
AIMS Mathematics, 2018, 3(4): 625646. doi: 10.3934/Math.2018.4.625.
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Traveling wave solutions in closed form for some nonlinear fractional evolution equations related to conformable fractional derivative
1 Department of Mathematics, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
2 Department of Applied Mathematics, Rajshahi University, Rajshahi, Bangladesh
Received: , Accepted: , Published:
Keywords: The fractional generalized ($D_\xi^\alpha G/G$)expansion method; conformable fractional derivative; composite transformation; fractional order nonlinear evolution equations; closed form solutions
Citation: M. Tarikul Islam, M. Ali Akbar, M. Abul Kalam Azad. Traveling wave solutions in closed form for some nonlinear fractional evolution equations related to conformable fractional derivative. AIMS Mathematics, 2018, 3(4): 625646. doi: 10.3934/Math.2018.4.625
References:
 1. K.B. Oldham, J. Spanier, The Fractional Calculus, New York: Academic Press, 1974.
 2. I. Podlubny, Fractional Differential Equations, Math. Sci. Eng., 198 (1999) 1340.
 3. A. CoronelEscamilla, J. F. GomezAguilar, L. Torres, et al. A numerical solution for a variableorder reactiondiffusion model by using fractional derivatives with nonlocal and nonsingular kernel, Physica A., 491 (2018), 406424.
 4. A. Atangana, J. F. GómezAguilar, Numerical approximation of RiemannLiouville definition of fractional derivative: From RiemannLiouville to AtanganaBaleanu, Numer. Meth. Part. D. E., (2017).
 5. D. Baleanu, M. Inc, A. Yusuf et al. Time fractional thirdorder evolution equation: Symmetry analysis, explicit solutions and conservation laws, J. Compt. Nonliner Dynam., 13 (2018), 021011.
 6. A. Akgul, D. Baleanu, M. Inc, et al. On the solutions of electrohydrodynamic flow with fractional differential equations by reproducing kernel method, Open. Phys., 14 (2016), 685689.
 7. E. C. Aslan, M. Inc, Soliton solutions of NLSE with quadraticcubic nonlinearity and stability analysis, Wave. Random. Complex., 27 (2017), 594601.
 8. M. Inc, E. Ulutas, A. Biswas, Singular solitons and other solutions to a couple of nonlinear wave equations, Chin. Phys. B., 22 (2013), 060204.
 9. I. E. Inan, Y. Ugurlu, M. Inc, New applications of the (G'/G,1/G)expansion method, Acta. Phys. Pol. A., 128 (2015), 245252.
 10. M. N. Alam, M. A. Akbar, The new approach of the generalized (G'/G,1/G)expansion method for nonlinear evolution equations, Ain Shams Eng. J., 5 (2014), 595603.
 11. D. Baleanu, Y. Ugurlu, M. Inc and B. Kilic, Improved (G'/G,1/G)expansion method for the time fractional Biological population model and CahnHilliard equation, J. Comput. Nonliner. Dynam., 10 (2015), 051016.
 12. M. T. Islam, M. A. Akbar, M. A. K. Azad, The exact traveling wave solutions to the nonlinear spacetime fractional modified BenjaminBonaMahony equation, J. Mech. Cont. Math. Sci., 13 (2018), 5671.
 13. B. Zheng, Expfunction method for solving fractional partial differential equations, Sci. World J., 2013 (2013), 465723.
 14. O. Guner, A. Bekir, H. Bilgil, A note on Expfunction method combined with complex transform method applied to fractional differential equations, Adv. Nonlinear Anal., 4 (2015), 201208.
 15. J. F. Alzaidy, The fractional subequation method and exact analytical solutions for some fractional PDEs, Am. J. Math. Anal., 1 (2013), 1419.
 16. H. YépezMartinez, J. F. GómezAguilar, D. Baleanu, Betaderivative and subequation method applied to the optical solitons in medium with parabolic law nonlinearity and higher order dispersion, Optik, 155 (2018), 357365.
 17. H. YépezMartinez, J. F. GómezAguilar, A. Atangana, First integral method for nonlinear differential equations with conformable derivative, Math. Modell. Nat. Phenom., 13 (2018), 14.
 18. H. YépezMartinez, J. F. GómezAguilar, I. O. Sosa, et al. The Feng's first integral method applied to the nonlinear mKdV spacetime fractional partial differential equation, Rev. Mex. Fis., 62 (2016), 310316.
 19. M. Inc, I. E. Inan, Y. Ugurlu, New applications of the functional variable method, Optik, 136 (2017), 374381.
 20. H. Bulut, H. M. Baskonus, Y. Pandir, The modified trial equation method for fractional wave equation and time fractional generalized Burgers equation, Abstr. Appl. Anal., 2013 (2013), 636802.
 21. Y. Pandir, Y. Gurefe, New exact solutions of the generalized fractional ZakharovKuznetsov equations, Life Sci. J., 10 (2013), 27012705.
 22. N. Taghizadeh, M. Mirzazadeh, M. Rahimian et al. Application of the simplest equation method to some time fractional partial differential equations, Ain Shams Eng. J., 4 (2013), 897902.
 23. C. Chen, Y. L. Jiang, Lie group analysis method for two classes of fractional partial differential equations, Commun. Nonlinear Sci., 26 (2015), 2435.
 24. G. C. Wu, A fractional characteristic method for solving fractional partial differential equations, Appl. Math. Lett., 24 (2011), 10461050.
 25. A. R. Seadawy, Travellingwave solutions of a weakly nonlinear twodimensional higherorder KadomtsevPetviashvili dynamical equation for dispersive shallowwater waves, Eur. Phys. J. Plus, 132 (2017), 29.
 26. A. Akbulut, M. Kaplan, A. Bekir, Auxiliary equation method for fractional differential equations with modified RiemannLiouville derivative, Int. J. Nonlin. Sci. Num., 17 (2016).
 27. W. Deng, Finite element method for the space and time fractional FokkerPlanck equation, SIAM J. Numer. Anal., 47 (2008), 204226.
 28. S. Momani, Z. Odibat, V. S. Erturk, Generalized differential transform method for solving a space and timefractional diffusionwave equation, Phys. Lett. A., 370 (2007), 379387.
 29. Y. Hu, Y. Luo, Z. Lu, Analytical solution of the linear fractional differential equation by Adomian decomposition method, J. Comput. Appl. Math., 215 (2008), 220229.
 30. A. M. A. ElSayed, S. H. Behiry, W. E. Raslan, Adomian's decomposition method for solving an intermediate fractional advectiondispersion equation, Comput. Math. Appl., 59 (2010), 17591765.
 31. M. Inc, The approximate and exact solutions of the space and timefractional Burgers equations with initial conditions by variational iteration method, J. Math. Anal. Appl., 345 (2008), 476484.
 32. G. H. Gao, Z. Z. Sun, Y. N. Zhang, A finite difference scheme for fractional subdiffusion equations on an unbounded domain using artificial boundary conditions, J. Comput. Phys., 231 (2012), 28652879.
 33. K. A. Gepreel, The homotopy perturbation method applied to nonlinear fractional KadomtsevPetviashviliPiskkunov equations, Appl. Math. Lett., 24 (2011), 14281434.
 34. J. F. GómezAguilar, H. YépezMartinez, J. TorresJimenez et al. Homotopy perturbation transform method for nonlinear differential equations involving to fractional operator with exponential kernel, Adv. Differ. Equations, 2017 (2017), 68.
 35. V. F. MoralesDelgado, J. F. GómezAguilar, H. YépezMartinez, et al. Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular, Adv. Differ. Equations, 2016 (2016), 164.
 36. H. YépezMartinez, J. F. GómezAguilar, Numerical and analytical solutions of nonlinear differential equations involving fractional operators with power and MittagLeffler kernel, Math. Model. Nat. Phenom., 13 (2018), 13.
 37. E. C. Aslan, M. Inc, Numerical solutions and comparisons for nonlinear time fractional Ito coupled system, J. Comput. Theor. Nanos., 13 (2016), 54265431.
 38. M. Inc, Some special structures for the generalized nonlinear Schrodinger equation with nonlinear dispersion, Wave. Random. Complex., 23 (2013), 7788.
 39. R. Khalil, M. Al Horani, A. Yousef et al. A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 6570.
 40. A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative, Open Math., 13 (2015), 889898.
 41. M. Eslami, H. Rezazadeh, The first integral method for WuZhang system with conformable timefractional derivative, Calcolo, 53 (2016), 475485.
 42. Y. Cenesiz, A. Kurt, The new solution of time fractional wave equation with conformable fractional derivative definition, J. New Theory, 7 (2015), 7985.
 43. M. Boiti, J. Leon and P. Pempinelli, Spectral transform for a two spatial dimension extension of the dispersive long wave equation, Inverse Probl., 3 (1987), 371387.
 44. R. L. Mace, M. A. Hellberg, The Kortewegde VriesZakharovKuznetsov equation for electronacoustic waves, Phys. Plasmas, 8 (2001), 26492656.
 45. O. Guner, E. Aksoy, A. Bekir et al. Different methods for (3+1)dimensional spacetime fractional modified KdVZakharovKuznetsov equation, Comput. Math. Appl., 71 (2016), 12591269.
 46. A. K. Khalifaa, K. R. Raslana, H. M. Alzubaidi, A collocation method with cubic Bsplines for solving the MRLW equation, J. Comput. Appl. Math., 212 (2008), 406418.
 47. K. R. Raslan, Numerical study of the Modified Regularized Long Wave (MRLW) equation, Chaos, Solitons Fractals, 42 (2009), 18451853.
 48. K. R. Raslan, S. M. Hassan, Solitary waves for the MRLW equation, Appl. Math. Lett., 22 (2009), 984989.
 49. M. Kaplan, A. Bekir, A. Akbulut, et al. The modified simple equation method for nonlinear fractional differential equations, Rom. Journ. Phys., 60 (2015), 13741383.
 50. A. B. E. Abdel Salam, E. A. E. Gumma, Analytical solution of nonlinear spacetime fractional differential equations using the improved fractional Riccati expansion method, Ain Shams Eng. J., 6 (2015), 613620.
 51. E. Fan, H. Zhang, A note on the homogeneous balance method, Phys. Lett. A., 246 (1998), 403406.
Reader Comments
© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *