

AIMS Mathematics, 3(3): 343–352 DOI:10.3934/Math.2018.3.343 Received: 18 April 2018 Accepted: 17 July 2018 Published: 24 July 2018

http://www.aimspress.com/journal/Math

# Research article

# On partition dimension of fullerene graphs

# Naila Mehreen, Rashid Farooq and Shehnaz Akhter\*

School of Natural Sciences, National University of Sciences and Technology, H-12 Islamabad, Pakistan

\* Correspondence: Email: shehnazakhter36@yahoo.com.

**Abstract:** Let G = (V(G), E(G)) be a connected graph and  $\Pi = \{S_1, S_2, \ldots, S_k\}$  be a *k*-partition of V(G). The representation  $r(v|\Pi)$  of a vertex v with respect to  $\Pi$  is the vector  $(d(v, S_1), d(v, S_2), \ldots, d(v, S_k))$ , where  $d(v, S_i) = \min\{d(v, s_i) \mid s_i \in S_i\}$ . The partition  $\Pi$  is called a resolving partition of G if  $r(u|\Pi) \neq r(v|\Pi)$  for all distinct  $u, v \in V(G)$ . The partition dimension of G, denoted by pd(G), is the cardinality of a minimum resolving partition of G. In this paper, we calculate the partition dimension of two (4, 6)-fullerene graphs. We also give conjectures on the partition dimension of two (3, 6)-fullerene graphs.

**Keywords:** partition dimension; fullerene graphs **Mathematics Subject Classification:** 05C12

# 1. Introduction

Slater [13] and Harary et al. [6] introduced the notions of resolvability and locating number in graphs. Chartrand et al. [4] introduced the partition dimension of a graph. These concepts have some applications in Chemistry for representing chemical compounds [2] or to problems of pattern recognition and image processing, some of which involve the use of hierarchical data structures [10].

Kroto et al. [9] discovered fullerene molecule and since then, scientists took a great interest in the fullerene graphs. A (k, 6)-fullerene graph is a connected cubic plane graph whose faces have sizes k and 6. There are only three types of fullerene graphs, that is, (3, 6), (4, 6) and (5, 6)-fullerene graphs. A (5, 6)-fullerene is the usual fullerene as the molecular graph of sphere carbon fullerene. A (3, 6)-fullerene graph has cycles of order three and six. The Euler's formula implies that a (3, 6)-fullerene graph has exactly four faces of size 3 and (n/2) – 2 hexagons. Similarly (4, 6) and (5, 6)-fullerene graphs has cycles of order four and six, and five and six, respectively. The Euler's formula implies that a (4, 6)-fullerene graph has exactly six square faces and (n/2) – 4 hexagons.

Chartrand et al. [3] gave useful definitions and results related to the partition dimension of a

connected graph. Let *G* be a connected graph with vertex set V(G) and edge set E(G). If *S* is a subset of V(G) and  $v \in V(G)$  then the distance between *v* and *S*, denoted by d(v, S), is defined as  $d(v, S) = \min\{d(v, x) \mid x \in S\}$ . For an ordered *k*-partition  $\Pi = \{S_1, S_2, \ldots, S_k\}$  of V(G) and a vertex *v* of *G*, the representation of *v* with respect to  $\Pi$  is defined as the *k*-vector  $r(v \mid \Pi) = (d(v, S_1), d(v, S_2), \ldots, d(v, S_k))$ . The partition  $\Pi$  is called a resolving partition if  $r(u \mid \Pi) \neq r(v \mid \Pi)$  for each  $u, v \in V(G)$ ,  $u \neq v$ . The minimum *k* for which there is a resolving *k*-partition of V(G) is called the partition dimension of *G* and is denoted by pd(G).

Many authors determined the partition dimension of specific classes of graphs. Rodríguez-Velázquez et al. [14, 15] find the bounds on the partition dimension of trees and unicyclic graphs. Tomescu et al. [16] calculated the partition dimension of a wheel graph and Tomescu [17] discussed the metric and partition dimension of a connected graph. Grigorious et al. [5] and Javaid et al. [7] calculated the partition dimension of some classes of circulant graphs.

The following result is a useful property in determining partition dimension.

**Lemma 1.1.** [3] Let  $\Pi$  be a resolving partition of vertex set V(G) of a connected graph G and  $u, v \in V(G)$ . If d(u, w) = d(v, w) for all  $w \in V(G) \setminus \{u, v\}$  then u and v belong to different classes of  $\Pi$ .

The partition dimension of some families of graphs is given in next lemma.

Lemma 1.2. [3] Let G be a connected graph. Then

- 1. pd(G) = 2 if and only if  $G = P_n$  for  $n \ge 2$ ,
- 2. pd(G) = n if and only if  $G = K_n$ ,
- 3. pd(G) = 3 if  $G = C_n$  for  $n \ge 3$ .

Above results are useful in computing the partition dimension of connected graphs. Ashrafi et al. [1] studied the topological indices of (3, 6) and (4, 6)-fullerene graphs. Moftakhar et al. [8] calculated the automorphism group and fixing number of (3, 6) and (4, 6)-fullerene graphs. Siddiqui et al. [11, 12] calculated the metric dimension and partition dimension of nanotubes. In this paper, we calculate the partition dimension of two (4, 6)-fullerene graphs. Also we give conjectures on the partition dimension of two (3, 6)-fullerene graphs.

