AIMS Mathematics, 2017, 2(4): 622-634. doi: 10.3934/Math.2017.4.622.

Research article

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Certain subclass of analytic functions related with conic domains and associated with Salagean q-differential operator

1 Department of Mathematics COMSATS Institute of Information Technology, Abbottabad, Pakistan
2 Department of Mathematics Riphah International University Islamabad, Pakistan
3 School of Mathematical Sciences, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

In our present investigation, by using Salagean q-differentialoperator we introduce and define new subclass$k-\mathcal{US}(q,\gamma ,m),$ $\gamma \in C\backslash \{0\},$ andstudied certain subclass of analytic functions in conic domains. Weinvestigate the number of useful properties of this class suchstructural formula and coefficient estimates Fekete--Szego problem,we give some subordination results, and some other corollaries.
  Article Metrics

Keywords analytic functions; subordination; conic domain; Salagean q-differential operator

Citation: Saqib Hussain, Shahid Khan, Muhammad Asad Zaighum, Maslina Darus. Certain subclass of analytic functions related with conic domains and associated with Salagean q-differential operator. AIMS Mathematics, 2017, 2(4): 622-634. doi: 10.3934/Math.2017.4.622


  • 1. W. Ma, D. Minda, Uniformly convex functions, Ann. Polon. Math., 57 (1992), 165-175.    
  • 2. F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Am. Math. Soc., 118 (1993), 189-196.    
  • 3. A. W Goodman, Univalent Functions, vols. I, II, Polygonal Publishing House, New Jersey, 1983.
  • 4. A. W Goodman, On uniformly convex functions, Ann. Polon. Math., 56 (1991), 87-92.    
  • 5. S. Kanas, A.Wisniowska, Conic domains and k-starlike functions, Rev. Roum. Math. Pure Appl., 45 (2000), 647-657.
  • 6. S. Kanas, A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105 (1999), 327-336.    
  • 7. K.G Subramanian, G. Murugusundaramoorthy, P.Balasubrahmanyam, H. Silverman, Subclasses of uniformly convex and uniformly starlike functions, Math. Jpn., 42 (1995), 517-522.
  • 8. R. Bharati, R. Parvatham, A. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math., 28 (1997), 17-32.
  • 9. H. S. Al-Amiri, T. S. Fernando, On close-to-convex functions of complex order, Int. J. Math. Math. Sci., 13 (1990), 321-330.    
  • 10. M. Acu, Some subclasses of α-uniformly convex functions, Acta Math. Acad. Pedagogicae Nyiregyhaziensis, 21 (2005), 49-54.
  • 11. A. Gangadharan, T. N Shanmugam, H. M., Srivastava, Generalized hypergeometric functions associated with k-uniformly convex functions, Comput. Math. Appl., 44 (2002), 1515-1526.    
  • 12. A. Swaminathan, Hypergeometric functions in the parabolic domain, Tamsui Oxf. J. Math. Sci., 20 (2004), 1-16.
  • 13. S. Kanas, Techniques of the differential subordination for domain bounded by conic sections, Int. J. Math. Math. Sci., 38 (2003), 2389-2400.
  • 14. N. Khan, B. Khan, Q. Z. Ahmad and S. Ahmad, Some Convolution Properties of Multivalent Analytic Functions, AIMS Math., 2 (2017), 260-268.    
  • 15. S. S. Miller, P. T. Mocanu, Differential Subordinations: Theory and Applications, Series of Monographs and Textbooks in Pure and Application Mathematics, vol. 225. Marcel Dekker, New York, 2000.
  • 16. S. Kanas, D. Raducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183-1196.
  • 17. S. Ruscheweyh, New criteria for univalent functions, Proc. Am. Math. Soc., 49 (1975), 109-115.    
  • 18. K. I. .Noor, M. Arif, W. Ul-Haq, On k-uniformly close-to-convex functions of complex order, Appl. Math. Comput., 215 (2009), 629-635.
  • 19. W. Rogosinski, On the coeffcients of subordinate functions, Proc. Lond. Math. Soc., 48 (1943), 48-82.
  • 20. S. J. Sim, O. S., Kwon, N. E. Cho, H. M. Srivastava, Some classes of analytic functions associated with conic regions, Taiwan. J. Math., 16 (2012), 387-408.    
  • 21. W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis, Tianjin, 1992, Z. Li, F. Ren, L. Yang, S. Zhang (Eds.) pp. 157-169, International Press, Cambridge, MA, 1994.
  • 22. Z. Shareef, S. Hussain, M. Darus, Convolution operator in geometric functions theory, J. Inequal. Appl., 2012, 2012:213.
  • 23. K. I. Noor, M. A Noor, On certain classes of analytic functions defined by Noor integral operator, J. Math. Anal. Appl., 281 (2003), 244-252.    
  • 24. S. Mahmood, J. Sokol, New subclass of analytic functions in conical domain associated with ruscheweyh q-Differential operator, Results Math., 71 (2017), 1345-1357.    
  • 25. S. Shams, S. R. Kulkarni, J. M. Jahangiri, Classes of uniformly starlike and convex functions, Int. J. Math. Math. Sci., 55 (2004), 2959-2961.
  • 26. H. Selverman, Univalent functions with negative coeffcients, Proc. Amer. Math. Soc., 51 (1975), 109-116.    
  • 27. S. Owa, Y. Polatoglu, E.Yavuz, Coeffcient inequalities for classes of uniformly starlike and convex functions, J. Ineq. Pure Appl. Math., 7 (2006), 1-5.
  • 28. R. M. Ali, Starlikeness associated with parabolic regions, Int. J. Math. Sci., 4 (2005), 561-570.
  • 29. M. Govindaraj and S. Sivasubramanian, On a class of analytic functions related to conic domains involving q-calculus, Analysis Math., 43 (2017), 475-487.    
  • 30. G. S. Salagean, Subclasses of univalent functions, in: Complex Analysis, fifth Romanian-Finnish Seminar, Part 1 (Bucharest, 1981), Lecture Notes in Mathematics, 1013, Springer (Berlin, 1983), 362-372.
  • 31. G. E. Andrews, G. E. Askey and R. Roy, Special Functions, Cambridge University Press, Cambridge, 1999.
  • 32. C. R. Adams, On the linear partial q-difference equation of general type, Trans. Amer. Math. Soc., 31 (1929), 360-371.
  • 33. R. D. Carmichael, The general theory of linear q-difference equations, Amer. J. Math., 34 (1912), 147-168.    
  • 34. F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-203.
  • 35. T. E. Mason, On properties of the solution of linear q-difference equations with entire function coeffcients, Amer. J. Math., 37 (1915), 439-444.    
  • 36. W. J. Trjitzinsky, Analytic theory of linear q-difference equations, Acta Math., 61 (1933), 1-38.    
  • 37. M. E. H. Ismail, E. Merkes and D. Styer, A generalization of starlike functions, Complex Variables Theory and Appl., 14 (1990), 77-84.    


Reader Comments

your name: *   your email: *  

Copyright Info: 2017, Shahid Khan, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved