Citation: Naila Mehreen, Rashid Farooq, Shehnaz Akhter. On partition dimension of fullerene graphs[J]. AIMS Mathematics, 2018, 3(3): 343-352. doi: 10.3934/Math.2018.3.343
[1] | Ali N. A. Koam, Adnan Khalil, Ali Ahmad, Muhammad Azeem . Cardinality bounds on subsets in the partition resolving set for complex convex polytope-like graph. AIMS Mathematics, 2024, 9(4): 10078-10094. doi: 10.3934/math.2024493 |
[2] | Adnan Khali, Sh. K Said Husain, Muhammad Faisal Nadeem . On bounded partition dimension of different families of convex polytopes with pendant edges. AIMS Mathematics, 2022, 7(3): 4405-4415. doi: 10.3934/math.2022245 |
[3] | Dalal Awadh Alrowaili, Uzma Ahmad, Saira Hameeed, Muhammad Javaid . Graphs with mixed metric dimension three and related algorithms. AIMS Mathematics, 2023, 8(7): 16708-16723. doi: 10.3934/math.2023854 |
[4] | Samer Nofal . On finding a satisfactory partition in an undirected graph: algorithm design and results. AIMS Mathematics, 2024, 9(10): 27308-27329. doi: 10.3934/math.20241327 |
[5] | Li Liu, Long Zhang, Huaxiang Zhang, Shuang Gao, Dongmei Liu, Tianshi Wang . A data partition strategy for dimension reduction. AIMS Mathematics, 2020, 5(5): 4702-4721. doi: 10.3934/math.2020301 |
[6] | Jesús Gómez-Gardeñes, Ernesto Estrada . Network bipartitioning in the anti-communicability Euclidean space. AIMS Mathematics, 2021, 6(2): 1153-1174. doi: 10.3934/math.2021070 |
[7] | Pradeep Singh, Sahil Sharma, Sunny Kumar Sharma, Vijay Kumar Bhat . Metric dimension and edge metric dimension of windmill graphs. AIMS Mathematics, 2021, 6(9): 9138-9153. doi: 10.3934/math.2021531 |
[8] | Meiqin Wei, Jun Yue, Xiaoyu zhu . On the edge metric dimension of graphs. AIMS Mathematics, 2020, 5(5): 4459-4465. doi: 10.3934/math.2020286 |
[9] | M. Haris Mateen, Muhammad Khalid Mahmmod, Doha A. Kattan, Shahbaz Ali . A novel approach to find partitions of Zm with equal sum subsets via complete graphs. AIMS Mathematics, 2021, 6(9): 9998-10024. doi: 10.3934/math.2021581 |
[10] | Imran Javaid, Shahroz Ali, Shahid Ur Rehman, Aqsa Shah . Rough sets in graphs using similarity relations. AIMS Mathematics, 2022, 7(4): 5790-5807. doi: 10.3934/math.2022320 |
Slater [13] and Harary et al. [6] introduced the notions of resolvability and locating number in graphs. Chartrand et al. [4] introduced the partition dimension of a graph. These concepts have some applications in Chemistry for representing chemical compounds [2] or to problems of pattern recognition and image processing, some of which involve the use of hierarchical data structures [10].
Kroto et al. [9] discovered fullerene molecule and since then, scientists took a great interest in the fullerene graphs. A
Chartrand et al. [3] gave useful definitions and results related to the partition dimension of a connected graph. Let
Many authors determined the partition dimension of specific classes of graphs. Rodríguez-Velázquez et al. [14,15] find the bounds on the partition dimension of trees and unicyclic graphs. Tomescu et al. [16] calculated the partition dimension of a wheel graph and Tomescu [17] discussed the metric and partition dimension of a connected graph. Grigorious et al. [5] and Javaid et al. [7] calculated the partition dimension of some classes of circulant graphs.
The following result is a useful property in determining partition dimension.
Lemma 1.1. [3] Let
The partition dimension of some families of graphs is given in next lemma.
Lemma 1.2. [3] Let
1.
2.
3.
Above results are useful in computing the partition dimension of connected graphs. Ashrafi et al. [1] studied the topological indices of
In this section, we consider two
Theorem 2.1. The partition dimension of fullerene graph
Proof. Let
r(x2n∣Π)=(0,1,1),r(x2n+1∣Π)=(0,2,1),r(y2n∣Π)=(1,0,1). |
r(xi∣Π)={(2n−i,2n−i+1,0)if 1≤i≤2n−1,(i−2n−1,i−2n+1,0)if 2n+2≤i≤4n. |
and
r(yi∣Π)={(2n−i+1,2n−i,0)if 1≤i≤2n−1,(i−2n,i−2n,0)if 2n+1≤i≤4n. |
Therefore, it is easily seen that the representation of each vertex with respect to
On the other hand, by Lemma 1.2, it follows that
In next theorem, we calculate the partition dimension of
Theorem 2.2. The partition dimension of fullerene graph
Proof. Let
r(x2n+1∣Π)=(0,1,1),r(x2n+2∣Π)=(0,2,1),r(y2n+1∣Π)=(1,0,1). |
r(xi∣Π)={(2n+1−i,2n+2−i,0)if 1≤i≤2n,(i−2n−2,i−2n,0)if 2n+3≤i≤4n+2. |
and
r(yi∣Π)={(2n+2−i,2n+1−i,0)if 1≤i≤2n,(i−2n−1,i−2n−1,0)if 2n+2≤i≤4n+2. |
All pairs of vertices can easily be resolved by the partitioning set
On the other hand, by Lemma 1.2, it follows that
In this section, we consider two
Firstly we consider the fullerene graph
X1={xi∣1≤i≤2n−6},X2={xi∣2n−4≤i≤4n−11},Y1={yi∣1≤i≤2n−6},Y2={yi∣2n−4≤i≤4n−11},Z1={z1,z2,z3},Z2={z4,z5,z6},A={ai∣1≤i≤6},B1={bi∣1≤i≤2n−6},B2={bi∣2n−4≤i≤4n−11},C1={ci∣1≤i≤2n−6},C2={ci∣2n−4≤i≤4n−11}. | (3.1) |
The relations of distances of vertices of
d(a4,x)=d(y1,x), for all x∈X1, | (3.2) |
d(a5,x)=d(y4n−11,x), for all x∈X2, | (3.3) |
d(a2,y)=d(x1,y), for all y∈Y1, | (3.4) |
d(a1,y)=d(x4n−11,y), for all y∈Y2, | (3.5) |
d(z2,z)=d(z3,z), for all z∈Z2, | (3.6) |
d(z5,z)=d(z6,z), for all z∈Z1, | (3.7) |
d(z4,x)=d(z6,x), for all x∈X2∪{x2n−5}, | (3.8) |
d(z4,y)=d(z5,y), for all y∈Y2∪{y2n−5}, | (3.9) |
d(z1,x)=d(z3,x), for all x∈X1∪{x2n−5,x2n−4}, | (3.10) |
d(z1,y)=d(z2,y), for all y∈Y1∪{y2n−5,y2n−4}, | (3.11) |
d(a1,x)=d(x4n−11,x), for all x∈X1∖{x1}, | (3.12) |
d(a5,y)=d(y4n−11,y), for all y∈Y1∖{y1}, | (3.13) |
d(a2,x)=d(x1,x), for all x∈X2∖{x2n−4,x4n−11}, | (3.14) |
d(a4,y)=d(y1,y), for all y∈Y2∖{y2n−4,y4n−11}, | (3.15) |
d(a6,b)=d(a5,b), for all b∈B1∪B2∪{b2n−5}∖{b1}, | (3.16) |
d(a6,c)=d(a1,c), for all c∈C1∪C2∪{c2n−5}∖{c1}, | (3.17) |
d(a1,b)=d(x2,b), for all b∈{b1,b2,b4n−12,b4n−11}, | (3.18) |
d(a5,c)=d(y2,c), for all b∈{c1,c2,c4n−12,c4n−11}. | (3.19) |
The relations of distances of vertices of
d(z1,c)=d(z2,c), d(z1,c)=d(a5,c),d(z2,c)=d(a5,c) for all c∈C1∪{c2n−5}, | (3.20) |
d(z4,c)=d(z5,c), d(z4,c)=d(a4,c),d(z5,c)=d(a4,c) for all c∈C2∪{c2n−5}, | (3.21) |
d(z1,b)=d(z3,b), d(z1,b)=d(a1,b),d(z3,b)=d(a1,b) for all b∈B1∪{b2n−5}, | (3.22) |
d(z4,b)=d(z6,b), d(z4,b)=d(a2,b),d(z6,b)=d(a2,b) for all b∈B2∪{b2n−5}. | (3.23) |
The relations of distances of the pair of vertices of
d(a1,z)=d(a5,z),d(a2,z)=d(a4,z), for all z∈Z1∪Z2, | (3.24) |
d(z2,a)=d(z3,a),d(z5,a)=d(z6,a), for all a∈A, | (3.25) |
d(z1,x)=d(a5,x),d(z4,x)=d(a4,x), for all x∈X1∪X2∪{x2n−5}, | (3.26) |
d(z1,y)=d(a1,y),d(z4,y)=d(a2,y), for all y∈Y1∪Y2∪{y2n−5}. | (3.27) |
The distance between the vertices
d(bi,ci)={1for i is even ,3for i is odd . | (3.28) |
The distance between the vertices
d(xi,bi)={1fori is even ,3for i is odd . | (3.29) |
The distance between the vertices
d(yi,ci)={1for i is even ,3for i is odd . | (3.30) |
Lemma 3.1. Let
Proof. Let
r(a1∣Π)=(2,3,4,0),r(a2∣Π)=(3,4,3,0),r(a3∣Π)=(2,5,2,0),r(a4∣Π)=(1,4,3,0),r(a6∣Π)=(1,2,5,0). |
The representation of vertices of
r(z1∣Π)=(2,1,6,0),r(z3∣Π)=(3,1,7,0),r(z4∣Π)=(3,6,1,0),r(z6∣Π)=(4,7,1,0). |
The representation of vertices of
r(xi∣Π)={(3,2,5,0)if i=1,(i+2,i+1,i+2,0)if 2≤i≤2n−6,(2n−3,2n−4,2n−4,0)if i=2n−5,(4n−i−7,4n−i−8,4n−i−9,0)if 2n−4≤i≤4n−12,(4,5,2,0)if i=4n−11. |
The representation of vertices of
r(bi∣Π)={(4,i,i+5,0)if i∈{1,2},(i+2,i,4n−i−10,0)if 3≤i≤2n−5,(2n−3,2n−4,2n−6,0)if i=2n−4,(4n−i−7,4n−i−7,4n−i−10,0)if 2n−3≤i≤4n−13,(5,4n−i−5,4n−i−10,0)if i∈{4n−12,4n−11}. |
r(ci∣Π)={(i+1,i+1,i+5,0)if i∈{1,2},(i+1,i+1,4n−i−9,0)if 3≤i≤2n−5,(2n−4,2n−3,2n−5,0)if i=2n−4,(4n−i−8,4n−i−6,4n−i−9,0)if 2n−3≤i≤4n−13,(4n−i−8,4n−i−5,4n−i−9,0)if i∈{4n−12,4n−11}. |
The representation of vertices of
r(yi∣Π)={(1,3,5,0)if i=1,(i,i+2,i+3,0)if 2≤i≤2n−6,(2n−5,2n−3,2n−3,0)if i=2n−5,(4n−i−9,4n−i−7,4n−i−8,0)if 2n−4≤i≤4n−12,(2,5,3,0)if i=4n−11. |
It is easily seen that the representation of each vertex with respect to
Suppose that there exists a partition
Case Ⅰ: If two partitioning sets of
Case Ⅱ: If two partitioning sets of
Case Ⅲ: If two partitioning sets of
Case Ⅳ: If two partitioning sets of
Case Ⅴ: If two partitioning sets of
Case Ⅵ: If two partitioning sets of
Case Ⅶ: If two partitioning sets of
Case Ⅷ: If two partitioning sets of
Case Ⅸ: If two partitioning sets of
Case Ⅹ: If two partitioning sets of
Case Ⅺ: Also If two partite sets of
Case Ⅻ: If two partitioning sets of
Case ⅩⅢ: If two partitioning sets of
Note that there are total
Conjecture 3.1. The partition dimension of
Next, we give the conjecture on the partition dimension of fullerene graph
A={a1,a2,a3,a4,a5,a6,a7,a8},X={xi∣1≤i≤6n−1},B={bi∣1≤i≤6n−1},Y={yi∣1≤i≤6n−3},Z={zi∣1≤i≤6n−3}. | (3.31) |
The relations of distances of the vertices of
d(x1,a)=d(b1,a),for all a∈A∖{a7,a8}, | (3.32) |
d(x6n−1,a)=d(b6n−1,a),for all a∈A∖{a3,a4}, | (3.33) |
d(a2,x)=d(a4,x),for all x∈X∖{x1}, | (3.34) |
d(a4,y)=d(b2,y),for all y∈Y∖{y1}, | (3.35) |
d(a3,z)=d(x2,z),for all z∈Z∖{z1}, | (3.36) |
d(a2,b)=d(a3,b),for all b∈B∖{b1}, | (3.37) |
d(a1,x)=d(b1,x),for all x∈X, | (3.38) |
d(a1,b)=d(x1,b),for all b∈B, | (3.39) |
d(a7,z)=d(x6n−2,z),for all z∈Z∖{z6n−3}, | (3.40) |
d(a8,y)=d(b6n−2,y),for all y∈Y∖{y6n−3}. | (3.41) |
The relations of distances of the vertices of
d(a1,z)=d(x1,z),d(a4,z)=d(b2,z),d(a8,z)=d(b6n−2,z),d(a2,z)=d(a3,z). | (3.42) |
The relations of distances of the vertices of
d(a1,y)=d(b1,y),d(a3,y)=d(x2,y),d(a7,y)=d(x6n−2,y),d(a2,y)=d(a4,y). | (3.43) |
Lemma 3.2. Let
Proof. Let
r(a1∣Π)=(2,6n,6n,0),r(a2∣Π)=(1,6n−1,6n−1,0),r(a4∣Π)=(1,6n−1,6n−2,0),r(a5∣Π)=(6n,2,2,0),r(a6∣Π)=(6n−1,1,1,0). |
The representation of each vertex of
r(xi∣Π)={(3,6n−1,6n,0)if i=1,(i,6n−i,6n+1−i,0)if 2≤i≤6n−2,(6n−1,3,3,0)if i=6n−1. |
The representation of each vertex
r(bi∣Π)={(3,6n,6n−1,0)if i=1,(i−1,6n+1−i,6n−i,0)if 2≤i≤6n−2,(6n,3,3,0)if i=6n−1. |
The representation of each vertex of
r(yi∣Π)=(i,6n−2−i,6n−1−i,0)if 1≤i≤6n−3,r(zi∣Π)=(i+1,6n−1−i,6n−2−i,0)if 1≤i≤6n−3. |
From above representations of vertices with respect to
Suppose that there exists partition
Case Ⅰ: If two partitioning sets of
Case Ⅱ: If two partitioning sets of
Case Ⅲ: If two partitioning sets of
Case Ⅳ: Similarly, from equations (3.38) and (3.43) we observe that if two partitioning sets of
Case Ⅴ: If two partitioning sets of
Case Ⅵ: We notice that if two partitioning sets of
Note that there are total
Conjecture 3.2. The partition dimension of
This research is supported by the Higher Education Commission of Pakistan under grant No. 20-3067/NRPU /R & D/HEC/12.
All authors declare no conflicts of interest in this paper.
[1] | A. R. Ashrafi, Z. Mehranian, Topological study of (3; 6)- and (4; 6)-fullerenes, In: topological modelling of nanostructures and extended systems, Springer Netherlands, (2013), 487–510. |
[2] | G. Chartrand, L. Eroh, M. A. Johnson, et al. Resolvability in graphs and the metric dimension of a graph, Disc. Appl. Math., 105 (2000), 99–113. |
[3] | G. Chartrand, E. Salehi, P. Zhang, The partition dimension of a graph, Aequationes Math., 59 (2000), 45–54. |
[4] | G. Chartrand, E. Salehi, P. Zhang, On the partition dimension of a graph, Congr. Numer., 131 (1998), 55–66. |
[5] | C. Grigorious, S. Stephen, B. Rajan, et al. On the partition dimension of circulant graphs, The Computer Journal, 60 (2016), 180–184. |
[6] | F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Combin., 2 (1976), 191–195. |
[7] | I. Javaid, N. K. Raja, M. Salman, et al. The partition dimension of circulant graphs, World Applied Sciences Journal, 18 (2012), 1705–1717. |
[8] | F. Koorepazan-Moftakhar, A. R. Ashrafi, Z. Mehranian, Automorphism group and fixing number of (3; 6) and (4; 6)-fullerene graphs, Electron. Notes Discrete Math., 45 (2014), 113–120. |
[9] | H. W. Kroto, J. R. Heath, S. C. O'Brien, et al. C60: buckminsterfullerene, Nature, 318 (1985), 162–163. |
[10] | R. A. Melter, I. Tomescu, Metric bases in digital geometry, Computer vision, graphics, and image Processing, 25 (1984), 113–121. |
[11] | H. M. A. Siddiqui, M. Imran, Computation of metric dimension and partition dimension of Nanotubes, J. Comput. Theor. Nanosci., 12 (2015), 199–203. |
[12] | H. M. A. Siddiqui, M. Imran, Computing metric and partition dimension of 2-Dimensional lattices of certain Nanotubes, J. Comput. Theor. Nanosci., 11 (2014), 2419–2423. |
[13] | P. J. Slater, of trees, Congress. Numer., 14 (1975), 549–559. |
[14] | J. A. Rodríguez-Velázquez, I. G. Yero, M. Lemanska, On the partition dimension of trees, Disc. Appl. Math., 166 (2014), 204–209. |
[15] | J. A. Rodríguez-Velázquez, I. G. Yero, H. Fernau, On the partition dimension of unicyclic graphs, Bull. Math. Soc. Sci. Math. Roumanie, 57 (2014), 381–391. |
[16] | I. Tomescu, I. J. Slamin, On the partition dimension and connected partition dimension of wheels, Ars Combin., 84 (2007), 311–317. |
[17] | I. Tomescu, Discrepancies between metric dimension and partition dimension of a connected graph, Disc. Math., 308 (2008), 5026–5031. |
1. | Y S Putri, L Yulianti, , On the locating chromatic number of some Buckminsterfullerene-type graphs, 2021, 1836, 1742-6588, 012005, 10.1088/1742-6596/1836/1/012005 | |
2. | Asim Nadeem, Agha Kashif, Sohail Zafar, Zohaib Zahid, On 2-partition dimension of the circulant graphs, 2021, 10641246, 1, 10.3233/JIFS-201982 | |
3. | Yu-Ming Chu, Muhammad Faisal Nadeem, Muhammad Azeem, Muhammad Kamran Siddiqui, On Sharp Bounds on Partition Dimension of Convex Polytopes, 2020, 8, 2169-3536, 224781, 10.1109/ACCESS.2020.3044498 | |
4. | Kamran Azhar, Sohail Zafar, Agha Kashif, Zohaib Zahid, On fault-tolerant partition dimension of graphs, 2021, 40, 10641246, 1129, 10.3233/JIFS-201390 | |
5. | Changcheng Wei, Muhammad Faisal Nadeem, Hafiz Muhammad Afzal Siddiqui, Muhammad Azeem, Jia-Bao Liu, Adnan Khalil, Isabella Torcicollo, On Partition Dimension of Some Cycle-Related Graphs, 2021, 2021, 1563-5147, 1, 10.1155/2021/4046909 | |
6. | Muhammad Azeem, Muhammad Faisal Nadeem, Metric-based resolvability of polycyclic aromatic hydrocarbons, 2021, 136, 2190-5444, 10.1140/epjp/s13360-021-01399-8 | |
7. | Asim Nadeem, Agha Kashif, Sohail Zafar, Amer Aljaedi, Oluwatobi Akanbi, Fault Tolerant Addressing Scheme for Oxide Interconnection Networks, 2022, 14, 2073-8994, 1740, 10.3390/sym14081740 | |
8. | Ali Ahmad, Ali N.A. Koam, M.H.F. Siddiqui, Muhammad Azeem, Resolvability of the starphene structure and applications in electronics, 2022, 13, 20904479, 101587, 10.1016/j.asej.2021.09.014 | |
9. | Sidra Bukhari, Muhammad Kamran Jamil, Muhammad Azeem, Senesie Swaray, Patched Network and Its Vertex-Edge Metric-Based Dimension, 2023, 11, 2169-3536, 4478, 10.1109/ACCESS.2023.3235398 | |
10. | Maryam Salem Alatawi, Ali Ahmad, Ali N. A. Koam, Sadia Husain, Muhammad Azeem, Computing vertex resolvability of benzenoid tripod structure, 2022, 7, 2473-6988, 6971, 10.3934/math.2022387 | |
11. | Muhammad Azeem, Muhammad Faisal Nadeem, Adnan Khalil, Ali Ahmad, On the bounded partition dimension of some classes of convex polytopes, 2022, 25, 0972-0529, 2535, 10.1080/09720529.2021.1880692 | |
12. | Kamran Azhar, Sohail Zafar, Agha Kashif, Michael Onyango Ojiema, Gohar Ali, Fault-Tolerant Partition Resolvability of Cyclic Networks, 2021, 2021, 2314-4785, 1, 10.1155/2021/7237168 | |
13. | Ali Al Khabyah, Muhammad Kamran Jamil, Ali N. A. Koam, Aisha Javed, Muhammad Azeem, Partition dimension of COVID antiviral drug structures, 2022, 19, 1551-0018, 10078, 10.3934/mbe.2022471 | |
14. | Chinu Singla, Fahd N. Al-Wesabi, Yash Singh Pathania, Badria Sulaiman Alfurhood, Anwer Mustafa Hilal, Mohammed Rizwanullah, Manar Ahmed Hamza, Mohammad Mahzari, Metric-Based Resolvability of Quartz Structure, 2022, 71, 1546-2226, 2053, 10.32604/cmc.2022.022064 | |
15. | Asim Nadeem, Agha Kashif, Sohail Zafar, Zohaib Zahid, 2 − Partition Resolvability of Induced Subgraphs of Certain Hydrocarbon Nanotubes, 2022, 1040-6638, 1, 10.1080/10406638.2022.2088577 | |
16. | Ali N. A. Koam, Ali Ahmad, Mohammed Eltahir Abdelhag, Muhammad Azeem, Metric and Fault-Tolerant Metric Dimension of Hollow Coronoid, 2021, 9, 2169-3536, 81527, 10.1109/ACCESS.2021.3085584 | |
17. | Ali N.A. Koam, Ali Ahmad, Muhammad Azeem, Muhammad Faisal Nadeem, Bounds on the partition dimension of one pentagonal carbon nanocone structure, 2022, 15, 18785352, 103923, 10.1016/j.arabjc.2022.103923 | |
18. | Muhammad Azeem, Muhammad Imran, Muhammad Faisal Nadeem, Sharp bounds on partition dimension of hexagonal Möbius ladder, 2022, 34, 10183647, 101779, 10.1016/j.jksus.2021.101779 | |
19. | Adnan Khali, Sh. K Said Husain, Muhammad Faisal Nadeem, On bounded partition dimension of different families of convex polytopes with pendant edges, 2022, 7, 2473-6988, 4405, 10.3934/math.2022245 | |
20. | Kamran Azhar, Sohail Zafar, Agha Kashif, Zohaib Zahid, Fault-Tolerant Partition Resolvability in Chemical Graphs, 2022, 1040-6638, 1, 10.1080/10406638.2022.2156559 | |
21. | Ali N. A. Koam, Ali Ahmad, Maryam Salem Alatawi, Muhammad Faisal Nadeem, Muhammad Azeem, Computation of Metric-Based Resolvability of Quartz Without Pendant Nodes, 2021, 9, 2169-3536, 151834, 10.1109/ACCESS.2021.3126455 | |
22. | Ayesha Shabbir, Muhammad Azeem, On the Partition Dimension of Tri-Hexagonal α-Boron Nanotube, 2021, 9, 2169-3536, 55644, 10.1109/ACCESS.2021.3071716 | |
23. | Jia-Bao Liu, Muhammad Faisal Nadeem, Mohammad Azeem, Bounds on the Partition Dimension of Convex Polytopes, 2022, 25, 13862073, 547, 10.2174/1386207323666201204144422 | |
24. | Hassan Raza, Jia-Bao Liu, Muhammad Azeem, Muhammad Faisal Nadeem, Francesco lo iudice, Partition Dimension of Generalized Petersen Graph, 2021, 2021, 1099-0526, 1, 10.1155/2021/5592476 | |
25. | Ali N. A. Koam, Sikander Ali, Ali Ahmad, Muhammad Azeem, Muhammad Kamran Jamil, Resolving set and exchange property in nanotube, 2023, 8, 2473-6988, 20305, 10.3934/math.20231035 | |
26. | Asim Nadeem, Agha Kashif, Sohail Zafar, Zohaib Zahid, On 2-partition dimension of rotationally-symmetric graphs, 2023, 15, 1793-8309, 10.1142/S1793830922501531 | |
27. | Muhammad Tanzeel Ali Kanwal, Muhammad Azeem, Muhammad Kamran Jamil, Note on the finite vertex-based partitioning of supramolecular chain in Dialkyltin, 2023, 0026-8976, 10.1080/00268976.2023.2254417 | |
28. | Syed Waqas Shah, Muhammad Yasin Khan, Gohar Ali, Irfan Nurhidayat, Soubhagya Kumar Sahoo, Homan Emadifar, Ram Jiwari, On Partition Dimension of Generalized Convex Polytopes, 2023, 2023, 2314-4785, 1, 10.1155/2023/4412591 | |
29. | Sidra Bukhari, Muhammad Kamran Jamil, Muhammad Azeem, Vertex-edge based resolvability parameters of vanadium carbide network with an application, 2023, 0026-8976, 10.1080/00268976.2023.2260899 | |
30. | Ali N.A. Koam, Ali Ahmad, Sikander Ali, Muhammad Kamran Jamil, Muhammad Azeem, Double edge resolving set and exchange property for nanosheet structure, 2024, 10, 24058440, e26992, 10.1016/j.heliyon.2024.e26992 | |
31. | Sidra Bukhari, Muhammad Kamran Jamil, Muhammad Azeem, Senesie Swaray, Honeycomb Rhombic Torus Vertex-Edge Based Resolvability Parameters and Its Application in Robot Navigation, 2024, 12, 2169-3536, 23751, 10.1109/ACCESS.2024.3359916 | |
32. | Ali N. A. Koam, Adnan Khalil, Ali Ahmad, Muhammad Azeem, Cardinality bounds on subsets in the partition resolving set for complex convex polytope-like graph, 2024, 9, 2473-6988, 10078, 10.3934/math.2024493 | |
33. | Amal S. Alali, Sikander Ali, Muhammad Kamran Jamil, Structural Analysis of Octagonal Nanotubes via Double Edge-Resolving Partitions, 2024, 12, 2227-9717, 1920, 10.3390/pr12091920 |