#### **2.** Partition dimension of (4, 6)-fullerene graphs

In this section, we consider two (4, 6)-fullerene graphs  $G_1[n]$  and  $G_2[n]$  shown in Figure 1 and Figure 2, respectively. It is easily seen that the order of  $G_1[n]$  and  $G_2[n]$  is 8n and 8n + 4, respectively. We calculate the partition dimension of  $G_1[n]$  and  $G_2[n]$  graphs.

**Theorem 2.1.** *The partition dimension of fullerene graph*  $G_1[n]$  *is* 3.

*Proof.* Let  $\Pi = \{S_1, S_2, S_3\}$ , where  $S_1 = \{x_{2n}, x_{2n+1}\}$ ,  $S_2 = \{y_{2n}\}$  and  $S_3 = V(G_1[n]) \setminus \{x_{2n}, x_{2n+1}, y_{2n}\}$ , be a partition of  $V(G_1[n])$ . We show that  $\Pi$  is a resolving partition of  $G_1[n]$  with minimum cardinality. The representation of each vertex of  $G_1[n]$  with respect to  $\Pi$  is given as follows:

$$r(x_{2n} \mid \Pi) = (0, 1, 1), \quad r(x_{2n+1} \mid \Pi) = (0, 2, 1), \quad r(y_{2n} \mid \Pi) = (1, 0, 1).$$
$$r(x_i \mid \Pi) = \begin{cases} (2n - i, 2n - i + 1, 0) & \text{if } 1 \le i \le 2n - 1, \\ (i - 2n - 1, i - 2n + 1, 0) & \text{if } 2n + 2 \le i \le 4n. \end{cases}$$

AIMS Mathematics

Volume 3, Issue 3, 343-352



**Figure 1.** Graph *G*<sub>1</sub>[*n*]

and

$$r(y_i \mid \Pi) = \begin{cases} (2n - i + 1, 2n - i, 0) & \text{if } 1 \le i \le 2n - 1, \\ (i - 2n, i - 2n, 0) & \text{if } 2n + 1 \le i \le 4n. \end{cases}$$

Therefore, it is easily seen that the representation of each vertex with respect to  $\Pi$  is distinct. This shows that  $\Pi$  is a resolving partition of  $G_1[n]$ . Thus  $pd(G_1[n]) \leq 3$ .

On the other hand, by Lemma 1.2, it follows that  $pd(G_1[n]) \ge 3$ . Hence  $pd(G_1[n]) = 3$ .



**Figure 2.** Graph *G*<sub>2</sub>[*n*]

In next theorem, we calculate the partition dimension of  $G_2[n]$ .

**Theorem 2.2.** *The partition dimension of fullerene graph*  $G_2[n]$  *is* 3.

*Proof.* Let  $\Pi = \{S_1, S_2, S_3\}$ , where  $S_1 = \{x_{2n+1}, x_{2n+2}\}$ ,  $S_2 = \{y_{2n+1}\}$  and  $S_3 = V(G_2[n]) \setminus \{x_{2n+1}, x_{2n+2}, y_{2n+1}\}$ , be a partition of  $V(G_2[n])$ . We show that  $\Pi$  is a resolving partition of  $G_2[n]$  with minimum cardinality. The representation of each vertex of  $G_2[n]$  with respect to  $\Pi$  is given as follows:

$$r(x_{2n+1} \mid \Pi) = (0, 1, 1), \quad r(x_{2n+2} \mid \Pi) = (0, 2, 1), \quad r(y_{2n+1} \mid \Pi) = (1, 0, 1).$$
$$r(x_i \mid \Pi) = \begin{cases} (2n+1-i, 2n+2-i, 0) & \text{if } 1 \le i \le 2n, \\ (i-2n-2, i-2n, 0) & \text{if } 2n+3 \le i \le 4n+2. \end{cases}$$

and

$$r(y_i \mid \Pi) = \begin{cases} (2n+2-i, 2n+1-i, 0) & \text{if } 1 \le i \le 2n, \\ (i-2n-1, i-2n-1, 0) & \text{if } 2n+2 \le i \le 4n+2. \end{cases}$$

All pairs of vertices can easily be resolved by the partitioning set  $\Pi$ . Therefore  $\Pi$  is a resolving partition of  $G_2[n]$  and  $pd(G_2[n]) \leq 3$ .

On the other hand, by Lemma 1.2, it follows that  $pd(G_2[n]) \ge 3$ . Hence  $pd(G_2[n]) = 3$ .

AIMS Mathematics

Volume 3, Issue 3, 343-352

### 3. Conjectures on partition dimension of two (3,6)-fullerene graphs

In this section, we consider two (3, 6)-fullerene graphs  $F_3[n]$  and  $F_4[n]$  shown in Figure 3 and Figure 4, respectively. We can see that order of  $F_3[n]$  and  $F_4[n]$  is 16n - 32,  $n \ge 4$  and 24n,  $n \ge 1$ , respectively.



**Figure 3.** Graph *F*<sub>3</sub>[*n*]

Firstly we consider the fullerene graph  $F_3[n]$  and give a conjecture on the partition dimension of  $F_3[n]$ . The set of vertices  $V(F_3[n])$ ,  $n \ge 5$ , is divided into the following sets:

$$\begin{aligned} X_1 &= \{x_i \mid 1 \le i \le 2n - 6\}, & X_2 &= \{x_i \mid 2n - 4 \le i \le 4n - 11\}, & Y_1 &= \{y_i \mid 1 \le i \le 2n - 6\}, \\ Y_2 &= \{y_i \mid 2n - 4 \le i \le 4n - 11\}, & Z_1 &= \{z_1, z_2, z_3\}, & Z_2 &= \{z_4, z_5, z_6\}, \\ A &= \{a_i \mid 1 \le i \le 6\}, & B_1 &= \{b_i \mid 1 \le i \le 2n - 6\}, & B_2 &= \{b_i \mid 2n - 4 \le i \le 4n - 11\}, \\ C_1 &= \{c_i \mid 1 \le i \le 2n - 6\}, & C_2 &= \{c_i \mid 2n - 4 \le i \le 4n - 11\}. \end{aligned}$$

$$\end{aligned}$$

The relations of distances of vertices of  $F_3[n]$  are given by:

| $d(a_4, x) = d(y_1, x),$       | for all $x \in X_1$ ,                                   | (3.2)  |
|--------------------------------|---------------------------------------------------------|--------|
| $d(a_5, x) = d(y_{4n-11}, x),$ | for all $x \in X_2$ ,                                   | (3.3)  |
| $d(a_2, y) = d(x_1, y),$       | for all $y \in Y_1$ ,                                   | (3.4)  |
| $d(a_1, y) = d(x_{4n-11}, y),$ | for all $y \in Y_2$ ,                                   | (3.5)  |
| $d(z_2,z)=d(z_3,z),$           | for all $z \in Z_2$ ,                                   | (3.6)  |
| $d(z_5, z) = d(z_6, z),$       | for all $z \in Z_1$ ,                                   | (3.7)  |
| $d(z_4, x) = d(z_6, x),$       | for all $x \in X_2 \cup \{x_{2n-5}\},\$                 | (3.8)  |
| $d(z_4, y) = d(z_5, y),$       | for all $y \in Y_2 \cup \{y_{2n-5}\},\$                 | (3.9)  |
| $d(z_1, x) = d(z_3, x),$       | for all $x \in X_1 \cup \{x_{2n-5}, x_{2n-4}\},\$       | (3.10) |
| $d(z_1, y) = d(z_2, y),$       | for all $y \in Y_1 \cup \{y_{2n-5}, y_{2n-4}\},\$       | (3.11) |
| $d(a_1, x) = d(x_{4n-11}, x),$ | for all $x \in X_1 \setminus \{x_1\}$ ,                 | (3.12) |
| $d(a_5, y) = d(y_{4n-11}, y),$ | for all $y \in Y_1 \setminus \{y_1\}$ ,                 | (3.13) |
| $d(a_2, x) = d(x_1, x),$       | for all $x \in X_2 \setminus \{x_{2n-4}, x_{4n-11}\},\$ | (3.14) |
| $d(a_4, y) = d(y_1, y),$       | for all $y \in Y_2 \setminus \{y_{2n-4}, y_{4n-11}\},\$ | (3.15) |

Volume 3, Issue 3, 343-352

$$d(a_6, b) = d(a_5, b), \quad \text{for all } b \in B_1 \cup B_2 \cup \{b_{2n-5}\} \setminus \{b_1\}, \quad (3.16)$$

$$d(a_6, c) = d(a_1, c), \qquad \text{for all } c \in C_1 \cup C_2 \cup \{c_{2n-5}\} \setminus \{c_1\}, \tag{3.17}$$

$$d(a_1, b) = d(x_2, b),$$
 for all  $b \in \{b_1, b_2, b_{4n-12}, b_{4n-11}\},$  (3.18)

 $d(a_5, c) = d(y_2, c),$  for all  $b \in \{c_1, c_2, c_{4n-12}, c_{4n-11}\}.$  (3.19)

The relations of distances of vertices of  $C_1 \cup \{c_{2n-5}\}, C_2 \cup \{c_{2n-5}\}, B_1 \cup \{b_{2n-5}\}$  and  $B_2 \cup \{b_{2n-5}\}$  are given by:

$$d(z_1, c) = d(z_2, c), \ d(z_1, c) = d(a_5, c), \ d(z_2, c) = d(a_5, c) \text{ for all } c \in C_1 \cup \{c_{2n-5}\},$$
 (3.20)

$$d(z_4, c) = d(z_5, c), \ d(z_4, c) = d(a_4, c), \ d(z_5, c) = d(a_4, c) \text{ for all } c \in C_2 \cup \{c_{2n-5}\},$$
 (3.21)

$$d(z_1, b) = d(z_3, b), \ d(z_1, b) = d(a_1, b), \ d(z_3, b) = d(a_1, b) \text{ for all } b \in B_1 \cup \{b_{2n-5}\}, \quad (3.22)$$

$$d(z_4, b) = d(z_6, b), \ d(z_4, b) = d(a_2, b), \ d(z_6, b) = d(a_2, b) \text{ for all } b \in B_2 \cup \{b_{2n-5}\}.$$
 (3.23)

The relations of distances of the pair of vertices of  $Z_1 \cup Z_2$ , A,  $X_1 \cup X_2 \cup \{x_{2n-5}\}$  and  $Y_1 \cup Y_2 \cup \{y_{2n-5}\}$  are given by:

$$d(a_1, z) = d(a_5, z), \quad d(a_2, z) = d(a_4, z), \text{ for all } z \in Z_1 \cup Z_2,$$
 (3.24)

$$d(z_2, a) = d(z_3, a), \quad d(z_5, a) = d(z_6, a), \text{ for all } a \in A,$$
 (3.25)

$$d(z_1, x) = d(a_5, x), \quad d(z_4, x) = d(a_4, x), \text{ for all } x \in X_1 \cup X_2 \cup \{x_{2n-5}\},$$
 (3.26)

$$d(z_1, y) = d(a_1, y), \quad d(z_4, y) = d(a_2, y), \text{ for all } y \in Y_1 \cup Y_2 \cup \{y_{2n-5}\}.$$
 (3.27)

The distance between the vertices  $b_i \in B_1 \cup B_2$  and  $c_i \in C_1 \cup C_2$  is given as:

$$d(b_i, c_i) = \begin{cases} 1 & \text{for } i \text{ is even,} \\ 3 & \text{for } i \text{ is odd.} \end{cases}$$
(3.28)

The distance between the vertices  $b_i \in B_1 \cup B_2$  and  $x_i \in X_1 \cup X_2$  is given as:

$$d(x_i, b_i) = \begin{cases} 1 & \text{for } i \text{ is even,} \\ 3 & \text{for } i \text{ is odd.} \end{cases}$$
(3.29)

The distance between the vertices  $c_i \in C_1 \cup C_2$  and  $y_i \in Y_1 \cup Y_2$  is given as:

$$d(y_i, c_i) = \begin{cases} 1 & \text{for } i \text{ is even,} \\ 3 & \text{for } i \text{ is odd.} \end{cases}$$
(3.30)

**Lemma 3.1.** Let  $F_3[n]$  be a fullerene graph shown in Figure 3. Then  $3 \le pd(F_3[n]) \le 4$ , where  $n \ge 5$ .

*Proof.* Let  $\{z_1, z_2, z_3\}$  and  $\{z_4, z_5, z_6\}$  be the vertices of outer triangles and  $\{a_1, a_2, a_3, a_4, a_5, a_6\}$  be the vertices of outer hexagon of  $F_3[n]$ . Let  $\Pi = \{S_1, S_2, S_3, S_4\}$ , where  $S_1 = \{a_5\}$ ,  $S_2 = \{z_2\}$ ,  $S_3 = \{z_5\}$  and  $S_4 = V(F_3[n]) \setminus \{a_5, z_2, z_5\}$ , be a partition of  $V(F_3[n])$ . We show that  $\Pi$  is a resolving partition of  $F_3[n]$  with minimum cardinality. For this we give the representation of each vertex of  $F_3[n]$  other than  $a_5, z_2, z_5$  with respect to  $\Pi$ . The representation of vertices of A with respect to  $\Pi$  is given by:

$$r(a_1 \mid \Pi) = (2, 3, 4, 0), \quad r(a_2 \mid \Pi) = (3, 4, 3, 0), \quad r(a_3 \mid \Pi) = (2, 5, 2, 0),$$
  
 $r(a_4 \mid \Pi) = (1, 4, 3, 0), \quad r(a_6 \mid \Pi) = (1, 2, 5, 0).$ 

AIMS Mathematics

Volume 3, Issue 3, 343–352

The representation of vertices of  $(Z_1 \cup Z_2) \setminus \{z_2, z_5\}$  with respect to  $\Pi$  is given by:

 $r(z_1 \mid \Pi) = (2, 1, 6, 0), \quad r(z_3 \mid \Pi) = (3, 1, 7, 0), \quad r(z_4 \mid \Pi) = (3, 6, 1, 0), \quad r(z_6 \mid \Pi) = (4, 7, 1, 0).$ 

The representation of vertices of  $X_1 \cup X_2$  with respect to  $\Pi$  is given by:

$$r(x_i \mid \Pi) = \begin{cases} (3, 2, 5, 0) & \text{if } i = 1, \\ (i + 2, i + 1, i + 2, 0) & \text{if } 2 \le i \le 2n - 6, \\ (2n - 3, 2n - 4, 2n - 4, 0) & \text{if } i = 2n - 5, \\ (4n - i - 7, 4n - i - 8, 4n - i - 9, 0) & \text{if } 2n - 4 \le i \le 4n - 12, \\ (4, 5, 2, 0) & \text{if } i = 4n - 11. \end{cases}$$

The representation of vertices of  $B_1 \cup B_2$  and  $C_1 \cup C_2$  with respect to  $\Pi$  is given by:

$$r(b_i \mid \Pi) = \begin{cases} (4, i, i+5, 0) & \text{if } i \in \{1, 2\}, \\ (i+2, i, 4n-i-10, 0) & \text{if } 3 \le i \le 2n-5, \\ (2n-3, 2n-4, 2n-6, 0) & \text{if } i=2n-4, \\ (4n-i-7, 4n-i-7, 4n-i-10, 0) & \text{if } 2n-3 \le i \le 4n-13, \\ (5, 4n-i-5, 4n-i-10, 0) & \text{if } i \in \{4n-12, 4n-11\}. \end{cases}$$

$$r(c_i \mid \Pi) = \begin{cases} (i+1, i+1, i+5, 0) & \text{if } i \in \{1, 2\}, \\ (i+1, i+1, 4n-i-9, 0) & \text{if } 3 \le i \le 2n-5, \\ (2n-4, 2n-3, 2n-5, 0) & \text{if } i = 2n-4, \\ (4n-i-8, 4n-i-6, 4n-i-9, 0) & \text{if } 2n-3 \le i \le 4n-13, \\ (4n-i-8, 4n-i-5, 4n-i-9, 0) & \text{if } 2n-3 \le i \le 4n-13, \\ (4n-i-8, 4n-i-5, 4n-i-9, 0) & \text{if } i \in \{4n-12, 4n-11\}. \end{cases}$$

The representation of vertices of  $Y_1 \cup Y_2$  with respect to  $\Pi$  is given by:

$$r(y_i \mid \Pi) = \begin{cases} (1,3,5,0) & \text{if } i = 1, \\ (i,i+2,i+3,0) & \text{if } 2 \le i \le 2n-6, \\ (2n-5,2n-3,2n-3,0) & \text{if } i = 2n-5, \\ (4n-i-9,4n-i-7,4n-i-8,0) & \text{if } 2n-4 \le i \le 4n-12, \\ (2,5,3,0) & \text{if } i = 4n-11. \end{cases}$$

It is easily seen that the representation of each vertex with respect to  $\Pi$  is distinct. This shows that  $\Pi$  is a resolving partition of  $F_3[n]$ . Thus  $pd(F_3[n]) \le 4$ . Also by Lemma 1.2, we have  $pd(F_3[n]) \ge 3$ .  $\Box$ 

Suppose that there exists a partition  $\widetilde{\Pi}$  of  $F_3[n]$ ,  $n \ge 5$ , such that  $|\widetilde{\Pi}| = 3$ . Let  $\widetilde{\Pi} = \{\widetilde{S}_1, \widetilde{S}_2, \widetilde{S}_3\}$ . Consider the following cases:

**Case I:** If two partitioning sets of  $\Pi$  are subsets of either  $Z_1$  or  $Z_2$  then from (3.6) and (3.7), it is clear that either  $r(z_5 | \widetilde{\Pi}) = r(z_6 | \widetilde{\Pi})$  or  $r(z_2 | \widetilde{\Pi}) = r(z_3 | \widetilde{\Pi})$ .

**Case II:** If two partitioning sets of  $\Pi$  are subsets of either *A* or  $X_1$  or  $B_1$  then (3.25), (3.2), (3.10) and (3.22) implies that either  $r(z_2 \mid \widetilde{\Pi}) = r(z_3 \mid \widetilde{\Pi})$  or  $r(a_4 \mid \widetilde{\Pi}) = r(y_1 \mid \widetilde{\Pi})$  or  $r(z_1 \mid \widetilde{\Pi}) = r(z_3 \mid \widetilde{\Pi})$ .

**Case III:** If two partitioning sets of  $\Pi$  are subsets of either  $Y_1$  or  $C_1$  then (3.4), (3.11) and (3.20) implies that either  $r(z_1 | \widetilde{\Pi}) = r(z_2 | \widetilde{\Pi})$  or  $r(a_2 | \widetilde{\Pi}) = r(x_1 | \widetilde{\Pi})$  or  $r(z_1 | \widetilde{\Pi}) = r(a_5 | \widetilde{\Pi})$ .

**Case IV:** If two partitioning sets of  $\widetilde{\Pi}$  are subsets of either  $X_2$  or  $B_2$  then from (3.3), (3.8) and (3.23) we obtain either  $r(z_4 | \widetilde{\Pi}) = r(z_6 | \widetilde{\Pi})$  or  $r(a_5 | \widetilde{\Pi}) = r(y_{4n-11} | \widetilde{\Pi})$  or  $r(z_4 | \widetilde{\Pi}) = r(a_2 | \widetilde{\Pi})$ .

**AIMS Mathematics** 

**Case VI:** If two partitioning sets of  $\Pi$  are subsets of either  $Z_1 \cup Z_2$  or  $X_1 \cup X_2$  or  $Y_1 \cup Y_2$  then from (3.24), (3.26) and (3.27), we can easily be seen that either  $r(a_1 | \Pi) = r(a_5 | \Pi)$  or  $r(z_1 | \Pi) = r(a_5 | \Pi)$  or  $r(z_1 | \Pi) = r(a_1 | \Pi)$ .

**Case VII:** If two partitioning sets of  $\Pi$  are subsets of  $B_1 \cup B_2$  then from (3.16), (3.18), (3.22) and (3.23) we see that some either  $a_i$ ,  $a_j$  or  $a_i$ ,  $x_j$  or  $z_i$ ,  $z_j$  have same representations with respect to  $\Pi$ .

**Case VIII:** If two partitioning sets of  $\Pi$  are subsets of  $C_1 \cup C_2$  then from (3.17), and (3.19)-(3.21) we conclude that either  $a_i$ ,  $a_j$  or  $a_i$ ,  $x_j$  or  $z_i$ ,  $z_j$  have same representations with respect to  $\Pi$ .

**Case IX:** If two partitioning sets of  $\Pi$  are subsets of either  $(X_1 \cup B_1 \cup \{x_{2n-5}, b_{2n-5}\})$  or  $(X_2 \cup B_2 \cup \{x_{2n-5}, b_{2n-5}\})$  then from (3.8), (3.10), (3.22) and (3.23) it is clear that either  $r(z_1 \mid \widetilde{\Pi}) = r(z_3 \mid \widetilde{\Pi})$  or  $r(z_4 \mid \widetilde{\Pi}) = r(z_6 \mid \widetilde{\Pi})$ .

**Case X:** If two partitioning sets of  $\Pi$  are subsets of either  $(Y_1 \cup C_1 \cup \{y_{2n-5}, c_{2n-5}\})$  or  $(Y_2 \cup C_2 \cup \{y_{2n-5}, c_{2n-5}\})$  then (3.9), (3.11), (3.20) and (3.21) implies that either  $r(z_1 \mid \Pi) = r(z_2 \mid \Pi)$  or  $r(z_4 \mid \Pi) = r(z_5 \mid \Pi)$ .

**Case XI:** Also If two partite sets of  $\Pi$  are subsets of  $(C_1 \cup C_2 \cup B_1 \cup B_2)$  then there exists some  $x_i \in X_1 \cup X_2$  and  $y_i \in Y_1 \cup Y_2$  with same representations.

**Case XII:** If two partitioning sets of  $\Pi$  are subsets of either  $(X_1 \cup X_2 \cup C_1 \cup \{c_{2n-5}\})$  or  $(X_1 \cup X_2 \cup C_2 \cup \{c_{2n-5}\})$  then by (3.20), (3.21)and (3.26) we obtain either  $r(z_1 \mid \widetilde{\Pi}) = r(a_5 \mid \widetilde{\Pi})$  or  $r(z_4 \mid \widetilde{\Pi}) = r(a_4 \mid \widetilde{\Pi})$ . **Case XIII:** If two partitioning sets of  $\widetilde{\Pi}$  are subsets of either  $(Y_1 \cup Y_2 \cup B_2 \cup \{b_{2n-5}\})$  or  $(Y_1 \cup Y_2 \cup B_1 \cup \{c_{2n-5}\})$  then from (3.22), (3.23) and (3.27) either  $r(z_4 \mid \widetilde{\Pi}) = r(a_2 \mid \widetilde{\Pi})$  or  $r(z_1 \mid \widetilde{\Pi}) = r(a_1 \mid \widetilde{\Pi})$ .

Note that there are total 2047 possible combinations of subsets of vertex set of  $F_3[n]$  shown in (3.1), we guess that no two partite sets of  $\Pi$  can be subsets of combinations of  $X_1$ ,  $X_2$ ,  $Y_1$ ,  $Y_2$ ,  $Z_1$ ,  $Z_2$ , A,  $B_1$ ,  $B_2$ ,  $C_1$  and  $C_2$ . Thus, we have the following conjecture.

**Conjecture 3.1.** *The partition dimension of*  $F_3[n]$ *,*  $n \ge 5$ *, is* 4*.* 



**Figure 4.** Graph  $F_4[n]$ 

Next, we give the conjecture on the partition dimension of fullerene graph  $F_4[n]$ . The set of vertices

AIMS Mathematics

of  $F_4[n]$  is divided into the following sets:

$$A = \{a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8\}, \quad X = \{x_i \mid 1 \le i \le 6n - 1\}, \quad B = \{b_i \mid 1 \le i \le 6n - 1\}, \quad Y = \{y_i \mid 1 \le i \le 6n - 3\}, \quad Z = \{z_i \mid 1 \le i \le 6n - 3\}.$$
(3.31)

The relations of distances of the vertices of  $F_4[n]$  are as follows:

$$\begin{aligned} d(x_1, a) &= d(b_1, a), & \text{for all } a \in A \setminus \{a_7, a_8\}, & (3.32) \\ d(x_{6n-1}, a) &= d(b_{6n-1}, a), & \text{for all } a \in A \setminus \{a_3, a_4\}, & (3.33) \\ d(a_2, x) &= d(a_4, x), & \text{for all } x \in X \setminus \{x_1\}, & (3.34) \\ d(a_4, y) &= d(b_2, y), & \text{for all } y \in Y \setminus \{y_1\}, & (3.35) \\ d(a_3, z) &= d(x_2, z), & \text{for all } z \in Z \setminus \{z_1\}, & (3.36) \\ d(a_2, b) &= d(a_3, b), & \text{for all } b \in B \setminus \{b_1\}, & (3.37) \\ d(a_1, x) &= d(b_1, x), & \text{for all } x \in X, & (3.38) \\ d(a_1, b) &= d(x_1, b), & \text{for all } b \in B, & (3.39) \\ d(a_7, z) &= d(x_{6n-2}, z), & \text{for all } z \in Z \setminus \{z_{6n-3}\}, & (3.40) \end{aligned}$$

$$d(a_8, y) = d(b_{6n-2}, y), \qquad \text{for all } y \in Y \setminus \{y_{6n-3}\}.$$
(3.41)

The relations of distances of the vertices of *Z* and  $F_4[n]$  are as follows:

$$d(a_1, z) = d(x_1, z), \quad d(a_4, z) = d(b_2, z), \quad d(a_8, z) = d(b_{6n-2}, z), \quad d(a_2, z) = d(a_3, z).$$
(3.42)

The relations of distances of the vertices of *Y* and  $F_4[n]$  are as follows:

$$d(a_1, y) = d(b_1, y), \quad d(a_3, y) = d(x_2, y), \quad d(a_7, y) = d(x_{6n-2}, y), \quad d(a_2, y) = d(a_4, y).$$
(3.43)

**Lemma 3.2.** Let  $F_4[n]$  be a fullerene graph shown in Figure 4. Then  $3 \le pd(F_4[n]) \le 4$ , where  $n \ge 1$ .

*Proof.* Let  $\Pi = \{S_1, S_2, S_3, S_4\}$ , where  $S_1 = \{a_3\}$ ,  $S_2 = \{a_7\}$ ,  $S_3 = \{a_8\}$  and  $S_4 = V(F_4[n]) \setminus \{a_3, a_7, a_8\}$ , be a partition of  $V(F_4[n])$ . We show that  $\Pi$  is a resolving partition of  $F_4[n]$  with minimum cardinality. The representation of each vertex of A other than  $a_3$ ,  $a_7$ ,  $a_8$  with respect to  $\Pi$  is given as:

 $\begin{aligned} r(a_1 \mid \Pi) &= (2, 6n, 6n, 0), \quad r(a_2 \mid \Pi) = (1, 6n - 1, 6n - 1, 0), \quad r(a_4 \mid \Pi) = (1, 6n - 1, 6n - 2, 0), \\ r(a_5 \mid \Pi) &= (6n, 2, 2, 0), \quad r(a_6 \mid \Pi) = (6n - 1, 1, 1, 0). \end{aligned}$ 

The representation of each vertex of X with respect to  $\Pi$  is given as:

$$r(x_i \mid \Pi) = \begin{cases} (3, 6n - 1, 6n, 0) & \text{if } i = 1, \\ (i, 6n - i, 6n + 1 - i, 0) & \text{if } 2 \le i \le 6n - 2, \\ (6n - 1, 3, 3, 0) & \text{if } i = 6n - 1. \end{cases}$$

The representation of each vertex B with respect to  $\Pi$  is given as:

$$r(b_i \mid \Pi) = \begin{cases} (3, 6n, 6n - 1, 0) & \text{if } i = 1, \\ (i - 1, 6n + 1 - i, 6n - i, 0) & \text{if } 2 \le i \le 6n - 2, \\ (6n, 3, 3, 0) & \text{if } i = 6n - 1. \end{cases}$$

**AIMS Mathematics** 

Volume 3, Issue 3, 343–352

The representation of each vertex of *Y* and *Z* with respect to  $\Pi$  is given as:

$$\begin{aligned} r(y_i \mid \Pi) &= (i, 6n - 2 - i, 6n - 1 - i, 0) & \text{if } 1 \le i \le 6n - 3, \\ r(z_i \mid \Pi) &= (i + 1, 6n - 1 - i, 6n - 2 - i, 0) & \text{if } 1 \le i \le 6n - 3. \end{aligned}$$

From above representations of vertices with respect to  $\Pi$  it can be easily seen that representations are distinct. This implies that  $\Pi$  is a resolving partition of  $F_4[n]$ . Thus  $pd(F_4[n]) \le 4$ . Also by Lemma 1.2, we note that  $pd(F_4[n]) \ge 3$ .

Suppose that there exists partition  $\widetilde{\Pi}$  of  $F_4[n]$ ,  $n \ge 1$ , such that  $|\widetilde{\Pi}| = 3$ . Let  $\widetilde{\Pi} = \{\widetilde{S}_1, \widetilde{S}_2, \widetilde{S}_3\}$ . Consider the following cases:

**Case I:** If two partitioning sets of  $\widetilde{\Pi}$  are subsets of X then by (3.38), we have  $r(a_1|\widetilde{\Pi}) = r(b_1|\widetilde{\Pi})$  and if two partitioning sets of  $\widetilde{\Pi}$  are subsets of Y then by (3.43), we have  $r(a_1 | \widetilde{\Pi}) = r(b_1 | \widetilde{\Pi})$ .

**Case II:** If two partitioning sets of  $\Pi$  are subsets of *A* except  $\{a_7, a_8\}$  then by (3.32), we have  $r(b_1 \mid \Pi) = r(x_1 \mid \Pi)$ . If two partitioning sets of  $\Pi$  are subsets of *A* except  $\{a_3, a_4\}$  then by (3.33), we have and  $r(x_{6n-1} \mid \Pi) = r(b_{6n-1} \mid \Pi)$ .

**Case III:** If two partitioning sets of  $\overline{\Pi}$  are subsets of either *B* or *Z* then by (3.39) and (3.42), we have  $r(a_1 | \overline{\Pi}) = r(x_1 | \overline{\Pi})$ .

**Case IV:** Similarly, from equations (3.38) and (3.43) we observe that if two partitioning sets of  $\widetilde{\Pi}$  are subsets of  $X \cup Y$  then  $r(a_1 | \widetilde{\Pi}) = r(b_1 | \widetilde{\Pi})$ .

**Case V:** If two partitioning sets of  $\Pi$  are subsets of  $B \cup Z$  then from (3.39) and (3.42), we see that  $r(a_1 \mid \Pi) = r(x_1 \mid \Pi)$ .

**Case VI:** We notice that if two partitioning sets of  $\overline{\Pi}$  are subsets of  $Y \cup Z$  then there exists either some  $a_i, x_j$  or  $a_i, b_j$  with same representations with respect to  $\overline{\Pi}$ .

Note that there are total 31 possible combinations of subsets of vertex set of  $F_4[n]$ , shown in (3.31). Thus because of unique structural properties of  $F_4[n]$ , we can observe that no two partitioning sets of  $\Pi$  can be subsets of combinations of A, B, X, Y and Z. Thus, we have the following conjecture.

**Conjecture 3.2.** *The partition dimension of*  $F_4[n]$  *is* 4.

### Acknowledgments

This research is supported by the Higher Education Commission of Pakistan under grant No. 20-3067/NRPU /R&D/HEC/12.

# **Conflict of interest**

All authors declare no conflicts of interest in this paper.

### References

- 1. A. R. Ashrafi, Z. Mehranian, Topological study of (3,6)- and (4,6)-fullerenes, In: *topological modelling of nanostructures and extended systems*, Springer Netherlands, (2013), 487–510.
- 2. G. Chartrand, L. Eroh, M. A. Johnson, et al. *Resolvability in graphs and the metric dimension of a graph*, Disc. Appl. Math., **105** (2000), 99–113.

- 3. G. Chartrand, E. Salehi, P. Zhang, *The partition dimension of a graph*, Aequationes Math., **59** (2000), 45–54.
- 4. G. Chartrand, E. Salehi, P. Zhang, *On the partition dimension of a graph*, Congr. Numer., **131** (1998), 55–66.
- 5. C. Grigorious, S. Stephen, B. Rajan, et al. *On the partition dimension of circulant graphs*, The Computer Journal, **60** (2016), 180–184.
- 6. F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Combin., 2 (1976), 191–195.
- I. Javaid, N. K. Raja, M. Salman, et al. *The partition dimension of circulant graphs*, World Applied Sciences Journal, 18 (2012), 1705–1717.
- 8. F. Koorepazan-Moftakhar, A. R. Ashrafi, Z. Mehranian, *Automorphism group and fixing number* of (3, 6) and (4, 6)-fullerene graphs, Electron. Notes Discrete Math., **45** (2014), 113–120.
- H. W. Kroto, J. R. Heath, S. C. O'Brien, et al. C<sub>60</sub>: buckminsterfullerene, Nature, **318** (1985), 162–163.
- R. A. Melter, I. Tomescu, *Metric bases in digital geometry*, Computer vision, graphics, and image Processing, 25 (1984), 113–121.
- H. M. A. Siddiqui, M. Imran, Computation of metric dimension and partition dimension of Nanotubes, J. Comput. Theor. Nanosci., 12 (2015), 199–203.
- 12. H. M. A. Siddiqui, M. Imran, *Computing metric and partition dimension of 2-Dimensional lattices of certain Nanotubes*, J. Comput. Theor. Nanosci., **11** (2014), 2419–2423.
- 13. P. J. Slater, Leaves of trees, Congress. Numer., 14 (1975), 549–559.
- 14. J. A. Rodríguez-Velázquez, I. G. Yero, M. Lemanska, *On the partition dimension of trees*, Disc. Appl. Math., **166** (2014), 204–209.
- 15. J. A. Rodríguez-Velázquez, I. G. Yero, H. Fernau, *On the partition dimension of unicyclic graphs*, Bull. Math. Soc. Sci. Math. Roumanie, **57** (2014), 381–391.
- 16. I. Tomescu, I. J. Slamin, *On the partition dimension and connected partition dimension of wheels*, Ars Combin., **84** (2007), 311–317.
- 17. I. Tomescu, *Discrepancies between metric dimension and partition dimension of a connected graph*, Disc. Math., **308** (2008), 5026–5031.



 $\bigcirc$  2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)