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Abstract: Let G = (V(G), E(G)) be a connected graph and Π = {S 1, S 2, . . . , S k} be a k-
partition of V(G). The representation r(v|Π) of a vertex v with respect to Π is the vector
(d(v, S 1), d(v, S 2), . . . , d(v, S k)), where d(v, S i) = min{d(v, si) | si ∈ S i}. The partition Π is called
a resolving partition of G if r(u|Π) , r(v|Π) for all distinct u, v ∈ V(G). The partition dimension
of G, denoted by pd(G), is the cardinality of a minimum resolving partition of G. In this paper,
we calculate the partition dimension of two (4, 6)-fullerene graphs. We also give conjectures on the
partition dimension of two (3, 6)-fullerene graphs.

Keywords: partition dimension; fullerene graphs
Mathematics Subject Classification: 05C12

1. Introduction

Slater [13] and Harary et al. [6] introduced the notions of resolvability and locating number in
graphs. Chartrand et al. [4] introduced the partition dimension of a graph. These concepts have
some applications in Chemistry for representing chemical compounds [2] or to problems of pattern
recognition and image processing, some of which involve the use of hierarchical data structures [10].

Kroto et al. [9] discovered fullerene molecule and since then, scientists took a great interest in the
fullerene graphs. A (k, 6)-fullerene graph is a connected cubic plane graph whose faces have sizes k
and 6. There are only three types of fullerene graphs, that is, (3, 6), (4, 6) and (5, 6)-fullerene graphs.
A (5, 6)-fullerene is the usual fullerene as the molecular graph of sphere carbon fullerene. A (3, 6)-
fullerene graph has cycles of order three and six. The Euler’s formula implies that a (3, 6)-fullerene
graph has exactly four faces of size 3 and (n/2) − 2 hexagons. Similarly (4, 6) and (5, 6)-fullerene
graphs has cycles of order four and six, and five and six, respectively. The Euler’s formula implies that
a (4, 6)-fullerene graph has exactly six square faces and (n/2) − 4 hexagons.

Chartrand et al. [3] gave useful definitions and results related to the partition dimension of a
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connected graph. Let G be a connected graph with vertex set V(G) and edge set E(G). If S is a subset
of V(G) and v ∈ V(G) then the distance between v and S , denoted by d(v, S ), is defined as
d(v, S ) = min{d(v, x) | x ∈ S }. For an ordered k-partition Π = {S 1, S 2, . . . , S k} of V(G) and a vertex v
of G, the representation of v with respect to Π is defined as the k-vector
r(v | Π) = (d(v, S 1), d(v, S 2), . . . , d(v, S k)). The partition Π is called a resolving partition if
r(u | Π) , r(v | Π) for each u, v ∈ V(G), u , v. The minimum k for which there is a resolving
k-partition of V(G) is called the partition dimension of G and is denoted by pd(G).

Many authors determined the partition dimension of specific classes of graphs.
Rodrı́guez-Velázquez et al. [14, 15] find the bounds on the partition dimension of trees and unicyclic
graphs. Tomescu et al. [16] calculated the partition dimension of a wheel graph and Tomescu [17]
discussed the metric and partition dimension of a connected graph. Grigorious et al. [5] and Javaid et
al. [7] calculated the partition dimension of some classes of circulant graphs.

The following result is a useful property in determining partition dimension.

Lemma 1.1. [3] Let Π be a resolving partition of vertex set V(G) of a connected graph G and u, v ∈
V(G). If d(u,w) = d(v,w) for all w ∈ V(G) \ {u, v} then u and v belong to different classes of Π.

The partition dimension of some families of graphs is given in next lemma.

Lemma 1.2. [3] Let G be a connected graph. Then

1. pd(G) = 2 if and only if G = Pn for n ≥ 2,
2. pd(G) = n if and only if G = Kn,
3. pd(G) = 3 if G = Cn for n ≥ 3.

Above results are useful in computing the partition dimension of connected graphs. Ashrafi et al.
[1] studied the topological indices of (3, 6) and (4, 6)-fullerene graphs. Moftakhar et al. [8] calculated
the automorphism group and fixing number of (3, 6) and (4, 6)-fullerene graphs. Siddiqui et al. [11, 12]
calculated the metric dimension and partition dimension of nanotubes. In this paper, we calculate the
partition dimension of two (4, 6)-fullerene graphs. Also we give conjectures on the partition dimension
of two (3, 6)-fullerene graphs.

2. Partition dimension of (4, 6)-fullerene graphs

In this section, we consider two (4, 6)-fullerene graphs G1[n] and G2[n] shown in Figure 1 and
Figure 2, respectively. It is easily seen that the order of G1[n] and G2[n] is 8n and 8n + 4, respectively.
We calculate the partition dimension of G1[n] and G2[n] graphs.

Theorem 2.1. The partition dimension of fullerene graph G1[n] is 3.

Proof. Let Π = {S 1, S 2, S 3}, where S 1 = {x2n, x2n+1}, S 2 = {y2n} and S 3 = V(G1[n]) \ {x2n, x2n+1, y2n},
be a partition of V(G1[n]). We show that Π is a resolving partition of G1[n] with minimum cardinality.
The representation of each vertex of G1[n] with respect to Π is given as follows:

r(x2n | Π) = (0, 1, 1), r(x2n+1 | Π) = (0, 2, 1), r(y2n | Π) = (1, 0, 1).

r(xi | Π) =

{
(2n − i, 2n − i + 1, 0) if 1 ≤ i ≤ 2n − 1,
(i − 2n − 1, i − 2n + 1, 0) if 2n + 2 ≤ i ≤ 4n.
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Figure 1. Graph G1[n]

and

r(yi | Π) =

{
(2n − i + 1, 2n − i, 0) if 1 ≤ i ≤ 2n − 1,
(i − 2n, i − 2n, 0) if 2n + 1 ≤ i ≤ 4n.

Therefore, it is easily seen that the representation of each vertex with respect to Π is distinct. This
shows that Π is a resolving partition of G1[n]. Thus pd(G1[n]) ≤ 3.

On the other hand, by Lemma 1.2, it follows that pd(G1[n]) ≥ 3. Hence pd(G1[n]) = 3. �
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Figure 2. Graph G2[n]

In next theorem, we calculate the partition dimension of G2[n].

Theorem 2.2. The partition dimension of fullerene graph G2[n] is 3.

Proof. Let Π = {S 1, S 2, S 3}, where S 1 = {x2n+1, x2n+2}, S 2 = {y2n+1} and S 3 = V(G2[n]) \ {x2n+1, x2n+2,

y2n+1}, be a partition of V(G2[n]). We show that Π is a resolving partition of G2[n] with minimum
cardinality. The representation of each vertex of G2[n] with respect to Π is given as follows:

r(x2n+1 | Π) = (0, 1, 1), r(x2n+2 | Π) = (0, 2, 1), r(y2n+1 | Π) = (1, 0, 1).

r(xi | Π) =

{
(2n + 1 − i, 2n + 2 − i, 0) if 1 ≤ i ≤ 2n,
(i − 2n − 2, i − 2n, 0) if 2n + 3 ≤ i ≤ 4n + 2.

and

r(yi | Π) =

{
(2n + 2 − i, 2n + 1 − i, 0) if 1 ≤ i ≤ 2n,
(i − 2n − 1, i − 2n − 1, 0) if 2n + 2 ≤ i ≤ 4n + 2.

All pairs of vertices can easily be resolved by the partitioning set Π. Therefore Π is a resolving partition
of G2[n] and pd(G2[n]) ≤ 3.

On the other hand, by Lemma 1.2, it follows that pd(G2[n]) ≥ 3. Hence pd(G2[n]) = 3. �
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3. Conjectures on partition dimension of two (3, 6)-fullerene graphs

In this section, we consider two (3, 6)-fullerene graphs F3[n] and F4[n] shown in Figure 3 and
Figure 4, respectively. We can see that order of F3[n] and F4[n] is 16n − 32, n ≥ 4 and 24n, n ≥ 1,
respectively.
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Figure 3. Graph F3[n]

Firstly we consider the fullerene graph F3[n] and give a conjecture on the partition dimension of
F3[n]. The set of vertices V(F3[n]), n ≥ 5, is divided into the following sets:

X1 = {xi | 1 ≤ i ≤ 2n − 6}, X2 = {xi | 2n − 4 ≤ i ≤ 4n − 11}, Y1 = {yi | 1 ≤ i ≤ 2n − 6},
Y2 = {yi | 2n − 4 ≤ i ≤ 4n − 11}, Z1 = {z1, z2, z3}, Z2 = {z4, z5, z6},

A = {ai | 1 ≤ i ≤ 6}, B1 = {bi | 1 ≤ i ≤ 2n − 6}, B2 = {bi | 2n − 4 ≤ i ≤ 4n − 11},
C1 = {ci | 1 ≤ i ≤ 2n − 6}, C2 = {ci | 2n − 4 ≤ i ≤ 4n − 11}.

(3.1)
The relations of distances of vertices of F3[n] are given by:

d(a4, x) = d(y1, x), for all x ∈ X1, (3.2)
d(a5, x) = d(y4n−11, x), for all x ∈ X2, (3.3)
d(a2, y) = d(x1, y), for all y ∈ Y1, (3.4)
d(a1, y) = d(x4n−11, y), for all y ∈ Y2, (3.5)
d(z2, z) = d(z3, z), for all z ∈ Z2, (3.6)
d(z5, z) = d(z6, z), for all z ∈ Z1, (3.7)
d(z4, x) = d(z6, x), for all x ∈ X2 ∪ {x2n−5}, (3.8)
d(z4, y) = d(z5, y), for all y ∈ Y2 ∪ {y2n−5}, (3.9)
d(z1, x) = d(z3, x), for all x ∈ X1 ∪ {x2n−5, x2n−4}, (3.10)
d(z1, y) = d(z2, y), for all y ∈ Y1 ∪ {y2n−5, y2n−4}, (3.11)
d(a1, x) = d(x4n−11, x), for all x ∈ X1 \ {x1}, (3.12)
d(a5, y) = d(y4n−11, y), for all y ∈ Y1 \ {y1}, (3.13)
d(a2, x) = d(x1, x), for all x ∈ X2 \ {x2n−4, x4n−11}, (3.14)
d(a4, y) = d(y1, y), for all y ∈ Y2 \ {y2n−4, y4n−11}, (3.15)
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d(a6, b) = d(a5, b), for all b ∈ B1 ∪ B2 ∪ {b2n−5} \ {b1}, (3.16)
d(a6, c) = d(a1, c), for all c ∈ C1 ∪C2 ∪ {c2n−5} \ {c1}, (3.17)
d(a1, b) = d(x2, b), for all b ∈ {b1, b2, b4n−12, b4n−11}, (3.18)
d(a5, c) = d(y2, c), for all b ∈ {c1, c2, c4n−12, c4n−11}. (3.19)

The relations of distances of vertices of C1∪{c2n−5}, C2∪{c2n−5}, B1∪{b2n−5} and B2∪{b2n−5} are given
by:

d(z1, c) = d(z2, c), d(z1, c) = d(a5, c), d(z2, c) = d(a5, c) for all c ∈ C1 ∪ {c2n−5}, (3.20)
d(z4, c) = d(z5, c), d(z4, c) = d(a4, c), d(z5, c) = d(a4, c) for all c ∈ C2 ∪ {c2n−5}, (3.21)
d(z1, b) = d(z3, b), d(z1, b) = d(a1, b), d(z3, b) = d(a1, b) for all b ∈ B1 ∪ {b2n−5}, (3.22)
d(z4, b) = d(z6, b), d(z4, b) = d(a2, b), d(z6, b) = d(a2, b) for all b ∈ B2 ∪ {b2n−5}. (3.23)

The relations of distances of the pair of vertices of Z1 ∪ Z2, A, X1 ∪ X2 ∪ {x2n−5} and Y1 ∪ Y2 ∪ {y2n−5}

are given by:

d(a1, z) = d(a5, z), d(a2, z) = d(a4, z), for all z ∈ Z1 ∪ Z2, (3.24)
d(z2, a) = d(z3, a), d(z5, a) = d(z6, a), for all a ∈ A, (3.25)
d(z1, x) = d(a5, x), d(z4, x) = d(a4, x), for all x ∈ X1 ∪ X2 ∪ {x2n−5}, (3.26)
d(z1, y) = d(a1, y), d(z4, y) = d(a2, y), for all y ∈ Y1 ∪ Y2 ∪ {y2n−5}. (3.27)

The distance between the vertices bi ∈ B1 ∪ B2 and ci ∈ C1 ∪C2 is given as:

d(bi, ci) =

{
1 for i is even,
3 for i is odd.

(3.28)

The distance between the vertices bi ∈ B1 ∪ B2 and xi ∈ X1 ∪ X2 is given as:

d(xi, bi) =

{
1 for i is even,
3 for i is odd.

(3.29)

The distance between the vertices ci ∈ C1 ∪C2 and yi ∈ Y1 ∪ Y2 is given as:

d(yi, ci) =

{
1 for i is even,
3 for i is odd.

(3.30)

Lemma 3.1. Let F3[n] be a fullerene graph shown in Figure 3. Then 3 ≤ pd(F3[n]) ≤ 4, where n ≥ 5.

Proof. Let {z1, z2, z3} and {z4, z5, z6} be the vertices of outer triangles and {a1, a2, a3, a4, a5, a6} be the
vertices of outer hexagon of F3[n]. Let Π = {S 1, S 2, S 3, S 4}, where S 1 = {a5}, S 2 = {z2}, S 3 = {z5}

and S 4 = V(F3[n]) \ {a5, z2, z5}, be a partition of V(F3[n]). We show that Π is a resolving partition of
F3[n] with minimum cardinality. For this we give the representation of each vertex of F3[n] other than
a5, z2, z5 with respect to Π. The representation of vertices of A with respect to Π is given by:

r(a1 | Π) = (2, 3, 4, 0), r(a2 | Π) = (3, 4, 3, 0), r(a3 | Π) = (2, 5, 2, 0),
r(a4 | Π) = (1, 4, 3, 0), r(a6 | Π) = (1, 2, 5, 0).
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The representation of vertices of (Z1 ∪ Z2) \ {z2, z5} with respect to Π is given by:

r(z1 | Π) = (2, 1, 6, 0), r(z3 | Π) = (3, 1, 7, 0), r(z4 | Π) = (3, 6, 1, 0), r(z6 | Π) = (4, 7, 1, 0).

The representation of vertices of X1 ∪ X2 with respect to Π is given by:

r(xi | Π) =



(3, 2, 5, 0) if i = 1,
(i + 2, i + 1, i + 2, 0) if 2 ≤ i ≤ 2n − 6,
(2n − 3, 2n − 4, 2n − 4, 0) if i = 2n − 5,
(4n − i − 7, 4n − i − 8, 4n − i − 9, 0) if 2n − 4 ≤ i ≤ 4n − 12,
(4, 5, 2, 0) if i = 4n − 11.

The representation of vertices of B1 ∪ B2 and C1 ∪C2 with respect to Π is given by:

r(bi | Π) =



(4, i, i + 5, 0) if i ∈ {1, 2},
(i + 2, i, 4n − i − 10, 0) if 3 ≤ i ≤ 2n − 5,
(2n − 3, 2n − 4, 2n − 6, 0) if i = 2n − 4,
(4n − i − 7, 4n − i − 7, 4n − i − 10, 0) if 2n − 3 ≤ i ≤ 4n − 13,
(5, 4n − i − 5, 4n − i − 10, 0) if i ∈ {4n − 12, 4n − 11}.

r(ci | Π) =



(i + 1, i + 1, i + 5, 0) if i ∈ {1, 2},
(i + 1, i + 1, 4n − i − 9, 0) if 3 ≤ i ≤ 2n − 5,
(2n − 4, 2n − 3, 2n − 5, 0) if i = 2n − 4,
(4n − i − 8, 4n − i − 6, 4n − i − 9, 0) if 2n − 3 ≤ i ≤ 4n − 13,
(4n − i − 8, 4n − i − 5, 4n − i − 9, 0) if i ∈ {4n − 12, 4n − 11}.

The representation of vertices of Y1 ∪ Y2 with respect to Π is given by:

r(yi | Π) =



(1, 3, 5, 0) if i = 1,
(i, i + 2, i + 3, 0) if 2 ≤ i ≤ 2n − 6,
(2n − 5, 2n − 3, 2n − 3, 0) if i = 2n − 5,
(4n − i − 9, 4n − i − 7, 4n − i − 8, 0) if 2n − 4 ≤ i ≤ 4n − 12,
(2, 5, 3, 0) if i = 4n − 11.

It is easily seen that the representation of each vertex with respect to Π is distinct. This shows that Π is
a resolving partition of F3[n]. Thus pd(F3[n]) ≤ 4. Also by Lemma 1.2, we have pd(F3[n]) ≥ 3. �

Suppose that there exists a partition Π̃ of F3[n], n ≥ 5, such that |Π̃| = 3. Let Π̃ = {S̃ 1, S̃ 2, S̃ 3}.
Consider the following cases:
Case I: If two partitioning sets of Π̃ are subsets of either Z1 or Z2 then from (3.6) and (3.7), it is clear
that either r(z5 | Π̃) = r(z6 | Π̃) or r(z2 | Π̃) = r(z3 | Π̃).
Case II: If two partitioning sets of Π̃ are subsets of either A or X1 or B1 then (3.25), (3.2), (3.10) and
(3.22) implies that either r(z2 | Π̃) = r(z3 | Π̃) or r(a4 | Π̃) = r(y1 | Π̃) or r(z1 | Π̃) = r(z3 | Π̃).
Case III: If two partitioning sets of Π̃ are subsets of either Y1 or C1 then (3.4), (3.11) and (3.20) implies
that either r(z1 | Π̃) = r(z2 | Π̃) or r(a2 | Π̃) = r(x1 | Π̃) or r(z1 | Π̃) = r(a5 | Π̃).
Case IV: If two partitioning sets of Π̃ are subsets of either X2 or B2 then from (3.3), (3.8) and (3.23)
we obtain either r(z4 | Π̃) = r(z6 | Π̃) or r(a5 | Π̃) = r(y4n−11 | Π̃) or r(z4 | Π̃) = r(a2 | Π̃).
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Case V: If two partitioning sets of Π̃ are subsets of either Y2 or C2 then from (3.4), (3.9) and (3.21) we
obtain either r(z4 | Π̃) = r(z5 | Π̃) or r(a1 | Π̃) = r(x4n−11 | Π̃).
Case VI: If two partitioning sets of Π̃ are subsets of either Z1 ∪ Z2 or X1 ∪ X2 or Y1 ∪ Y2 then from
(3.24), (3.26) and (3.27), we can easily be seen that either r(a1 | Π̃) = r(a5 | Π̃) or r(z1 | Π̃) = r(a5 | Π̃)
or r(z1 | Π̃) = r(a1 | Π̃).
Case VII: If two partitioning sets of Π̃ are subsets of B1∪B2 then from (3.16), (3.18), (3.22) and (3.23)
we see that some either ai, a j or ai, x j or zi, z j have same representations with respect to Π̃.
Case VIII: If two partitioning sets of Π̃ are subsets of C1 ∪ C2 then from (3.17), and (3.19)-(3.21) we
conclude that either ai, a j or ai, x j or zi, z j have same representations with respect to Π̃.
Case IX: If two partitioning sets of Π̃ are subsets of either (X1 ∪ B1 ∪ {x2n−5, b2n−5}) or (X2 ∪ B2 ∪

{x2n−5, b2n−5}) then from (3.8), (3.10), (3.22) and (3.23) it is clear that either r(z1 | Π̃) = r(z3 | Π̃) or
r(z4 | Π̃) = r(z6 | Π̃).
Case X: If two partitioning sets of Π̃ are subsets of either (Y1 ∪ C1 ∪ {y2n−5, c2n−5}) or (Y2 ∪ C2 ∪

{y2n−5, c2n−5}) then (3.9), (3.11), (3.20) and (3.21) implies that either r(z1 | Π̃) = r(z2 | Π̃) or r(z4 | Π̃) =

r(z5 | Π̃).
Case XI: Also If two partite sets of Π̃ are subsets of (C1 ∪ C2 ∪ B1 ∪ B2) then there exists some
xi ∈ X1 ∪ X2 and y j ∈ Y1 ∪ Y2 with same representations.
Case XII: If two partitioning sets of Π̃ are subsets of either (X1 ∪ X2 ∪C1 ∪ {c2n−5}) or (X1 ∪ X2 ∪C2 ∪

{c2n−5}) then by (3.20), (3.21)and (3.26) we obtain either r(z1 | Π̃) = r(a5 | Π̃) or r(z4 | Π̃) = r(a4 | Π̃).
Case XIII: If two partitioning sets of Π̃ are subsets of either (Y1 ∪ Y2 ∪ B2 ∪ {b2n−5}) or (Y1 ∪ Y2 ∪ B1 ∪

{c2n−5}) then from (3.22), (3.23) and (3.27) either r(z4 | Π̃) = r(a2 | Π̃) or r(z1 | Π̃) = r(a1 | Π̃).
Note that there are total 2047 possible combinations of subsets of vertex set of F3[n] shown in

(3.1), we guess that no two partite sets of Π̃ can be subsets of combinations of
X1, X2, Y1, Y2, Z1, Z2, A, B1, B2, C1 and C2. Thus, we have the following conjecture.

Conjecture 3.1. The partition dimension of F3[n], n ≥ 5, is 4.
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Figure 4. Graph F4[n]

Next, we give the conjecture on the partition dimension of fullerene graph F4[n]. The set of vertices
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of F4[n] is divided into the following sets:

A = {a1, a2, a3, a4, a5, a6, a7, a8}, X = {xi | 1 ≤ i ≤ 6n − 1}, B = {bi | 1 ≤ i ≤ 6n − 1},
Y = {yi | 1 ≤ i ≤ 6n − 3}, Z = {zi | 1 ≤ i ≤ 6n − 3}.

(3.31)

The relations of distances of the vertices of F4[n] are as follows:

d(x1, a) = d(b1, a), for all a ∈ A \ {a7, a8}, (3.32)
d(x6n−1, a) = d(b6n−1, a), for all a ∈ A \ {a3, a4}, (3.33)
d(a2, x) = d(a4, x), for all x ∈ X \ {x1}, (3.34)
d(a4, y) = d(b2, y), for all y ∈ Y \ {y1}, (3.35)
d(a3, z) = d(x2, z), for all z ∈ Z \ {z1}, (3.36)
d(a2, b) = d(a3, b), for all b ∈ B \ {b1}, (3.37)
d(a1, x) = d(b1, x), for all x ∈ X, (3.38)
d(a1, b) = d(x1, b), for all b ∈ B, (3.39)

d(a7, z) = d(x6n−2, z), for all z ∈ Z \ {z6n−3}, (3.40)
d(a8, y) = d(b6n−2, y), for all y ∈ Y \ {y6n−3}. (3.41)

The relations of distances of the vertices of Z and F4[n] are as follows:

d(a1, z) = d(x1, z), d(a4, z) = d(b2, z), d(a8, z) = d(b6n−2, z), d(a2, z) = d(a3, z). (3.42)

The relations of distances of the vertices of Y and F4[n] are as follows:

d(a1, y) = d(b1, y), d(a3, y) = d(x2, y), d(a7, y) = d(x6n−2, y), d(a2, y) = d(a4, y). (3.43)

Lemma 3.2. Let F4[n] be a fullerene graph shown in Figure 4. Then 3 ≤ pd(F4[n]) ≤ 4, where n ≥ 1.

Proof. Let Π = {S 1, S 2, S 3, S 4}, where S 1 = {a3}, S 2 = {a7}, S 3 = {a8} and S 4 = V(F4[n]) \ {a3, a7, a8},
be a partition of V(F4[n]). We show that Π is a resolving partition of F4[n] with minimum cardinality.
The representation of each vertex of A other than a3, a7, a8 with respect to Π is given as:

r(a1 | Π) = (2, 6n, 6n, 0), r(a2 | Π) = (1, 6n − 1, 6n − 1, 0), r(a4 | Π) = (1, 6n − 1, 6n − 2, 0),
r(a5 | Π) = (6n, 2, 2, 0), r(a6 | Π) = (6n − 1, 1, 1, 0).

The representation of each vertex of X with respect to Π is given as:

r(xi | Π) =


(3, 6n − 1, 6n, 0) if i = 1,
(i, 6n − i, 6n + 1 − i, 0) if 2 ≤ i ≤ 6n − 2,
(6n − 1, 3, 3, 0) if i = 6n − 1.

The representation of each vertex B with respect to Π is given as:

r(bi | Π) =


(3, 6n, 6n − 1, 0) if i = 1,
(i − 1, 6n + 1 − i, 6n − i, 0) if 2 ≤ i ≤ 6n − 2,
(6n, 3, 3, 0) if i = 6n − 1.
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The representation of each vertex of Y and Z with respect to Π is given as:

r(yi | Π) = (i, 6n − 2 − i, 6n − 1 − i, 0) if 1 ≤ i ≤ 6n − 3,
r(zi | Π) = (i + 1, 6n − 1 − i, 6n − 2 − i, 0) if 1 ≤ i ≤ 6n − 3.

From above representations of vertices with respect to Π it can be easily seen that representations are
distinct. This implies that Π is a resolving partition of F4[n]. Thus pd(F4[n]) ≤ 4. Also by Lemma
1.2, we note that pd(F4[n]) ≥ 3. �

Suppose that there exists partition Π̃ of F4[n], n ≥ 1, such that |Π̃| = 3. Let Π̃ = {S̃ 1, S̃ 2, S̃ 3}.
Consider the following cases:
Case I: If two partitioning sets of Π̃ are subsets of X then by (3.38), we have r(a1|Π̃) = r(b1|Π̃) and if
two partitioning sets of Π̃ are subsets of Y then by (3.43), we have r(a1 | Π̃) = r(b1 | Π̃).
Case II: If two partitioning sets of Π̃ are subsets of A except {a7, a8} then by (3.32), we have r(b1 |

Π̃) = r(x1 | Π̃). If two partitioning sets of Π̃ are subsets of A except {a3, a4} then by (3.33), we have
and r(x6n−1 | Π̃) = r(b6n−1 | Π̃).
Case III: If two partitioning sets of Π̃ are subsets of either B or Z then by (3.39) and (3.42), we have
r(a1 | Π̃) = r(x1 | Π̃).
Case IV: Similarly, from equations (3.38) and (3.43) we observe that if two partitioning sets of Π̃ are
subsets of X ∪ Y then r(a1 | Π̃) = r(b1 | Π̃).
Case V: If two partitioning sets of Π̃ are subsets of B ∪ Z then from (3.39) and (3.42), we see that
r(a1 | Π̃) = r(x1 | Π̃).
Case VI: We notice that if two partitioning sets of Π̃ are subsets of Y ∪ Z then there exists either some
ai, x j or ai, b j with same representations with respect to Π̃.

Note that there are total 31 possible combinations of subsets of vertex set of F4[n], shown in (3.31).
Thus because of unique structural properties of F4[n], we can observe that no two partitioning sets of
Π̃ can be subsets of combinations of A, B, X, Y and Z. Thus, we have the following conjecture.

Conjecture 3.2. The partition dimension of F4[n] is 4.
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