Psychol Sci 25: 2027-2037.    

46.  Klingberg T (2010) Training and plasticity of working memory. Trends Cogn Sci 14: 317-324.    

47.  Morrison AB, Chein JM (2011) Does working memory training work. The promise and challenges of enhancing cognition by training working memory. Psychonomic Bulletin Rev 18: 46-60.

48.  Shipstead Z, Redick TS, Engle RW (2012) Is working memory training effective. Psychological Bulletin 138: 628-654.    

49. Spencer-Smith M, Klingberg T (2015) Benefits of a working memory training program for inattention in daily life: a systematic review and meta-analysis. PLoS One 10: e0119522.    

50.  von Bastian CC, Eschen A (2016) Does working memory training have to be adaptive. Psychol Res 80: 181-194.    

51.  von Bastian CC, Langer N, Jancke L, et al. (2013) Effects of working memory training in young and old adults. Memory Cognition 41: 611-624.    

52.  von Bastian CC, Oberauer K (2014) Effects and mechanisms of working memory training: a review. Psychol Res 78: 803-820.    

53.  Hsu WY, Zanto TP, Anguera JA, et al. (2015) Delayed enhancement of multitasking performance: Effects of anodal transcranial direct current stimulation on the prefrontal cortex. Cortex 69: 175-185.    

54. Jones KT, Stephens JA, Alam M, et al. (2015) Longitudinal neurostimulation in older adults improves working memory. PLoS ONE 10: e0121904.    

55.  Park SH, Seo JH, Kim YH, et al. (2014) Long-term effects of transcranial direct current stimulation combined with computer-assisted cognitive training in healthy older adults. Neuroreport 25: 122-126.    

56.  Perceval G, Floel A, Meinzer M (2016) Can transcranial direct current stimulation counteract age-associated functional impairment. Neurosci Biobehav Rev 65: 157-172.    

57.  Stephens JA, Berryhill ME (2016) Older Adults Improve on Everyday Tasks after Working Memory Training and Neurostimulation. Brain Stimul 9: 553-559.    

58.  Andre S, Heinrich S, Kayser F, et al. (2016) At-home tDCS of the left dorsolateral prefrontal cortex improves visual short-term memory in mild vascular dementia. J Neurol Sci 369: 185-190.    

59.  Nienow TM, MacDonald AW, Lim KO (2016) TDCS produces incremental gain when combined with working memory training in patients with schizophrenia: A proof of concept pilot study. Schizophrenia Res 172: 218-219.    

60.  Park SH, Koh EJ, Choi HY, et al. (2013) A double-blind, sham-controlled, pilot study to assess the effects of the concomitant use of transcranial direct current stimulation with the computer assisted cognitive rehabilitation to the prefrontal cortex on cognitive functions in patients with stroke. J Korean Neurosurg Soc 54: 484-488.    

61.  Saunders N, Downham R, Turman B, et al. (2015) Working memory training with tDCS improves behavioral and neurophysiological symptoms in pilot group with post-traumatic stress disorder (PTSD) and with poor working memory. Neurocase 21: 271-278.    

62.  Au J, Katz B, Buschkuehl M, et al. (2016) Enhancing Working Memory Training with Transcranial Direct Current Stimulation. J Cogn Neurosci 28: 1419-1432.    

63. Martin DM, Liu R, Alonzo A, et al. (2013) Can transcranial direct current stimulation enhance outcomes from cognitive training? A randomized controlled trial in healthy participants. Int J Neuropsychopharmacol Official Scientific J Collegium Int Neuropsychopharmacologicum 1-10.

64. Richmond L, Wolk D, Chein J, et al. (2014) Transcranial Direct Current Stimulation Enhances Verbal Working Memory Training Performance over Time and Near-transfer Outcomes. J Cogn Neurosci.

65.  Vanderhasselt MA, De Raedt R, Namur V, et al. (2015) Transcranial electric stimulation and neurocognitive training in clinically depressed patients: a pilot study of the effects on rumination. Prog Neuropsychopharmacol Biol Psychiatry 57: 93-99.    

66.  Martin DM, Alonzo A, Ho KA, et al. (2013) Continuation transcranial direct current stimulation for the prevention of relapse in major depression. J Affect Disord 144: 274-278.    

67.  Lesniak M, Polanowska K, Seniow J, et al. (2014) Effects of repeated anodal tDCS coupled with cognitive training for patients with severe traumatic brain injury: a pilot randomized controlled trial. J Head Trauma Rehabil 29: E20-29.    

68.  Batsikadze G, Moliadze V, Paulus W, et al. (2013) Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol 591: 1987-2000.    

69.  Brunoni AR, Nitsche MA, Bolognini N, et al. (2012) Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimulation 5: 175-195.    

70. Galvez V, Alonzo A, Martin D, et al. (2012) Transcranial direct current stimulation treatment protocols: should stimulus intensity be constant or incremental over multiple sessions? Int J Neuropsychopharmacol Official Scientific J Collegium Int Neuropsychopharmacologicum 1-9.

71.  Ho KA, Taylor JL, Chew T, et al. (2016) The Effect of Transcranial Direct Current Stimulation (tDCS) Electrode Size and Current Intensity on Motor Cortical Excitability: Evidence From Single and Repeated Sessions. Brain Stimul 9: 1-7.    

72.  Hoy KE, Emonson MR, Arnold SL, et al. (2013) Testing the limits: Investigating the effect of tDCS dose on working memory enhancement in healthy controls. Neuropsychologia 51: 1777-1784.    

73. Jamil A, Batsikadze G, Kuo HI, et al. (2016) Systematic evaluation of the impact of stimulation intensity on neuroplastic after-effects induced by transcranial direct current stimulation. J Physiol.

74. Teo F, Hoy KE, Daskalakis ZJ, et al. (2011) Investigating the Role of Current Strength in tDCS Modulation of Working Memory Performance in Healthy Controls. Front Psychiatry 2: 45.

75.  Tremblay S, Larochelle-Brunet F, Lafleur LP, et al. (2016) Systematic assessment of duration and intensity of anodal transcranial direct current stimulation on primary motor cortex excitability. Eur J Neurosci 44: 2184-2190.    

76. Unsworth CA, Pallant JF, Russell KJ, et al. (2011) Driver Off-Road Assessment Battery. AOTA Press.

77. Toglia J (2015) Weekly Calendar Planning Activity: A Performance Test of Executive Function. AOTA Press.

78.  Greenwood PM, Parasuraman R (2016) The mechanisms of far transfer from cognitive training: Review and hypothesis. Neuropsychology 30: 742-755.    

79.  Trumbo MC, Matzen LE, Coffman BA, et al. (2016) Enhanced working memory performance via transcranial direct current stimulation: The possibility of near and far transfer. Neuropsychologia 93: 85-96.    

80. Stephens JA, Jones KT, Berryhill ME (submitted) COMT-status predicts tDCS-linked WM benefits.

81.  Lotta T, Vidgren J, Tilgmann C, et al. (1995) Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry 34: 4202-4210.    

82. Berryhill ME, Wiener M, Stephens JA, et al. (2013) COMT and ANKK1-Taq-Ia genetic polymorphisms influence visual working memory. PLoS One 8: e55862.    

83.  Egan MF, Goldberg TE, Kolachana BS, et al. (2001) Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci U S A 98: 6917-6922.    

84.  Malhotra AK, Kestler LJ, Mazzanti C, et al.  (2002) A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. Am J Psychiatry 159: 652-654.    

85.  Martin DM, Liu R, Alonzo A, et al. (2013) Can transcranial direct current stimulation enhance outcomes from cognitive training. A randomized controlled trial in healthy participants. Int J Neuropsychopharmacol 16: 1927-1936.

86.  Gill J, Shah-Basak PP, Hamilton R (2015) It's the thought that counts: examining the task-dependent effects of transcranial direct current stimulation on executive function. Brain Stimul 8: 253-259.    

87.  Stagg CJ, Nitsche MA (2011) Physiological basis of transcranial direct current stimulation. Neuroscientist 17: 37-53.    

88.  Martin DM, Liu R, Alonzo A, et al. (2014) Use of transcranial direct current stimulation (tDCS) to enhance cognitive training: effect of timing of stimulation. Exp Brain Res 232: 3345-3351.    

89.  Meinzer M, Antonenko D, Lindenberg R, et al. (2012) Electrical brain stimulation improves cognitive performance by modulating functional connectivity and task-specific activation. J Neurosci 32: 1859-1866.    

90.  Zheng X, Alsop DC, Schlaug G (2011) Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow. Neuroimage 58: 26-33.    

91.  Alekseichuk I, Diers K, Paulus W, et al. (2016) Transcranial electrical stimulation of the occipital cortex during visual perception modifies the magnitude of BOLD activity: A combined tES-fMRI approach. Neuroimage 140: 110-117.    

92.  Meinzer M, Lindenberg R, Antonenko D, et al. (2013) Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes. J Neurosci 33: 12470-12478.    

93.  Pena-Gomez C, Sala-Lonch R, Junque C, et al. (2012) Modulation of large-scale brain networks by transcranial direct current stimulation evidenced by resting-state functional MRI. Brain Stimul 5: 252-263.    

94.  Polania R, Paulus W, Antal A, et al. (2011) Introducing graph theory to track for neuroplastic alterations in the resting human brain: a transcranial direct current stimulation study. Neuroimage 54: 2287-2296.    

95.  Polania R, Paulus W, Nitsche MA (2012) Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Hum Brain Mapp 33: 2499-2508.    

96.  Polania R, Nitsche MA, Paulus W (2011) Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum Brain Mapp 32: 1236-1249.    

97.  Antal A, Varga ET, Kincses TZ, et al. (2004) Oscillatory brain activity and transcranial direct current stimulation in humans. Neuroreport 15: 1307-1310.    

98. Jones KT, Peterson DJ, Blacker KJ, et al. (In revision) Frontoparietal tDCS modulates working memory training benefits and oscillatory synchronization.

99.  Keeser D, Padberg F, Reisinger E, et al. (2011) Prefrontal direct current stimulation modulates resting EEG and event-related potentials in healthy subjects: a standardized low resolution tomography (sLORETA) study. Neuroimage 55: 644-657.    

100. Herrmann CS, Murray MM, Ionta S, et al. (2016) Shaping Intrinsic Neural Oscillations with Periodic Stimulation. J Neurosci 36: 5328-5337.    

101. Zaehle T, Sandmann P, Thorne JD, et al. (2011) Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence. BMC Neurosci 12: 2.    

102. Bikson M, Datta A (2012) Guidelines for precise and accurate computational models of tDCS. Brain Stimul 5: 430-431.    

103. Bikson M, Datta A, Rahman A, et al. (2010) Electrode montages for tDCS and weak transcranial electrical stimulation: role of "return" electrode's position and size. Clin Neurophysiol 121: 1976-1978.    

104. Datta A, Bansal V, Diaz J, et al. (2009) Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain stimulation 2: 201-207.    

105. Sadleir RJ, Vannorsdall TD, Schretlen DJ, et al. (2012) Target optimization in transcranial direct current stimulation. Front Psychiatry 3: 90.

106. Sadleir RJ, Vannorsdall TD, Schretlen DJ, et al. (2010) Transcranial direct current stimulation (tDCS) in a realistic head model. Neuroimage 51: 1310-1318.    

107. Suh HS, Kim SH, Lee WH, et al. (2009) Realistic simulation of transcranial direct current stimulation via 3-d high-resolution finite element analysis: Effect of tissue anisotropy. Conf Proc IEEE Eng Med Biol Soc 2009: 638-641.

108. Hoy KE, Bailey N, Arnold S, et al. (2015) The effect of gamma-tACS on working memory performance in healthy controls. Brain Cogn 101: 51-56.    

109.Alekseichuk I, Pabel SC, Antal A, et al. (2017) Intrahemispheric theta rhythm desynchronization impairs working memory. Restor Neurol Neurosci.

110. Claes L, Stamberger H, Van de Heyning P, et al. (2014) Auditory cortex tACS and tRNS for tinnitus: single versus multiple sessions. Neural Plast 2014: 436713.

111. Campana G, Camilleri R, Pavan A, et al. (2014) Improving visual functions in adult amblyopia with combined perceptual training and transcranial random noise stimulation (tRNS): a pilot study. Front Psychol 5: 1402.

112. Prichard G, Weiller C, Fritsch B, et al. (2014) Effects of different electrical brain stimulation protocols on subcomponents of motor skill learning. Brain Stimul 7: 532-540.    

113. Cappelletti M, Gessaroli E, Hithersay R, et al. (2013) Transfer of cognitive training across magnitude dimensions achieved with concurrent brain stimulation of the parietal lobe. J Neurosci 33: 14899-14907.    

114. Snowball A, Tachtsidis I, Popescu T, et al. (2013) Long-term enhancement of brain function and cognition using cognitive training and brain stimulation. Curr Biol 23: 987-992.    

115. Moyer RS, Landauer TK (1967) Time required for judgements of numerical inequality. Nature 215: 1519-1520.    

116. Holmes J, Byrne EM, Gathercole SE, et al. (2016) Transcranial Random Noise Stimulation Does Not Enhance the Effects of Working Memory Training. J Cogn Neurosci 28: 1471-1483.    

117. Moreau D, Wang CH, Tseng P, et al. (2015) Blending transcranial direct current stimulations and physical exercise to maximize cognitive improvement. Front Psychol 6: 678.

118. Fratiglioni L, Wang HX (2007) Brain reserve hypothesis in dementia. J Alzheimers Dis 12: 11-22.    

119. Boggio PS, Ferrucci R, Rigonatti SP, et al. (2006) Effects of transcranial direct current stimulation on working memory in patients with Parkinson's disease. J Neurol Sci 249: 31-38.    

120. Liu A, Bryant A, Jefferson A, Friedman D, et al. (2016) Exploring the efficacy of a 5-day course of transcranial direct current stimulation (TDCS) on depression and memory function in patients with well-controlled temporal lobe epilepsy. Epilepsy Behav 55: 11-20.    

121. Lefaucheur JP (2016) A comprehensive database of published tDCS clinical trials (2005-2016). Neurophysiol Clin 46: 319-398.    

Copyright Info: © 2017, Marian E. Berryhill, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved