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Abstract: Fractional order nonlinear evolution equations involving conformable fractional derivative
are formulated and revealed for attractive solutions to depict the physical phenomena of nonlinear
mechanisms in the real world. The core aim of this article is to explore further new general exact
traveling wave solutions of nonlinear fractional evolution equations, namely, the space time
fractional (2+1)-dimensional dispersive long wave equations, the (3+1)-dimensional space time
fractional mKdV-ZK equation and the space time fractional modified regularized long-wave
equation. The mentioned equations are firstly turned into the fractional order ordinary differential
equations with the aid of a suitable composite transformation and then hunted their solutions by
means of recently established fractional generalized (D¢ G /G)-expansion method. This productive
method successfully generates many new and general closed form traveling wave solutions in
accurate, reliable and efficient way in terms of hyperbolic, trigonometric and rational. The obtained
results might play important roles for describing the complex phenomena related to science and
engineering and also be newly recorded in the literature for their high acceptance. The suggested
method will draw the attention to the researchers to establish further new solutions to any other
nonlinear evolution equations.
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1. Introduction

The physical phenomena of real world can effectively be modeled by making use of the theory
of derivatives and integrals of fractional order. In this sense, the nonlinear fractional order evolution
equations (NLFEEs) have recently become a burning topic to the researchers for searching their
exact traveling wave solutions to depict the physical phenomena due to the nonlinear mechanisms
arisen in various fields. The use of nonlinear equations is extensive as the nonlinearity exists
everywhere in the world. NLFEEs have been attracted great interest due to their frequent appearance
in many applications such as in biology, physics, chemistry, electromagnetic, polymeric materials,
neutron point kinetic model, control and vibration, image and signal processing, system
identifications, the finance, acoustics and fluid dynamics [1-3]. Many researchers have offered
different approaches to construct analytic and numerical solutions to NLFEESs as well as NLEEs and
put them forward for searching traveling wave solutions, such as the exponential decay law [4], the
Ibragimov’s nonlocal conservation method [5], the reproducing kernel method [6], the Jacobi
elliptic function method [7], the (G'/G) -expansion method and its various modifications [8-12], the
Exp-function method [13,14], the sub-equation method [15,16], the first integral method [17,18], the
functional variable method [19], the modified trial equation method [20,21], the simplest equation
method [22], the Lie group analysis method [23], the fractional characteristic method [24], the auxiliary
equation method [25,26], the finite element method [27], the differential transform method [28], the
Adomian decomposition method [29,30], the variational iteration method [31], the finite difference
method [32], the various homotopy perturbation method [33-37] and the He’s variational principle [38] etc.
But no method is uniquely appreciable to investigate the exact solutions to all kind of NLFEEs. That is
why; it is very much needed to introduce new method. In this study, we implemented recently established
effectual and reliable productive method, called the fractional generalized (D7 G/ G) -expansion method

to construct closed form analytic wave solutions to some NLFEEs in the sense of conformable fractional
derivative [39]. The results obtained throughout the article have been compared with those existing
in the literature and shown that the achieved solutions are new and much more general. We have
finally concluded that the solutions might bring up their importance through the contribution and be
recorded in the literature.

2. Preliminaries and methodology
2.1. Conformable fractional derivative

A new and simple definition of derivative for fractional order introduced by Khalil et al. [39] is
called conformable fractional derivative. This definition is analogous to the ordinary derivative

AV _ i X+ &)~y (x) ,
dx -0 &

=nx"". According

where y(x):[0,00] > R and x> 0. According to this classical definition,

to this perception, Khalil has introduced o order fractional derivative of y as
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1-a _
Taw(x)=|in3‘/’(x+5x )=v () gcq<t.
E—> g

If the function y is « -differentiable in (0,r) for r>0 and Iiry T,w(x) exists, then the
conformable derivative at x =0 is defined as T y(0) = Iirgl T, w(x). The conformable integral of y
IS

|;W(x)=j”i’T(?dt, r>0,0<a<l.

This integral represents usual Riemann improper integral.
The conformable fractional derivative satisfies the following useful properties [39]:

If the functions u(x) and v(x) are « -differentiable at any pointx >0, for « € (0,1], then
(@ T,(au+bv)=aT, (u)+bT (v) Va,beR.
(0) T,(x")=nx"" VneR.
(c) T, (c)=0, where c is any constant.

(d) T, (uv)=uT,(v)+ VT, (u).

ORI EAOSCLAU

(F) if u is differentiable, then T, (u)(x) = xl‘“g—i(x).

Many researchers used this new derivative of fractional order in physical applications due to its
convenience, simplicity and usefulness [40-42].

2.2. The fractional generalized (D?G/G)-expansion method

Consider a nonlinear partial differential equation of fractional order in the independent variables

t, X, Xy, X, @S

vy Ap

F(u,Dfu,D;u,D; u,...,D; u,D“u, D;*u, D"u,..., D;’u,..) =0, (2.2.1)

where F is a polynomial in u(t, x;, X,,..., X,) and it’s various conformable fractional derivatives. The
main steps of the fractional generalized (D?G/G) -expansion method referred as follows:

Step 1: Use the wave transformation
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E=E( X, Xy X, ), U =U(E X, Xy, X)) =U(€) (2.2.2)

to reduce Eq. (2.2.1) to the following ordinary differential equation of fractional order with respect to

the variable &:

P(U,DU, D§“U ,)=0, (2.2.3)
Take anti-derivative of Eq. (2.2.3), if possible, one or more times and the integral constant can be set

to zero as soliton solutions are sought.
Step 2: Assume that Eq. (2.2.3) has solution in the form

u(é) = Zn:ai (d +D{G/G)' + ibi (d+D{G/G)™, (2.2.4)

wherea (i=0,1,2,...,n), b.(i=12,3,...,n) and d are arbitrary constants with at least one of a, and

b, is nonzero and G = G(&) satisfies the auxiliary equation
AGD§“G —-BGD{G - EG® —C(DgG)2 =0, (2.2.5)

where 0 <a <1 and D7G(¢&) stands for the conformable fractional derivative G(&) of order o with
respectto &£; A,B,C and E are real parameters.

Making use of the transformationG (&) =H (), n=£4%/«, Eq. (2.2.5) turns into the equation

AHH" —BHH' -~ EHZ - C(H')? =0, (2.2.6)

whose solutions are well-known. Utilizing the solutions in Ref. [10] of Eq. (2.2.6) together with the
transformation D?G(&) = DH (17) = H'(r7) D5 = H'(n7) , which can be derived by using conformable

fractional derivative, we can easily obtain the following solutions to Eqg. (2.2.5):

Family 1: When B#0, w =A—-C and Q=B*+4Ey >0,

Csmh(\/_gz j+Czcosh( ga]
2 2A

5]

Aa

\/5 a
Ve coshL\/_cf ]+ C, sinh(\/agw]
2A 2Aa

(2.2.7)

., B
(D:G/G) =+
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Family 2: When B#0, w =A—-C and Q=B*+4Ey <0,

—C,sin =Qg +C,cos V=0
B -0 2Ax 2Ax
(DG/G) ==+~ Tor Tar (2.2.8)
v 1 Clcos ﬁ +C23in _7%
2Ax 2Ac
Family 3: When B0, w =A-C and Q=B*+4Ey =0,
B aC
D/G/G)=—+— 32— 2.2.9
(DG/G) 2y/+C1a+C2§“ (2.2.9)
Family 4: When B=0, w =A-C and A=yE >0,
C,sinh JAg +C, cosh LZ@Z
JA Aa Aa
(D{G/G) = N N (2.2.10)
v Clcosh( a¢ ]+Czsinh(A§j
Aa a
Family 5: When B=0, w =A-C and A=yE <0,
—C,sin —A¢ +C,cos voAST
J=A Aa Aa
(D{G/G) = N N (2.2.11)
Clcos[ —A¢ J+Czsin(_A§J
Aa Aa

Step 3: Take the homogeneous balance between the highest order linear and nonlinear terms
appearing in Eq. (2.2.3) to determine the positive constantn .

Step 4: Using the value of n obtained in step 3, Eq. (2.2.3) along with Egs. (2.2.4), (2.2.5) makes
available polynomials in (d + D{G/G)" (n=0,12,...) and (d + D{G/G)™" (n=12,3,..). Equalize
each coefficient of these polynomials to zero yield a system of algebraic equations for a,
(i=012,.), b (i=423,..) and d . Solve this system by Maple to obtain the values of a,
(i=012,.),b (i=123,...)and d .

Step 5: Eq. (2.2.4) together with Egs. (2.2.7)—(2.2.11) and the values appeared in step 4 provides
traveling wave solutions of the nonlinear evolution equation (2.2.1) in closed form.

3. Formulation of the solutions

In this section, the closed form traveling wave solutions to the suggested equations are examined.
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3.1. The space time fractional (2+1)-dimensional dispersive long wave equations

Consider the space time fractional (2+1)-dimensional dispersive long wave equations

o*“u . %V Lo (u(@“ulox®))
ayaata aXZrz 8ya
v 0“u  o*(uv)  o*u

a + a + a + 2a A0 =
ot*  ox OX ox““oy

0
: (3.1.1)

a

u denotes the « -order partial derivative of u with respect to X

a

where 0 < a <1; the notation

OX

and the other notations are so. This system of equations was first obtained by Boiti et al. [43] as
compatibility condition for a weak Lax pair.

The composite transformation
ult,x,y) =U (&), v(t,x,y) =V (&), &=k"*x+ 1"y +w"'"t, (3.1.2)

where k, | and w are constants, with the aid of chain rule

pru =22 =Y 0¢" 0 (gﬂ =kD:U,
X

CxC 8% oxe aE”
forces Eq. (3.1.1) to take the form

IWD2*U + k?D?*V +kI(UD?U + (DZU)?) =0
: : (DU +(D:UY) } (3.1.3)

WDZV +kD?U +KkD? (UV) + kDU =0

The positive constant n under the homogeneous balance from Eq. (3.1.3) reduces Eq. (2.2.4) into the
form

U(§)=a,+ag+bg" } G14)

V(E)=cy+Cg+Cg’ +dg " +dy9°

where ¢=(d +D;G/G) . Eq. (3.1.3) with the aid of Eq. (3.1.4) and Eg. (2.2.5) produces a
polynomial in ¢ . Setting each coefficient of this polynomial to zero gives a set of algebraic

equations for the constants in Eq. (3.1.4). Solving these equations by the computational software
Maple present the following results:

3/2

(d%w +Bd -E),

Set-1: a - iﬁ{k%Zdy/ +B)F AWK}, =¢%k3’2¢/1 b,=7 2kA

2kl 2 2k?l
C = AZW(Zde), c2=—?k2|y/2, d, = 0 (2dy +B)(d%y +Bd —E),

=-1,d,= 2k2|ol2 Bd —E)? 315
Co—_vz——Az(‘//"' -E) (3.1.5)
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3/2

(d% +Bd —E), ¢, =0

Set2: @ =+ L {C(2dy + B F Awyk}, 3,0, b =X

1 , , ) d_2k2|
Coz—?{ZKII//(d w+Bd—-E)+A%},Q = A2

c,=0,d,=— +B%d? - 2BdE} (3.1.6)
2
Set-3: a, =iﬁ{k3(2dy/+8)$AW\/E}, a1=7r%k3/2y/, b =0, ¢c= 2K i‘/’(zde),
co=—%{kzlyx(2d2yx+28d—2E)+A2}, c, =—%k2l1//2, d,=0,d,=0 (3.1.7)
Putting Egs. (3.1.5)—(3.1.6) into Eq. (3.1.4) yields
U, (&) = 3,2{k (2dy +B) F AW\/_}+ k¥%(d + DG /G)
2k3,2 (3.1.8)
(d’y +Bd —E)(d + D{G/G)™
2
V(&) =1+ % l‘/’ (2dy +B)(d + DgG/G)—%kzlwz(d +D{G/G)’
2| (3.1.9)
2k “G/G)™ —ﬁ(ol2 +Bd—E)’(d +DZG/G)~?
U, (&) = 3,2{k (2dy +B)F Awy/k}F 2K (d 2y +Bd —E)(d + DG /G) (3.1.10)
1 2 2 2 2k21
V(&) = =7 {2y (% + Bd - E) + A3+ = {(2d %y +3Bd - 2E)dy + B%d - BE}
A (3.1.11)
(d+DZG/G) " - 2’ I{d w(d?y +2Bd - 2E) + E* + B%d? - 2BJE}(d + DG /G)~°
U,(&) = km{k (2dy +B) T Ak} F 2 k3’2w(d +D:G/G) (3.1.12)
1 2 2 2 2k2|l// a
V, (&) = —?{k ly(2d“yw +2Bd —2E) + A }+T(2dw+ B)(d + DfG/G)
(3.1.13)

2 “
7Ky (d + DIG/GY’

where &=k x+ 1"y + w""t.
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Egs. (3.1.8), (3.1.9) together with Egs. (2.2.7)—-(2.2.11) make available the following three types
solutions in terms hyperbolic function, trigonometric function and rational function as:

When B#0, y =A-C and Q=B*+4Ey >0,

UL () = 3,2{|< (2dy/+B)+AW\/_}+ @12y q B Y Cysinh @+ C; cosh &
2y 2y C,cosh® +C,sinh @
. (3.1.14)
2 312 (@% +Bd - E)ld +\/5C15inhCI>+Czcoshd>
v 2:// 2y C,cosh® +C,sinh @
Trey_ 2k2Ix// B Jaclsinhd)+czcosh<l>
Vi§)=-1x A2 (ZdW+B){d+2y/+ 2y Cqcosh® +C,sinh®
B 4/Q Cisinh®d+Cycoshd | 2k2I
Y o Z{M 2 g;Cizg]shQiCzZ?;hd)} 2 2y BNy +Bd-E) (3115

-1 -2
. 2 -
WJd s B +\/Q Clslnhd)+Czc?shd> 2k I(dzz//+Bd—E)2 d+ B +\/Q Clslnh®+C2cgshd>
2y 2y Cycosh®+C,sinh® A2 2y 2y Cycosh®+C,sinh®

Jag

Aa

where @ =

Since C, and C, are arbitrary constants, ifC, #0 and C, =0, then Egs. (3.1.14), (3.1.15) become

1 k3/2 \/Eé;a
UNE) =+——{k2dy + B) F AwVkY}F 2dy + B ++/Qtanh
1 (€)=t {k’ (2dy + B) Vk} A{ y+B+/Q T

4 (3.1.16)
3 4'/’k3/2 \/550‘
FZ (d% +Bd —E)2dy + B ++/Qtanh
A 2Ac
V() = -1+ (2d«//+B){2dl//+B+\/_tanh\/_§} 2kAI {2dw+8+\/_tanh*/_5 }
4Wk| {Zdy/+B+\/_tanh\/_§ } (3.1.17)
—%(cj +Bd —E) {2dy/+3+\/_tanh‘/—5}

where & =K"“x+ 1"y +wt,

When B0, w =A-C and Q=B*+4Ey <0,
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1 k3/2 —C,sin® +C, cosd
U2 (&) = +—~{k*(2dy + B) F Awk}F 2dy +B++/-Q —2 2
()= e @y + B) T Awk}F { v Clcos<I>+Czsind>}
|, (3.1.18)

Ak —~C,sin®+C, cos®
F———(d°w+Bd-E){2dy +B+4-Q—2 2
A (@ v C,cos®+C,sind

2 : 2 : 2
2 k<l —Cysin®+C, cosd kel —Cysin®+C, cosd
V. =-1+—(dy +B}2dy +B+4/-Q ———2dy +B+4-Q
1) A2 (2dv ){ v Cicos®@+Cysin® | A2 v C1cos® +Cysin®

2 _ . -1
2K oy 4 B) (A2 + Bd—E)l 2dy + B + J— — SN+ CpCOSP (3.1.19)
A2 Cicos® +Cysind

-2
8k2ly? 5 2 —Cysin® +C, cosd
-———([d°y+Bd-E)*<2dy +B+4-Q
A2 @y ) v C1cos® +Cysind

J-ag

2Ac

where @ =

In particular, if C, #0 and C, =0, then Eqgs. (3.1.18), (3.1.19) are simplified as

k3/2

(2dy + B—+/—Qtan @)
A (3.1.20)

41//k3/2
iT(dzy/+ Bd —E)(2dy + B—+/-Qtan®)™

U () =iﬁ{k3(2dyx +B)F Awk}F

2 k2l k2l 2 A2y
V,2(&) =1+ (2dy + B)(2dy + B—y-Qtan®) - — (2dy + B—/-Q tan®)? + = (2dy + B)
A2 2A2 A2 (3 1 21)
2y 2 o
(o|21,/+Bo|—E)(zo|z,//+B—\/Etancp)*l—%(dzwBo|—E)2(20|l,/+B—\lztamb)*2
where (I):—‘;Qég and &=k x+ 1"y +wH'“t.
(04
When B#0, y =A-C and Q=B°+4Ey =0,
u3((§)—+i{k3(2d +B)$AW\/E}$i 2dy +B+—Y2Cs
Ve v AT TP T carc,e
) . (3.1.22)
WX 4%+ Bd—E)l2dy + B+ —2¥2C2
A C,a +C &
k2| 2paC k2| 2paC, |
V(&) =—-1+—(2dy +B){2dy + B + 2_\{_ 2dy + B+ —L2=2
1) a7 2y ){ v C1a+C2§“} 2A2{ VT CasC,e
4Ky ) 2paC, |
+ 2dy +B)(d°w +Bd -E){2dy + B+ —— =2 3.1.23
a2 (2dy+B)(dy ){ v CatCe" ( )
8y 2k

-2
(d% + Bd —E)Z{Zdw+B+M}

A? C,a+C,&”
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If C,=0 and C, =0, then

k3/2
INGE 2{k (2dy + B)+AW\/_}+—(2d1//+B+2gya/§ )
(3.1.24)
_ 4wk3/2 ) .
+T(d w+Bd-E)2dy + B+ 2pa /&)
3 k2 k2 a\2
\A (§)-—1+—(2d1//+ B)(2dy + B + 2y / £* )— 2(2d1,//+B+21//05/§ )
4k Il// 2 a\-1
+———(2dy +B)(d“y + Bd —E)(2dy + B + 2y / £*) (3.1.25)
2
A '(ol2 +Bd — E)2(2dy + B + 2pa | £7) 2
where &=k x+ 1"y +w"“t.
When B=0, w =A-C and A=yE >0,
1 2 C,sinhL+C, coshL
U, (&) =+ {2dyk® F Awk}F k32 d
HE) = e AVCF W\/_}JFA { \/_C cosh L +C,sinh L}
312 (3.1.26)
_ 2yK 2 C,sinhL+C, coshL
-E
i A @y ){ \/_C coshL+C smhL}
by g Adyk®l CysinhL+CycoshL| 2 CysinhL+C,coshL
Vi€ =1+ A? {dW+JZClcoshL+CzsinhL} A2k { \/_ClcoshL+C23|nhL}
4dk?ly? 5 CysinhL+C,coshL
TR « W_E){dl// \/_ClcoshL+C23|nhL (3.1.27)
A S P, C,sinh L +C,coshL
A2 @ E){ \/_ClcoshL+C25|nhL}
Consider the arbitrary constants as C, = 0 and C, =0, then
Ut (&) =+ k3,2{2dx//k3$Aw\/_}+ k*'2(dy ++/Atanh L)
2 (3.1.28)
¢T(d2w—E)(dy/+JXtanh L)*
2 21,2
V(&) = -1+ 4d'”2k I(dz//+\/Ztanh L)—izkﬂ(dw\/Ktanh L)2+40"”2k |
A (3.1.29)

21//k|

(d% —E)(dy +JAtanh L) ===~ (d% —E)?(dy + VA tanh L) 2
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JAge

Aa
When B=0, w =A-C and A=yE <0,

where L = and &=kY“x+ 1"y + wt.

U15(§):iL{2dryk3$ AW\/E}¢%k3/2{dy/+ﬂ_ClsmM +C2COSM}

AKk®'? C,cosM +C,sinM
3/2 ,(3.1.30)
_ 2Ky, —C,;sinM +C,cosM
F dw —E)sdy ++—-A—2 2
A @y ){ v C,cosM +C,sinM
2
5.y _ 4dyk?l ——CisinM +CycosM | 2 — —C;sinM +C,cosM
V(e =-t A? {dl/ﬁL\/—A C,cosM +C,sinM } Azk I{dl//Jr\/_A C,cosM +C,sinM }
4dy k3, ——CysinM +C,cosM -
’ A? (@ E){dW+\/_A C,cosM +C,sinM (3.1.31)
2Kyt o o —-—C;8inM +C;,cosM -
A2 (@ ~E)* 0y +-4 C,cosM +C,sinM
For particular case C, #0 and C, =0,
1 _ _2
U15(§)=iw{2dyxk3+Awﬁ}+xk3’2(dl//—\/—AtanM)
o132 (3.1.32)
iTw(dzyf—E)(dt//—«/—AtanM)*l
2 21,2
vf’(g)=—1+4o"/’2k I(dt//—\/—AtanM)—%kzl(dt//—\/—AtanM)2+4d‘//—2k|
A A A (3.1.33)

2 2
(d% —E)(dy —v—AtanM)* - ZkA'Z‘/’ (d% —E)*(dy —J—AtanM)~?

VoA g

Ao

Following the same procedure as above for Egs. (3.1.10)—(3.1.13) together with Egs. (2.2.7)—(2.2.11),
we might obtain more general closed form traveling wave solutions to the space time fractional (2+1)-
dimensional dispersive long wave equations in terms of hyperbolic function, trigonometric function
and rational function. To avoid the disturbance of readers the results have not been recorded here.

where M = and &=k x+ 1"y +wHet .

3.2. The (3+1)-dimensional space time fractional mKdV-ZK equation
Let us consider the (3+1)-dimensional space time fractional mKdV-ZK equation in the form
D{u + &u*Dyu + Dju + Dy (Dj*u) + Dy (D;*u) =0, (3.2.1)

where O <a <1 and ¢§ is an arbitrary constant. This equation is derived for plasma comprised of
cool and hot electrons and a species of fluid ions [44].
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Using the fractional composite transformation

u(x,y,z,t)=U (&), E=1""x+m"“y+n"“z-"“t, (3.2.2)

where |, m, n and « are non-zero parameters, Eq. (3.2.1) is turned into the ordinary differential
equation

—oDU +51U°D{U + (I° +1m* +In?)Di*U =0. (3.2.3)
The anti-derivative of Eq. (3.2.3) with integral constant zero possesses

- U +%IU3+(I3+Im2+In2)D§“U =0. (3.2.4)

Considering the value of n obtained by homogeneous balance to Eg. (3.2.4), Eq. (2.2.4) takes the
form

U(&) =, +a,(d + DIG/G)+b,(d + D!G/G)™* (3.2.5)

where at least one of a, and b, is non-zero.

Substitute Eqg. (3.2.5) with the help of Eq. (2.2.5) into Eg. (3.2.4), we obtain a polynomial in
(d+D{G/G). Equating each term of this polynomial to zero gives a set of algebraic equations for

a,, &, by, b, and @. Solving these equations by Maple gives the following set of solutions:

2 2 2
Set-1: ao:i_(Zdl/;+ B)\/g(l +_n;5+n ) a1=i£\/—65(lz+m2+n2), b, =0,
112+ m?+n?)(4Eyw +B

- > A)z( y+B) (3.2.6)

_ 2dy +B 117 + m* + n®)(4Ey + B)

Set-2: aozi(z‘/’—&)\/—ea(lhm%nz), w=- oA ,

2 —

a1=0,b1=$(d "’+5id E) J-65(1 +m? +n?) (3.2.7)

Utilizing Egs. (3.2.6), (3.2.7) into Eq. (3.2.5) yields the following general expressions for solutions:

1\/— 65(1 + m? +n?)
2A5

U,(6) = (B-2yD;G/G) (3.28)

J-65(1 +m? +n?)
2A5

U,(&) =+ {2dy +B-2(d* +Bd —E)(d +D{G/G)"},  (3.2.9)

where &

2 2 2 la
SV mt ey 4tz - 1" +m" +n")(4Ey + B) (.
2A?
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Eq. (3.2.8) along with Egs. (2.2.7)—-(2.2.11) provides the following solutions in terms of hyperbolic,

trigonometric and rational:

When B#0, y =A-C and Q=B*+4Ey >0,

Clsinh[\/ﬁéa j +C, cosh(ﬁga ]

. J-65(17+m2+n°) — Aa a
U, (&)== Q — . — .
20 Clcosh( Qo }rczsinh{ Qg ]

2Aa 2Ax

The choices for arbitrary constants as C, =0, C, =0, reduces Eq. (3.2.10) to

Lo A—65(17 +m? +n?) Jago
Ul == s JQ tanh TV

where & =

2 2 2 la
1Yy 4 M y 4t 7 1" +m* +n")(4Ey + B) (.
2A?

When B#0, y =A-C and Q=B°+4Ey <0,

—Clsin(méa ] +C, cos{mgw J

) J-65(1% +m? +n?) — Aa 2Aa
U, (&) == -Q — . — .
20 Clcos{ —Qe J+Czsin[_9§j

Aa Aa

The choices for arbitrary constants as C, =0, C, =0, reduces Eq. (3.2.12) to

2, —A—65(17+m? +n?) J-qe
U&=+ o hs J=Qtan eyvll

where & =

2 2 2 l/a
Il/ax+ml/ay+n1/az_ _I(I +M +N )(4E!//+B) t.
2A?

When B#0, y =A-C and Q=B°+4Ey =0,

U3(5)_+1//aC2\/—65(I2+m2+n2)
PRI AS(Ca +CLEY)

In particular, if C, =0, C, =0, then

3 _L o | 2 2 2
U, (5)_¢A5§a\/ 65(12 +m? +n?)

where & =

2 2 2 la
Il/ax+ml/ay+nl/az_ _I(I +M +N )(4EV/+B) t.
2A?

(3.2.10)

(3.2.11)

(3.2.12)

(3.2.13)

(3.2.14)

(3.2.15)
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When B=0, w =A-C and A=yE >0,

\/ 68507+ 4 1) Clsinh(\/f'fa]+czcosh(\/§§aj
4 - +m®+n a a
U (6)=+ . - (3.2.16)
Ao Clcosh[\/zé j+C smh(\/Xf ]
o (04
For C,#0, C, =0, Eq. (3.2.16) becomes
U14(§)=i\/—6A5(I;; m2+n2) [\/_af"J (32.17)
where & =14 x4 i’ y 4+ 1 2 _{ 4Et//|(| +n° 41 )}
When B=0, w =A-C and A=yE <0,
\/6A§(|2 2 2) -C Sln[ ] +C COS{Mg J
5 +m°+n
U (&) =+ (3.2.18)
Ao C cos(\/_A J+C sm(\/_g J
Aa
If C,=0, C,=0, Eq. (3.2.18) becomes
U, (g)_—\/GM(' A+§m ), (‘/ﬁfa] (3.2.19)

where &

:Il/ax+m1/ay+nl/az_ _4EWI(I +m +n) t
2A?

Making use of Eq. (3.2.9) as above will also provide further new and general exact traveling wave
solutions in terms of hyperbolic, trigonometric and rational. For convenience of readers we have not
record these all solutions in this study. Guner et al. [45] obtained only four solutions by (G'/G) -

expansion method where as our applied fractional generalized (D?G/G) -expansion method has

ensured many solutions which are further new and general. To the best of our knowledge, these
solutions have not been visible in any earlier study.

3.3. The space time fractional modified regularized long-wave equation

The following nonlinear space-time fractional modified regularized long-wave equation is
considered to be examined for further exact traveling wave solutions:

Dfu+5Dfu+7u’Dfu—nDfD*u=0, 0<a <1 (3.3.1)

where &, r and 7 are constants. This equation proposed by Benjamin et al. to describe approximately

the unidirectional propagation of long waves in certain dispersive systems is supposed to be
alternative to the modified KdV equation. Eg. (3.3.1) has been modeled to demonstrate some
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physical phenomena like transverse waves in shallow water and magneto hydrodynamic waves in
plasma and photon packets in nonlinear crystals [46-48].

The fractional complex transformation
u(x,t)=U (&), &=x-v"'"t, (3.3.2)
reduces Eg. (3.3.1) to the ODE
(6 -Vv)D{U + U DU +vyDi*U =0 (33.3)
Integrating Eq. (3.3.3) and setting integral constant to zero gives
(5-v)U +%u * 4 vD*U =0 (3.3.4)

Taking homogeneous balance between highest order linear term and highest nonlinear term from
Eq. (3.3.4) yields n =1 and the solution Eq. (2.2.4) is reduced to

U(&)=a,+a,(d+D:G/G)+b(d + DIG/G)™ (3.3.5)

where at least one of a, and b, is nonzero.

Eqg. (3.3.4) with the help of Eq. (2.2.5) and Eq. (3.3.5) makes a polynomial in (d + D{G/G). Set

each coefficient of this polynomial to zero and obtain a system of equations for a,, a,, b, and v.
Calculating these equations by Maple gives the following solutions:

3ns(2dy +B) 6l noy

Set-1: a, =+ , =+ :
38 (2A2 + 41E y +127B7) J-3tn8(2A2 + A*E y +12B?)
2
b0, v AR (336)
2A° +41°nEw +1°1B
2 J—
Set2: a, =+ 3Ins(2dy + B) b7 6l75(d%y + Bd — E) |
J-3tnS(2A2 + A*E y +12B?) J-3tn8(2A2 + M1%E y + 1B?)
2
a=0,v= 2R (3.3.7)

T 2A% + A%Ey +1%B?
Inserting the values appearing in Eqg. (3.3.6) and Eqg. (3.3.7) into Eq. (3.3.5) possesses the following
expressions for solutions:
3lno
-3 (2A% + 4IPE y +17B?)

U, (&) =+ (B-2y DIG/G) (3.3.8)

(2dy +B)-2(d% + Bd — E)(d + DIG/G)™
J-3t78(2A% + AZnE y +1%B?)

21 5M2 .
2A° + AI°nE w + 1°nB?

U, (&) =+3I58 (3.3.9)

where §:x—[
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Eq. (3.3.8) with the help of Egs. (2.2.7)—(2.2.11) provides the following solutions:
Case 1: When B#0, y =A-C and Q=B*+4Ey >0,

Clsinh[\/zaéa J +C, cosh(\/aewJ

= A A
U/ =7 3;|775 e = /—aa (3:3.10)
V=3mnS QA" + 4 nEy +17B%) [ (VR (Ve
1 Ao 2 2Aa

Since C, and C, are arbitrary constants, one may chooseC, =0, C, =0 and under simplification

Eq. (3.3.10) becomes

ule) =7 31poVQ x tanh V¢ (3.3.11)
J-3S(2A% + 4I%E y +1%7B?) 2Ac
la
21 A
where §=X—| —; 25 —5 | t
2A° +4lI°nEy + 1B
Case 2: When B#0, y =A-C and Q=B*+4Ey <0,
_Clsin 7'_£2§ +CZCOS 7'_£)§
2o 3AnsV-Q 2Aa 2Aa
. (é):+\/ 3075 (2A7 + APnEy + I'nB?) J-a¢g o O
—3tno2A" +AlmEy + 17B7) C,cos| ~— ° +C,sin| ~——"=— 3
2Ax Aa
In particular, if we choose C, =0, C, =0, then under simplification Eq. (3.3.12) reduces to
U2(E) =+ SlnoN-Q «tan| Y=£2¢ (33.13)
\/—32'775(2A2 +41°nE y +1°1B?) 2Aa
2 la
where §=X—| ——; §I5A |
2A° +4I"nEw +1°nB
Case 3: When B#0, w =A-C and Q=B*+4Ey =0,
INGEE: 3lno «WaC; (3.3.14)
\/— 3rnS(2A + AP nEy +1’yB?) Cia +C,¢
If C,=0, C, #0, Eq. (3.3.14) is simplified to
U () =7 byalno (3.3.15)

£\~ 3tnd (2 A2 + APRE v +1%B?)
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21 A2 e
2A% + AI°nE w + 1°nB?

where é‘:x—(

Case 4: When B=0, w =A-C and A=yE >0,

. Clsinh(\/ff’g ]+Czcosh[\/§§j
(94 (04
U&=+ 0 7752 = _ x NN T (3.3.16)
\/_3”75(2'6‘ +almEy) C, cosh ALL +C,sinh A¢
Aa Aa
For particular values of the arbitrary constants as C, =0, C, =0, Eq. (3.3.16) possesses
U E) =7 6l70VA ctanh| YAE” (3.3.17)
V-3 (2A% + A1E y) Aa
2 1«
where & =X - # t.
2A° + Al nEy
Case 5: When B=0, w =A-C and A=yE <0,
C,sin —A¢ +C,Cos V=46
5 6lnov—A Aa Aa
Vi (5):1\/ 3en6(2A + AEy) J-AEe J-age (3319
—3mS A"+ ARy Clcos[_fj+czsin(_§]
Aa Aa
The choice of the arbitrary constants as C, =0, C, =0 forces Eg. (3.3.18) to turn into
US(E) =+ blnov—A « tan| YA€ (3.3.19)
J-38(2A% + 41%E i +1%B?) Aa
2 la
where§=x—(22|#A2J t.
2A° +4lInEy

The obtained solutions in terms of hyperbolic function, trigonometric function and rational function
are new and more general. In similar way, much more new and general solutions of the closed form
can be constructed by using Eg. (3.3.9) along with Egs. (2.2.7)—(2.2.11). The solutions obtained by
modified simple equation method [49] and the improved fractional Riccati expansion method [50]
are only in terms of hyperbolic, where as we achieved those in terms of hyperbolic function,
trigonometric function and rational function in explicitly general form. We have not recorded these
results to avoid the annoyance of the readers. On comparison, our solutions are general and much
more in number than those of [49,50].
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4. Graphical representations of the solutions

The complex physical mechanism of real world can be illustrated by means of graphical
representations. The graphs (Figures 1-3) drown for the exact solutions obtained in this study has
been appeared in different shape like kink type soliton, bell shape soliton, singular bell shape soliton,

anti bell shape soliton, periodic solution, singular periodic solution etc. We have recorded here only
few graphs rather than all for making it easily readable.

Sketch of the kink solution U shown in (3.1.16) Sketch of the singular bell shape soliton U2
for a=np=1=C=k=w=d=1,y=0,r=-1, shown in equation (3.1.20) for B=C=2, y=0,
E=6=3,A=B=2 within -10<x,t<0. a=n=l=A=k=w=d=1, E=6=3, r=-1

within =10<x,t<0.

Sketch of the traveling wave solutionU; shown Sketch of the Bell shape solution V,* shown in
in (3130) for B=C=E=2 , 7r=-1, (3.1.17) for a=p=1=C=k=w=d=1, y=0,

a=n=l=A=k=w=d=1, =3, y=0 ___ 1 = E_-s5=3 , A=B=2 within
within —10<x,t<0. -10<x,t<0.

Figure 1. The above are graphs for the solutions to the space time fractional (2+1)-
dimensional dispersive long wave equations.
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The kink type solution (3.2.11) for y=z=0, The periodic solution (3.2.19) for x=t=0 ,
a=l=m=n=B=C=E=1, §=-1, A=3 a=l=m=n=A=E=1, 6§=-1, C=2 within
within —10<x,t<0. -10<x,t<0.

Figure 2. The above are the graphs for the solutions to the (3+1)-dimensional space time
fractional mKdV-ZK equation.

The kink type solution (3.3.11) for §=E =3, The singular periodic solution (3.3.19) for 6 =3,
a=l=n=C=1, r=-1, A=B=2 within a=l=g=r=A=E=1 , C=2 within
-10<x,t<0. -10<x,t<0.

Figure 3. The above are the graphs for the solutions to the space time fractional modified
regularized long-wave equation.

5. Conclusion

This article has been put in writing further new and general traveling wave solutions in closed
form to the space time fractional (2+1)-dimensional dispersive long wave equations, the (3+1)-
dimensional space time fractional mKdV-ZK equation and the space time fractional modified
regularized long-wave equation. The solutions have successfully constructed in terms of
hyperbolic function, trigonometric function and rational function by the newly established
fractional generalized (DG /G) -expansion method. To the best of our knowledge, these results are

not available in the literature. The obtained solutions might play important roles to analyze the
mechanisms of complex physical phenomena of the real world. The performance of the suggested
method is highly appreciable for its easiest productive behavior and worthy for revealing rare
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solutions to more fractional order nonlinear evolution equations. Since each nonlinear equation has
its own anomalous characteristic, the future research might be how the suggested method is
compatible for revealing the solutions to other fractional nonlinear evolution equations.
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