Mathematics

Research article

On partition dimension of fullerene graphs

Naila Mehreen, Rashid Farooq and Shehnaz Akhter*
School of Natural Sciences, National University of Sciences and Technology, H-12 Islamabad, Pakistan

* Correspondence: Email: shehnazakhter36@yahoo.com.

Abstract

Let $G=(V(G), E(G))$ be a connected graph and $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ be a k partition of $V(G)$. The representation $r(v \mid \Pi)$ of a vertex v with respect to Π is the vector $\left(d\left(v, S_{1}\right), d\left(v, S_{2}\right), \ldots, d\left(v, S_{k}\right)\right)$, where $d\left(v, S_{i}\right)=\min \left\{d\left(v, s_{i}\right) \mid s_{i} \in S_{i}\right\}$. The partition Π is called a resolving partition of G if $r(u \mid \Pi) \neq r(v \mid \Pi)$ for all distinct $u, v \in V(G)$. The partition dimension of G, denoted by $p d(G)$, is the cardinality of a minimum resolving partition of G. In this paper, we calculate the partition dimension of two $(4,6)$-fullerene graphs. We also give conjectures on the partition dimension of two $(3,6)$-fullerene graphs.

Keywords: partition dimension; fullerene graphs
Mathematics Subject Classification: 05C12

1. Introduction

Slater [13] and Harary et al. [6] introduced the notions of resolvability and locating number in graphs. Chartrand et al. [4] introduced the partition dimension of a graph. These concepts have some applications in Chemistry for representing chemical compounds [2] or to problems of pattern recognition and image processing, some of which involve the use of hierarchical data structures [10].

Kroto et al. [9] discovered fullerene molecule and since then, scientists took a great interest in the fullerene graphs. A ($k, 6$)-fullerene graph is a connected cubic plane graph whose faces have sizes k and 6 . There are only three types of fullerene graphs, that is, $(3,6),(4,6)$ and $(5,6)$-fullerene graphs. A (5,6)-fullerene is the usual fullerene as the molecular graph of sphere carbon fullerene. A $(3,6)$ fullerene graph has cycles of order three and six. The Euler's formula implies that a $(3,6)$-fullerene graph has exactly four faces of size 3 and $(n / 2)-2$ hexagons. Similarly $(4,6)$ and $(5,6)$-fullerene graphs has cycles of order four and six, and five and six, respectively. The Euler's formula implies that a (4, 6)-fullerene graph has exactly six square faces and ($n / 2$) - 4 hexagons.

Chartrand et al. [3] gave useful definitions and results related to the partition dimension of a
connected graph. Let G be a connected graph with vertex set $V(G)$ and edge set $E(G)$. If S is a subset of $V(G)$ and $v \in V(G)$ then the distance between v and S, denoted by $d(v, S)$, is defined as $d(v, S)=\min \{d(v, x) \mid x \in S\}$. For an ordered k-partition $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ of $V(G)$ and a vertex v of G, the representation of v with respect to Π is defined as the k-vector $r(v \mid \Pi)=\left(d\left(v, S_{1}\right), d\left(v, S_{2}\right), \ldots, d\left(v, S_{k}\right)\right)$. The partition Π is called a resolving partition if $r(u \mid \Pi) \neq r(v \mid \Pi)$ for each $u, v \in V(G), u \neq v$. The minimum k for which there is a resolving k-partition of $V(G)$ is called the partition dimension of G and is denoted by $p d(G)$.

Many authors determined the partition dimension of specific classes of graphs. Rodríguez-Velázquez et al. [14, 15] find the bounds on the partition dimension of trees and unicyclic graphs. Tomescu et al. [16] calculated the partition dimension of a wheel graph and Tomescu [17] discussed the metric and partition dimension of a connected graph. Grigorious et al. [5] and Javaid et al. [7] calculated the partition dimension of some classes of circulant graphs.

The following result is a useful property in determining partition dimension.
Lemma 1.1. [3] Let Π be a resolving partition of vertex set $V(G)$ of a connected graph G and $u, v \in$ $V(G)$. If $d(u, w)=d(v, w)$ for all $w \in V(G) \backslash\{u, v\}$ then u and v belong to different classes of Π.

The partition dimension of some families of graphs is given in next lemma.
Lemma 1.2. [3] Let G be a connected graph. Then

1. $p d(G)=2$ if and only if $G=P_{n}$ for $n \geq 2$,
2. $p d(G)=n$ if and only if $G=K_{n}$,
3. $\operatorname{pd}(G)=3$ if $G=C_{n}$ for $n \geq 3$.

Above results are useful in computing the partition dimension of connected graphs. Ashrafi et al. [1] studied the topological indices of $(3,6)$ and $(4,6)$-fullerene graphs. Moftakhar et al. [8] calculated the automorphism group and fixing number of $(3,6)$ and $(4,6)$-fullerene graphs. Siddiqui et al. [11, 12] calculated the metric dimension and partition dimension of nanotubes. In this paper, we calculate the partition dimension of two $(4,6)$-fullerene graphs. Also we give conjectures on the partition dimension of two (3,6)-fullerene graphs.

2. Partition dimension of (4, 6)-fullerene graphs

In this section, we consider two (4,6)-fullerene graphs $G_{1}[n]$ and $G_{2}[n]$ shown in Figure 1 and Figure 2, respectively. It is easily seen that the order of $G_{1}[n]$ and $G_{2}[n]$ is $8 n$ and $8 n+4$, respectively. We calculate the partition dimension of $G_{1}[n]$ and $G_{2}[n]$ graphs.
Theorem 2.1. The partition dimension of fullerene graph $G_{1}[n]$ is 3 .
Proof. Let $\Pi=\left\{S_{1}, S_{2}, S_{3}\right\}$, where $S_{1}=\left\{x_{2 n}, x_{2 n+1}\right\}, S_{2}=\left\{y_{2 n}\right\}$ and $S_{3}=V\left(G_{1}[n]\right) \backslash\left\{x_{2 n}, x_{2 n+1}, y_{2 n}\right\}$, be a partition of $V\left(G_{1}[n]\right)$. We show that Π is a resolving partition of $G_{1}[n]$ with minimum cardinality. The representation of each vertex of $G_{1}[n]$ with respect to Π is given as follows:

$$
\begin{gathered}
r\left(x_{2 n} \mid \Pi\right)=(0,1,1), \quad r\left(x_{2 n+1} \mid \Pi\right)=(0,2,1), \quad r\left(y_{2 n} \mid \Pi\right)=(1,0,1) . \\
r\left(x_{i} \mid \Pi\right)= \begin{cases}(2 n-i, 2 n-i+1,0) & \text { if } 1 \leq i \leq 2 n-1, \\
(i-2 n-1, i-2 n+1,0) & \text { if } 2 n+2 \leq i \leq 4 n .\end{cases}
\end{gathered}
$$

Figure 1. Graph $G_{1}[n]$
and

$$
r\left(y_{i} \mid \Pi\right)= \begin{cases}(2 n-i+1,2 n-i, 0) & \text { if } 1 \leq i \leq 2 n-1 \\ (i-2 n, i-2 n, 0) & \text { if } 2 n+1 \leq i \leq 4 n\end{cases}
$$

Therefore, it is easily seen that the representation of each vertex with respect to Π is distinct. This shows that Π is a resolving partition of $G_{1}[n]$. Thus $p d\left(G_{1}[n]\right) \leq 3$.

On the other hand, by Lemma 1.2, it follows that $p d\left(G_{1}[n]\right) \geq 3$. Hence $p d\left(G_{1}[n]\right)=3$.

Figure 2. Graph $G_{2}[n]$
In next theorem, we calculate the partition dimension of $G_{2}[n]$.
Theorem 2.2. The partition dimension of fullerene graph $G_{2}[n]$ is 3 .
Proof. Let $\Pi=\left\{S_{1}, S_{2}, S_{3}\right\}$, where $S_{1}=\left\{x_{2 n+1}, x_{2 n+2}\right\}, S_{2}=\left\{y_{2 n+1}\right\}$ and $S_{3}=V\left(G_{2}[n]\right) \backslash\left\{x_{2 n+1}, x_{2 n+2}\right.$, $\left.y_{2 n+1}\right\}$, be a partition of $V\left(G_{2}[n]\right)$. We show that Π is a resolving partition of $G_{2}[n]$ with minimum cardinality. The representation of each vertex of $G_{2}[n]$ with respect to Π is given as follows:

$$
\begin{aligned}
r\left(x_{2 n+1} \mid \Pi\right) & =(0,1,1), \quad r\left(x_{2 n+2} \mid \Pi\right)=(0,2,1), \quad r\left(y_{2 n+1} \mid \Pi\right)=(1,0,1) . \\
r\left(x_{i} \mid \Pi\right) & = \begin{cases}(2 n+1-i, 2 n+2-i, 0) & \text { if } 1 \leq i \leq 2 n, \\
(i-2 n-2, i-2 n, 0) & \text { if } 2 n+3 \leq i \leq 4 n+2 .\end{cases}
\end{aligned}
$$

and

$$
r\left(y_{i} \mid \Pi\right)= \begin{cases}(2 n+2-i, 2 n+1-i, 0) & \text { if } 1 \leq i \leq 2 n \\ (i-2 n-1, i-2 n-1,0) & \text { if } 2 n+2 \leq i \leq 4 n+2\end{cases}
$$

All pairs of vertices can easily be resolved by the partitioning set Π. Therefore Π is a resolving partition of $G_{2}[n]$ and $p d\left(G_{2}[n]\right) \leq 3$.

On the other hand, by Lemma 1.2, it follows that $p d\left(G_{2}[n]\right) \geq 3$. Hence $p d\left(G_{2}[n]\right)=3$.

3. Conjectures on partition dimension of two (3, 6)-fullerene graphs

In this section, we consider two (3,6)-fullerene graphs $F_{3}[n]$ and $F_{4}[n]$ shown in Figure 3 and Figure 4, respectively. We can see that order of $F_{3}[n]$ and $F_{4}[n]$ is $16 n-32, n \geq 4$ and $24 n, n \geq 1$, respectively.

Figure 3. Graph $F_{3}[n]$

Firstly we consider the fullerene graph $F_{3}[n]$ and give a conjecture on the partition dimension of $F_{3}[n]$. The set of vertices $V\left(F_{3}[n]\right), n \geq 5$, is divided into the following sets:

$$
\begin{array}{lll}
X_{1}=\left\{x_{i} \mid 1 \leq i \leq 2 n-6\right\}, & X_{2}=\left\{x_{i} \mid 2 n-4 \leq i \leq 4 n-11\right\}, & Y_{1}=\left\{y_{i} \mid 1 \leq i \leq 2 n-6\right\}, \\
Y_{2}=\left\{y_{i} \mid 2 n-4 \leq i \leq 4 n-11\right\}, & Z_{1}=\left\{z_{1}, z_{2}, z_{3}\right\}, & Z_{2}=\left\{z_{4}, z_{5}, z_{6}\right\}, \\
A=\left\{a_{i} \mid 1 \leq i \leq 6\right\}, & B_{1}=\left\{b_{i} \mid 1 \leq i \leq 2 n-6\right\}, & B_{2}=\left\{b_{i} \mid 2 n-4 \leq i \leq 4 n-11\right\}, \\
C_{1}=\left\{c_{i} \mid 1 \leq i \leq 2 n-6\right\}, & C_{2}=\left\{c_{i} \mid 2 n-4 \leq i \leq 4 n-11\right\} . & \tag{3.1}
\end{array}
$$

The relations of distances of vertices of $F_{3}[n]$ are given by:

$$
\begin{array}{rlrl}
d\left(a_{4}, x\right) & =d\left(y_{1}, x\right), & & \text { for all } x \in X_{1}, \\
d\left(a_{5}, x\right) & =d\left(y_{4 n-11}, x\right), & \text { for all } x \in X_{2}, \\
d\left(a_{2}, y\right)=d\left(x_{1}, y\right), & & \text { for all } y \in Y_{1}, \\
d\left(a_{1}, y\right)=d\left(x_{4 n-11}, y\right), & \text { for all } y \in Y_{2}, \\
d\left(z_{2}, z\right)=d\left(z_{3}, z\right), & & \text { for all } z \in Z_{2}, \\
d\left(z_{5}, z\right)=d\left(z_{6}, z\right), & & \text { for all } z \in Z_{1}, \\
d\left(z_{4}, x\right)=d\left(z_{6}, x\right), & & \text { for all } x \in X_{2} \cup\left\{x_{2 n-5}\right\}, \\
d\left(z_{4}, y\right)=d\left(z_{5}, y\right), & & \text { for all } y \in Y_{2} \cup\left\{y_{2 n-5}\right\}, \\
d\left(z_{1}, x\right)=d\left(z_{3}, x\right), & & \text { for all } x \in X_{1} \cup\left\{x_{2 n-5}, x_{2 n-4}\right\}, \\
d\left(z_{1}, y\right)=d\left(z_{2}, y\right), & & \text { for all } y \in Y_{1} \cup\left\{y_{2 n-5}, y_{2 n-4}\right\}, \\
d\left(a_{1}, x\right)=d\left(x_{4 n-11}, x\right), & \text { for all } x \in X_{1} \backslash\left\{x_{1}\right\}, \\
d\left(a_{5}, y\right)=d\left(y_{4 n-11}, y\right), & \text { for all } y \in Y_{1} \backslash\left\{y_{1}\right\}, \\
d\left(a_{2}, x\right)=d\left(x_{1}, x\right), & & \text { for all } x \in X_{2} \backslash\left\{x_{2 n-4}, x_{4 n-11}\right\}, \\
d\left(a_{4}, y\right)=d\left(y_{1}, y\right), & & \text { for all } y \in Y_{2} \backslash\left\{y_{2 n-4}, y_{4 n-11}\right\}, \tag{3.15}
\end{array}
$$

$$
\begin{array}{ll}
d\left(a_{6}, b\right)=d\left(a_{5}, b\right), & \text { for all } b \in B_{1} \cup B_{2} \cup\left\{b_{2 n-5}\right\} \backslash\left\{b_{1}\right\}, \\
d\left(a_{6}, c\right)=d\left(a_{1}, c\right), & \text { for all } c \in C_{1} \cup C_{2} \cup\left\{c_{2 n-5}\right\} \backslash\left\{c_{1}\right\}, \\
d\left(a_{1}, b\right)=d\left(x_{2}, b\right), & \text { for all } b \in\left\{b_{1}, b_{2}, b_{4 n-12}, b_{4 n-11}\right\}, \\
d\left(a_{5}, c\right)=d\left(y_{2}, c\right), & \text { for all } b \in\left\{c_{1}, c_{2}, c_{4 n-12}, c_{4 n-11}\right\} . \tag{3.19}
\end{array}
$$

The relations of distances of vertices of $C_{1} \cup\left\{c_{2 n-5}\right\}, C_{2} \cup\left\{c_{2 n-5}\right\}, B_{1} \cup\left\{b_{2 n-5}\right\}$ and $B_{2} \cup\left\{b_{2 n-5}\right\}$ are given by:

$$
\begin{array}{llll}
d\left(z_{1}, c\right)=d\left(z_{2}, c\right), & d\left(z_{1}, c\right)=d\left(a_{5}, c\right), & d\left(z_{2}, c\right)=d\left(a_{5}, c\right) & \text { for all } c \in C_{1} \cup\left\{c_{2 n-5}\right\}, \\
d\left(z_{4}, c\right)=d\left(z_{5}, c\right), & d\left(z_{4}, c\right)=d\left(a_{4}, c\right), & d\left(z_{5}, c\right)=d\left(a_{4}, c\right) & \text { for all } c \in C_{2} \cup\left\{c_{2 n-5}\right\}, \\
d\left(z_{1}, b\right)=d\left(z_{3}, b\right), & d\left(z_{1}, b\right)=d\left(a_{1}, b\right), & d\left(z_{3}, b\right)=d\left(a_{1}, b\right) & \text { for all } b \in B_{1} \cup\left\{b_{2 n-5}\right\}, \\
d\left(z_{4}, b\right)=d\left(z_{6}, b\right), & d\left(z_{4}, b\right)=d\left(a_{2}, b\right), & d\left(z_{6}, b\right)=d\left(a_{2}, b\right) & \text { for all } b \in B_{2} \cup\left\{b_{2 n-5}\right\} . \tag{3.23}
\end{array}
$$

The relations of distances of the pair of vertices of $Z_{1} \cup Z_{2}, A, X_{1} \cup X_{2} \cup\left\{x_{2 n-5}\right\}$ and $Y_{1} \cup Y_{2} \cup\left\{y_{2 n-5}\right\}$ are given by:

$$
\begin{array}{lll}
d\left(a_{1}, z\right)=d\left(a_{5}, z\right), & d\left(a_{2}, z\right)=d\left(a_{4}, z\right), & \text { for all } z \in Z_{1} \cup Z_{2}, \\
d\left(z_{2}, a\right)=d\left(z_{3}, a\right), & d\left(z_{5}, a\right)=d\left(z_{6}, a\right), & \text { for all } a \in A, \\
d\left(z_{1}, x\right)=d\left(a_{5}, x\right), & d\left(z_{4}, x\right)=d\left(a_{4}, x\right), & \text { for all } x \in X_{1} \cup X_{2} \cup\left\{x_{2 n-5}\right\}, \\
d\left(z_{1}, y\right)=d\left(a_{1}, y\right), & d\left(z_{4}, y\right)=d\left(a_{2}, y\right), & \text { for all } y \in Y_{1} \cup Y_{2} \cup\left\{y_{2 n-5}\right\} . \tag{3.27}
\end{array}
$$

The distance between the vertices $b_{i} \in B_{1} \cup B_{2}$ and $c_{i} \in C_{1} \cup C_{2}$ is given as:

$$
d\left(b_{i}, c_{i}\right)= \begin{cases}1 & \text { for } i \text { is even } \tag{3.28}\\ 3 & \text { for } i \text { is odd }\end{cases}
$$

The distance between the vertices $b_{i} \in B_{1} \cup B_{2}$ and $x_{i} \in X_{1} \cup X_{2}$ is given as:

$$
d\left(x_{i}, b_{i}\right)= \begin{cases}1 & \text { for } i \text { is even } \tag{3.29}\\ 3 & \text { for } i \text { is odd }\end{cases}
$$

The distance between the vertices $c_{i} \in C_{1} \cup C_{2}$ and $y_{i} \in Y_{1} \cup Y_{2}$ is given as:

$$
d\left(y_{i}, c_{i}\right)= \begin{cases}1 & \text { for } i \text { is even } \tag{3.30}\\ 3 & \text { for } i \text { is odd }\end{cases}
$$

Lemma 3.1. Let $F_{3}[n]$ be a fullerene graph shown in Figure 3. Then $3 \leq p d\left(F_{3}[n]\right) \leq 4$, where $n \geq 5$.
Proof. Let $\left\{z_{1}, z_{2}, z_{3}\right\}$ and $\left\{z_{4}, z_{5}, z_{6}\right\}$ be the vertices of outer triangles and $\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right\}$ be the vertices of outer hexagon of $F_{3}[n]$. Let $\Pi=\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}$, where $S_{1}=\left\{a_{5}\right\}, S_{2}=\left\{z_{2}\right\}, S_{3}=\left\{z_{5}\right\}$ and $S_{4}=V\left(F_{3}[n]\right) \backslash\left\{a_{5}, z_{2}, z_{5}\right\}$, be a partition of $V\left(F_{3}[n]\right)$. We show that Π is a resolving partition of $F_{3}[n]$ with minimum cardinality. For this we give the representation of each vertex of $F_{3}[n]$ other than a_{5}, z_{2}, z_{5} with respect to Π. The representation of vertices of A with respect to Π is given by:

$$
\begin{array}{ll}
r\left(a_{1} \mid \Pi\right)=(2,3,4,0), & r\left(a_{2} \mid \Pi\right)=(3,4,3,0), \quad r\left(a_{3} \mid \Pi\right)=(2,5,2,0), \\
r\left(a_{4} \mid \Pi\right)=(1,4,3,0), & r\left(a_{6} \mid \Pi\right)=(1,2,5,0) .
\end{array}
$$

The representation of vertices of $\left(Z_{1} \cup Z_{2}\right) \backslash\left\{z_{2}, z_{5}\right\}$ with respect to Π is given by:

$$
r\left(z_{1} \mid \Pi\right)=(2,1,6,0), \quad r\left(z_{3} \mid \Pi\right)=(3,1,7,0), \quad r\left(z_{4} \mid \Pi\right)=(3,6,1,0), \quad r\left(z_{6} \mid \Pi\right)=(4,7,1,0) .
$$

The representation of vertices of $X_{1} \cup X_{2}$ with respect to Π is given by:

$$
r\left(x_{i} \mid \Pi\right)= \begin{cases}(3,2,5,0) & \text { if } i=1, \\ (i+2, i+1, i+2,0) & \text { if } 2 \leq i \leq 2 n-6 \\ (2 n-3,2 n-4,2 n-4,0) & \text { if } i=2 n-5, \\ (4 n-i-7,4 n-i-8,4 n-i-9,0) & \text { if } 2 n-4 \leq i \leq 4 n-12 \\ (4,5,2,0) & \text { if } i=4 n-11\end{cases}
$$

The representation of vertices of $B_{1} \cup B_{2}$ and $C_{1} \cup C_{2}$ with respect to Π is given by:

$$
\begin{aligned}
& r\left(b_{i} \mid \Pi\right)= \begin{cases}(4, i, i+5,0) & \text { if } i \in\{1,2\}, \\
(i+2, i, 4 n-i-10,0) & \text { if } 3 \leq i \leq 2 n-5, \\
(2 n-3,2 n-4,2 n-6,0) & \text { if } i=2 n-4, \\
(4 n-i-7,4 n-i-7,4 n-i-10,0) & \text { if } 2 n-3 \leq i \leq 4 n-13, \\
(5,4 n-i-5,4 n-i-10,0) & \text { if } i \in\{4 n-12,4 n-11\} .\end{cases} \\
& r\left(c_{i} \mid \Pi\right)= \begin{cases}(i+1, i+1, i+5,0) & \text { if } i \in\{1,2\}, \\
(i+1, i+1,4 n-i-9,0) & \text { if } 3 \leq i \leq 2 n-5, \\
(2 n-4,2 n-3,2 n-5,0) & \text { if } i=2 n-4, \\
(4 n-i-8,4 n-i-6,4 n-i-9,0) & \text { if } 2 n-3 \leq i \leq 4 n-13, \\
(4 n-i-8,4 n-i-5,4 n-i-9,0) & \text { if } i \in\{4 n-12,4 n-11\} .\end{cases}
\end{aligned}
$$

The representation of vertices of $Y_{1} \cup Y_{2}$ with respect to Π is given by:

$$
r\left(y_{i} \mid \Pi\right)= \begin{cases}(1,3,5,0) & \text { if } i=1 \\ (i, i+2, i+3,0) & \text { if } 2 \leq i \leq 2 n-6 \\ (2 n-5,2 n-3,2 n-3,0) & \text { if } i=2 n-5 \\ (4 n-i-9,4 n-i-7,4 n-i-8,0) & \text { if } 2 n-4 \leq i \leq 4 n-12 \\ (2,5,3,0) & \text { if } i=4 n-11\end{cases}
$$

It is easily seen that the representation of each vertex with respect to Π is distinct. This shows that Π is a resolving partition of $F_{3}[n]$. Thus $p d\left(F_{3}[n]\right) \leq 4$. Also by Lemma 1.2 , we have $p d\left(F_{3}[n]\right) \geq 3$.

Suppose that there exists a partition $\widetilde{\Pi}$ of $F_{3}[n], n \geq 5$, such that $|\widetilde{\Pi}|=3$. Let $\widetilde{\Pi}=\left\{\widetilde{S}_{1}, \widetilde{S}_{2}, \widetilde{S}_{3}\right\}$. Consider the following cases:
Case I: If two partitioning sets of $\widetilde{\Pi}$ are subsets of either Z_{1} or Z_{2} then from (3.6) and (3.7), it is clear that either $r\left(z_{5} \mid \widetilde{\Pi}\right)=r\left(z_{6} \mid \widetilde{\Pi}\right)$ or $r\left(z_{2} \mid \widetilde{\Pi}\right)=r\left(z_{3} \mid \widetilde{\Pi}\right)$.
Case II: If two partitioning sets of $\widetilde{\Pi}$ are subsets of either A or X_{1} or B_{1} then (3.25), (3.2), (3.10) and (3.22) implies that either $r\left(z_{2} \mid \widetilde{\Pi}\right)=r\left(z_{3} \mid \widetilde{\Pi}\right)$ or $r\left(a_{4} \mid \widetilde{\Pi}\right)=r\left(y_{1} \mid \widetilde{\Pi}\right)$ or $r\left(z_{1} \mid \widetilde{\Pi}\right)=r\left(z_{3} \mid \widetilde{\Pi}\right)$.

Case III: If two partitioning sets of $\widetilde{\Pi}$ are subsets of either Y_{1} or C_{1} then (3.4), (3.11) and (3.20) implies that either $r\left(z_{1} \mid \widetilde{\Pi}\right)=r\left(z_{2} \mid \widetilde{\Pi}\right)$ or $r\left(a_{2} \mid \widetilde{\Pi}\right)=r\left(x_{1} \mid \widetilde{\Pi}\right)$ or $r\left(z_{1} \mid \widetilde{\Pi}\right)=r\left(a_{5} \mid \widetilde{\Pi}\right)$.
Case IV: If two partitioning sets of $\widetilde{\Pi}$ are subsets of either X_{2} or B_{2} then from (3.3), (3.8) and (3.23) we obtain either $r\left(z_{4} \mid \widetilde{\Pi}\right)=r\left(z_{6} \mid \widetilde{\Pi}\right)$ or $r\left(a_{5} \mid \widetilde{\Pi}\right)=r\left(y_{4 n-11} \mid \widetilde{\Pi}\right)$ or $r\left(z_{4} \mid \widetilde{\Pi}\right)=r\left(a_{2} \mid \widetilde{\Pi}\right)$.

Case V: If two partitioning sets of $\widetilde{\Pi}$ are subsets of either Y_{2} or C_{2} then from (3.4), (3.9) and (3.21) we obtain either $r\left(z_{4} \mid \widetilde{\Pi}\right)=r\left(z_{5} \mid \widetilde{\Pi}\right)$ or $r\left(a_{1} \mid \widetilde{\Pi}\right)=r\left(x_{4 n-11} \mid \widetilde{\Pi}\right)$.
Case VI: If two partitioning sets of $\widetilde{\Pi}$ are subsets of either $Z_{1} \cup Z_{2}$ or $X_{1} \cup X_{2}$ or $Y_{1} \cup Y_{2}$ then from (3.24), (3.26) and (3.27), we can easily be seen that either $r\left(a_{1} \mid \widetilde{\Pi}\right)=r\left(a_{5} \mid \widetilde{\Pi}\right)$ or $r\left(z_{1} \mid \widetilde{\Pi}\right)=r\left(a_{5} \mid \widetilde{\Pi}\right)$ or $r\left(z_{1} \mid \widetilde{\Pi}\right)=r\left(a_{1} \mid \widetilde{\Pi}\right)$.
Case VII: If two partitioning sets of $\widetilde{\Pi}$ are subsets of $B_{1} \cup B_{2}$ then from (3.16), (3.18), (3.22) and (3.23) we see that some either a_{i}, a_{j} or a_{i}, x_{j} or z_{i}, z_{j} have same representations with respect to $\widetilde{\Pi}$.
Case VIII: If two partitioning sets of $\widetilde{\Pi}$ are subsets of $C_{1} \cup C_{2}$ then from (3.17), and (3.19)-(3.21) we conclude that either a_{i}, a_{j} or a_{i}, x_{j} or z_{i}, z_{j} have same representations with respect to $\widetilde{\Pi}$.
Case IX: If two partitioning sets of $\widetilde{\Pi}$ are subsets of either $\left(X_{1} \cup B_{1} \cup\left\{x_{2 n-5}, b_{2 n-5}\right\}\right)$ or $\left(X_{2} \cup B_{2} \cup\right.$ $\left.\left\{x_{2 n-5}, b_{2 n-5}\right\}\right)$ then from (3.8), (3.10), (3.22) and (3.23) it is clear that either $r\left(z_{1} \mid \widetilde{\Pi}\right)=r\left(z_{3} \mid \widetilde{\Pi}\right)$ or $r\left(z_{4} \mid \widetilde{\Pi}\right)=r\left(z_{6} \mid \widetilde{\Pi}\right)$.
Case X: If two partitioning sets of $\widetilde{\Pi}$ are subsets of either $\left(Y_{1} \cup C_{1} \cup\left\{y_{2 n-5}, c_{2 n-5}\right\}\right)$ or $\left(Y_{2} \cup C_{2} \cup\right.$ $\left.\left\{y_{2 n-5}, c_{2 n-5}\right\}\right)$ then (3.9), (3.11), (3.20) and (3.21) implies that either $r\left(z_{1} \mid \widetilde{\Pi}\right)=r\left(z_{2} \mid \widetilde{\Pi}\right)$ or $r\left(z_{4} \mid \widetilde{\Pi}\right)=$ $r\left(z_{5} \mid \widetilde{\Pi}\right)$.
Case XI: Also If two partite sets of $\widetilde{\Pi}$ are subsets of ($C_{1} \cup C_{2} \cup B_{1} \cup B_{2}$) then there exists some $x_{i} \in X_{1} \cup X_{2}$ and $y_{j} \in Y_{1} \cup Y_{2}$ with same representations.
Case XII: If two partitioning sets of $\widetilde{\Pi}$ are subsets of either $\left(X_{1} \cup X_{2} \cup C_{1} \cup\left\{c_{2 n-5}\right\}\right)$ or $\left(X_{1} \cup X_{2} \cup C_{2} \cup\right.$ $\left.\left\{c_{2 n-5}\right\}\right)$ then by (3.20), (3.21)and (3.26) we obtain either $r\left(z_{1} \mid \widetilde{\Pi}\right)=r\left(a_{5} \mid \widetilde{\Pi}\right)$ or $r\left(z_{4} \mid \widetilde{\Pi}\right)=r\left(a_{4} \mid \widetilde{\Pi}\right)$. Case XIII: If two partitioning sets of $\widetilde{\Pi}$ are subsets of either $\left(Y_{1} \cup Y_{2} \cup B_{2} \cup\left\{b_{2 n-5}\right\}\right)$ or $\left(Y_{1} \cup Y_{2} \cup B_{1} \cup\right.$ $\left.\left\{c_{2 n-5}\right\}\right)$ then from (3.22), (3.23) and (3.27) either $r\left(z_{4} \mid \widetilde{\Pi}\right)=r\left(a_{2} \mid \widetilde{\Pi}\right)$ or $r\left(z_{1} \mid \widetilde{\Pi}\right)=r\left(a_{1} \mid \widetilde{\Pi}\right)$.

Note that there are total 2047 possible combinations of subsets of vertex set of $F_{3}[n]$ shown in (3.1), we guess that no two partite sets of $\widetilde{\Pi}$ can be subsets of combinations of $X_{1}, X_{2}, Y_{1}, Y_{2}, Z_{1}, Z_{2}, A, B_{1}, B_{2}, C_{1}$ and C_{2}. Thus, we have the following conjecture.

Conjecture 3.1. The partition dimension of $F_{3}[n], n \geq 5$, is 4 .

Figure 4. Graph $F_{4}[n]$

Next, we give the conjecture on the partition dimension of fullerene graph $F_{4}[n]$. The set of vertices
of $F_{4}[n]$ is divided into the following sets:

$$
\begin{array}{ll}
A=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}\right\}, & X=\left\{x_{i} \mid 1 \leq i \leq 6 n-1\right\}, \quad B=\left\{b_{i} \mid 1 \leq i \leq 6 n-1\right\}, \\
Y=\left\{y_{i} \mid 1 \leq i \leq 6 n-3\right\}, & Z=\left\{z_{i} \mid 1 \leq i \leq 6 n-3\right\} \tag{3.31}
\end{array}
$$

The relations of distances of the vertices of $F_{4}[n]$ are as follows:

$$
\begin{array}{ll}
d\left(x_{1}, a\right)=d\left(b_{1}, a\right), & \text { for all } a \in A \backslash\left\{a_{7}, a_{8}\right\}, \\
d\left(x_{6 n-1}, a\right)=d\left(b_{6 n-1}, a\right), & \text { for all } a \in A \backslash\left\{a_{3}, a_{4}\right\}, \\
d\left(a_{2}, x\right)=d\left(a_{4}, x\right), & \text { for all } x \in X \backslash\left\{x_{1}\right\}, \\
d\left(a_{4}, y\right)=d\left(b_{2}, y\right), & \text { for all } y \in Y \backslash\left\{y_{1}\right\}, \\
d\left(a_{3}, z\right)=d\left(x_{2}, z\right), & \text { for all } z \in Z \backslash\left\{z_{1}\right\}, \\
d\left(a_{2}, b\right)=d\left(a_{3}, b\right), & \text { for all } b \in B \backslash\left\{b_{1}\right\}, \\
d\left(a_{1}, x\right)=d\left(b_{1}, x\right), & \text { for all } x \in X, \\
d\left(a_{1}, b\right)=d\left(x_{1}, b\right), & \text { for all } b \in B, \\
d\left(a_{7}, z\right)=d\left(x_{6 n-2}, z\right), & \text { for all } z \in Z \backslash\left\{z_{6 n-3}\right\}, \\
d\left(a_{8}, y\right)=d\left(b_{6 n-2}, y\right), & \text { for all } y \in Y \backslash\left\{y_{6 n-3}\right\} . \tag{3.41}
\end{array}
$$

The relations of distances of the vertices of Z and $F_{4}[n]$ are as follows:

$$
\begin{equation*}
d\left(a_{1}, z\right)=d\left(x_{1}, z\right), \quad d\left(a_{4}, z\right)=d\left(b_{2}, z\right), \quad d\left(a_{8}, z\right)=d\left(b_{6 n-2}, z\right), \quad d\left(a_{2}, z\right)=d\left(a_{3}, z\right) \tag{3.42}
\end{equation*}
$$

The relations of distances of the vertices of Y and $F_{4}[n]$ are as follows:

$$
\begin{equation*}
d\left(a_{1}, y\right)=d\left(b_{1}, y\right), \quad d\left(a_{3}, y\right)=d\left(x_{2}, y\right), \quad d\left(a_{7}, y\right)=d\left(x_{6 n-2}, y\right), \quad d\left(a_{2}, y\right)=d\left(a_{4}, y\right) . \tag{3.43}
\end{equation*}
$$

Lemma 3.2. Let $F_{4}[n]$ be a fullerene graph shown in Figure 4. Then $3 \leq p d\left(F_{4}[n]\right) \leq 4$, where $n \geq 1$.
Proof. Let $\Pi=\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}$, where $S_{1}=\left\{a_{3}\right\}, S_{2}=\left\{a_{7}\right\}, S_{3}=\left\{a_{8}\right\}$ and $S_{4}=V\left(F_{4}[n]\right) \backslash\left\{a_{3}, a_{7}, a_{8}\right\}$, be a partition of $V\left(F_{4}[n]\right)$. We show that Π is a resolving partition of $F_{4}[n]$ with minimum cardinality. The representation of each vertex of A other than a_{3}, a_{7}, a_{8} with respect to Π is given as:

$$
\begin{array}{lll}
r\left(a_{1} \mid \Pi\right)=(2,6 n, 6 n, 0), & r\left(a_{2} \mid \Pi\right)=(1,6 n-1,6 n-1,0), & r\left(a_{4} \mid \Pi\right)=(1,6 n-1,6 n-2,0), \\
r\left(a_{5} \mid \Pi\right)=(6 n, 2,2,0), & r\left(a_{6} \mid \Pi\right)=(6 n-1,1,1,0) . &
\end{array}
$$

The representation of each vertex of X with respect to Π is given as:

$$
r\left(x_{i} \mid \Pi\right)= \begin{cases}(3,6 n-1,6 n, 0) & \text { if } i=1 \\ (i, 6 n-i, 6 n+1-i, 0) & \text { if } 2 \leq i \leq 6 n-2 \\ (6 n-1,3,3,0) & \text { if } i=6 n-1\end{cases}
$$

The representation of each vertex B with respect to Π is given as:

$$
r\left(b_{i} \mid \Pi\right)= \begin{cases}(3,6 n, 6 n-1,0) & \text { if } i=1 \\ (i-1,6 n+1-i, 6 n-i, 0) & \text { if } 2 \leq i \leq 6 n-2 \\ (6 n, 3,3,0) & \text { if } i=6 n-1\end{cases}
$$

The representation of each vertex of Y and Z with respect to Π is given as:

$$
\begin{array}{ll}
r\left(y_{i} \mid \Pi\right)=(i, 6 n-2-i, 6 n-1-i, 0) & \text { if } 1 \leq i \leq 6 n-3, \\
r\left(z_{i} \mid \Pi\right)=(i+1,6 n-1-i, 6 n-2-i, 0) & \text { if } 1 \leq i \leq 6 n-3 .
\end{array}
$$

From above representations of vertices with respect to Π it can be easily seen that representations are distinct. This implies that Π is a resolving partition of $F_{4}[n]$. Thus $p d\left(F_{4}[n]\right) \leq 4$. Also by Lemma 1.2 , we note that $p d\left(F_{4}[n]\right) \geq 3$.

Suppose that there exists partition $\widetilde{\Pi}$ of $F_{4}[n], n \geq 1$, such that $|\widetilde{\Pi}|=3$. Let $\widetilde{\Pi}=\left\{\widetilde{S}_{1}, \widetilde{S}_{2}, \widetilde{S}_{3}\right\}$. Consider the following cases:
Case I: If two partitioning sets of $\widetilde{\Pi}$ are subsets of X then by (3.38), we have $r\left(a_{1} \mid \widetilde{\Pi}\right)=r\left(b_{1} \mid \widetilde{\Pi}\right)$ and if two partitioning sets of $\widetilde{\Pi}$ are subsets of Y then by (3.43), we have $r\left(a_{1} \mid \widetilde{\Pi}\right)=r\left(b_{1} \mid \widetilde{\Pi}\right)$.
Case II: If two partitioning sets of $\widetilde{\Pi}$ are subsets of A except $\left\{a_{7}, a_{8}\right\}$ then by (3.32), we have $r\left(b_{1} \mid\right.$ $\widetilde{\Pi})=r\left(x_{1} \mid \widetilde{\Pi}\right)$. If two partitioning sets of $\widetilde{\Pi}$ are subsets of A except $\left\{a_{3}, a_{4}\right\}$ then by (3.33), we have and $r\left(x_{6 n-1} \mid \widetilde{\Pi}\right)=r\left(b_{6 n-1} \mid \widetilde{\Pi}\right)$.
Case III: If two partitioning sets of $\widetilde{\Pi}$ are subsets of either B or Z then by (3.39) and (3.42), we have $r\left(a_{1} \mid \widetilde{\Pi}\right)=r\left(x_{1} \mid \widetilde{\Pi}\right)$.
Case IV: Similarly, from equations (3.38) and (3.43) we observe that if two partitioning sets of $\widetilde{\Pi}$ are subsets of $X \cup Y$ then $r\left(a_{1} \mid \widetilde{\Pi}\right)=r\left(b_{1} \mid \widetilde{\Pi}\right)$.
Case V: If two partitioning sets of $\widetilde{\Pi}$ are subsets of $B \cup Z$ then from (3.39) and (3.42), we see that $r\left(a_{1} \mid \widetilde{\Pi}\right)=r\left(x_{1} \mid \widetilde{\Pi}\right)$.
Case VI: We notice that if two partitioning sets of $\widetilde{\Pi}$ are subsets of $Y \cup Z$ then there exists either some a_{i}, x_{j} or a_{i}, b_{j} with same representations with respect to $\widetilde{\Pi}$.

Note that there are total 31 possible combinations of subsets of vertex set of $F_{4}[n]$, shown in (3.31). Thus because of unique structural properties of $F_{4}[n]$, we can observe that no two partitioning sets of $\widetilde{\Pi}$ can be subsets of combinations of A, B, X, Y and Z. Thus, we have the following conjecture.

Conjecture 3.2. The partition dimension of $F_{4}[n]$ is 4 .

Acknowledgments

This research is supported by the Higher Education Commission of Pakistan under grant No. 203067/NRPU/R\&D/HEC/12.

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. A. R. Ashrafi, Z. Mehranian, Topological study of $(3,6)$ - and $(4,6)$-fullerenes, In: topological modelling of nanostructures and extended systems, Springer Netherlands, (2013), 487-510.
2. G. Chartrand, L. Eroh, M. A. Johnson, et al. Resolvability in graphs and the metric dimension of a graph, Disc. Appl. Math., 105 (2000), 99-113.
3. G. Chartrand, E. Salehi, P. Zhang, The partition dimension of a graph, Aequationes Math., 59 (2000), 45-54.
4. G. Chartrand, E. Salehi, P. Zhang, On the partition dimension of a graph, Congr. Numer., 131 (1998), 55-66.
5. C. Grigorious, S. Stephen, B. Rajan, et al. On the partition dimension of circulant graphs, The Computer Journal, 60 (2016), 180-184.
6. F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Combin., 2 (1976), 191-195.
7. I. Javaid, N. K. Raja, M. Salman, et al. The partition dimension of circulant graphs, World Applied Sciences Journal, 18 (2012), 1705-1717.
8. F. Koorepazan-Moftakhar, A. R. Ashrafi, Z. Mehranian, Automorphism group and fixing number of $(3,6)$ and $(4,6)$-fullerene graphs, Electron. Notes Discrete Math., 45 (2014), 113-120.
9. H. W. Kroto, J. R. Heath, S. C. O’Brien, et al. C60: buckminsterfullerene, Nature, 318 (1985), 162-163.
10. R. A. Melter, I. Tomescu, Metric bases in digital geometry, Computer vision, graphics, and image Processing, 25 (1984), 113-121.
11. H. M. A. Siddiqui, M. Imran, Computation of metric dimension and partition dimension of Nanotubes, J. Comput. Theor. Nanosci., 12 (2015), 199-203.
12. H. M. A. Siddiqui, M. Imran, Computing metric and partition dimension of 2-Dimensional lattices of certain Nanotubes, J. Comput. Theor. Nanosci., 11 (2014), 2419-2423.
13. P. J. Slater, Leaves of trees, Congress. Numer., 14 (1975), 549-559.
14. J. A. Rodríguez-Velázquez, I. G. Yero, M. Lemanska, On the partition dimension of trees, Disc. Appl. Math., 166 (2014), 204-209.
15. J. A. Rodríguez-Velázquez, I. G. Yero, H. Fernau, On the partition dimension of unicyclic graphs, Bull. Math. Soc. Sci. Math. Roumanie, 57 (2014), 381-391.
16. I. Tomescu, I. J. Slamin, On the partition dimension and connected partition dimension of wheels, Ars Combin., 84 (2007), 311-317.
17. I. Tomescu, Discrepancies between metric dimension and partition dimension of a connected graph, Disc. Math., 308 (2008), 5026-5031.
© 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
