AIMS Mathematics, 2017, 2(4): 658-681. doi: 10.3934/Math.2017.4.658

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

A class of thermal sub-differential contact problems

Université de La Réunion, Département de Mathématiques, BP 7151, 15 Avenue René Cassin, 97715 Saint Denis Messag, cedex 09, La Réunion, France

We study a class of dynamic sub-differential contact problems with friction, and thermale ects, for time depending long memory visco-elastic materials, with or without the clamped condition.We describe the mechanical problem, derive its variational formulation, and after specifyingthe assumptions on the data and operators, we prove an existence and uniqueness of weak solutionon displacement and temperature fields. Then we present a fully discrete scheme for numerical approximationsof the different solutions, and provide analysis of error order estimates. Finally variousnumerical computations in dimension two will be given.
  Figure/Table
  Supplementary
  Article Metrics

References

1. O. Chau, V. V. Motreanu, Dynamic contact problems with velocity conditions, Int. J. Ap. Mat. Com-Pol, 12 (2002): 17-26.

2. O. Chau, Quelques problèmes d'évolution en mécanique de contact et en biochimie, Habilitation thesis, Saint Denis La Réunion: University Press, 2010.

3. P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Contributions to Nonlinear Functional Analysis, Amsterdam: North Holland, 1978.

4. G. Duvaut, J. L. Lions, Les Inéquations en Mécanique et en Physique, Paris: Dunod, 1972.

5. J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Contributions to Nonlinear Functional Analysis, Dunod et Gauthier-Villars, 1969.

6. P. D. Panagiotopoulos, Inequality Problems in Mechanics and Applications, Contributions to Nonlinear Functional Analysis, Basel: Birkhäuser, 1985.    

7. P. D. Panagiotopoulos, Hemivariational Inequalities, applications in Mechanics and Engineering, Contributions to Nonlinear Functional Analysis, Springer-Verlag, 1993.

8. N. Costea, V. Radulescu, Hartman-Stampacchia results for stably pseudomonotone operators and non-linear hemivariational inequalities, Appl. Anal., 89 (2010): 175-88.    

9. E. Zeidler, Nonlinear Functional Analysis and its Applications, Contributions to Nonlinear Functional Analysis, Springer Verlag, 1997.

Copyright Info: © 2017, Oanh Chau, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved