
http://www.aimspress.com/journal/Math

AIMS Mathematics, 2(4): 622-634
DOI:10.3934/Math.2017.4.622
Received: 20 October 2017
Accepted: 31 October 2017
Published: 16 November 2017

Research article

Certain subclass of analytic functions related with conic domains and
associated with Salagean q-differential operator

Saqib Hussain1, Shahid Khan2,∗, Muhammad Asad Zaighum2 and Maslina Darus3

1 Department of Mathematics COMSATS Institute of Information Technology, Abbottabad, Pakistan
2 Department of Mathematics Riphah International University Islamabad, Pakistan
3 School of Mathematical Sciences, Faculty of Sciences and Technology, Universiti Kebangsaan

Malaysia, 43600 Bangi, Selangor, Malaysia

* Correspondence: shahidmath761@gmail.com

Abstract: In our present investigation, by using Salagean q-differential operator we introduce and
define new subclass k − US(q, γ,m), γ ∈ C\{0}, and studied certain subclass of analytic functions in
conic domains. We investigate the number of useful properties of this class such structural formula
and coefficient estimates Fekete–Szego problem, we give some subordination results, and some other
corollaries.

Keywords: analytic functions; subordination; conic domain; Salagean q-differential operator
Mathematics Subject Classification: Primary 30C45; Secondary 30C50

1. Introduction

Let A denotes the class of all function f (z) which are analytic in the open unit disk E = {z ∈ C :
|z| < 1} and normalized by f (0) = 0 and f

′

(0) = 1, so each f ∈ A has the Maclaurin’s series expansion
of the form:

f (z) = z +

∞∑
n=2

anzn. (1.1)

A function f : E → C is called univalent on E if f (z1) = f (z2) for all z1 = z2, z1, z2 ∈ E. Let S ⊂ A
be the class of all functions which are univalent in E (see [3]). Recall D ⊂ C is said to be a starlike
with respect to the point d0 ∈ D if and only if the line segment joining d0 to every other point d ∈ D
lies entirely in D, while the set D is said to be convex if and only if it is starlike with respect to each of
its points. By S ∗ and K we means the subclasses of S composed of starlike and convex functions. A
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function f ∈ A is said to be starlike of order α, 0 ≤ α < 1, if

<

(
z f
′

(z)
f (z)

)
> α, z ∈ E.

A function f ∈ A is said to be convex of order α, 0 ≤ α < 1, if

<


(
z f
′

(z)
)′

f ′(z)

 > α, z ∈ E.

In 1991, Goodman [4] introduced the classUCV of uniformly convex functions which was extensively
studied by Ronning and independently by Ma and Minda [1, 2]. A more convenient characterization
of classUCV was given by Ma and Minda as:

f (z) ∈ UCV ⇐⇒ f (z) ∈ A and<
{

1 +
z f
′′

(z)
f ′(z)

}
>

∣∣∣∣∣∣z f
′′

(z)
f ′(z)

∣∣∣∣∣∣ , z ∈ E.

In 1999, Kanas and Wisniowska [5, 6] introduced the class k−uniformly convex functions, k ≥ 0,
denoted by k −UCV and a related class k − ST as:

f ∈ k −UCV ⇐⇒ z f
′

∈ k − ST ⇐⇒ f ∈ A and<


(
z f
′

(z)
)′

f ′(z)

 >
∣∣∣∣∣∣z f

′′

(z)
f ′(z)

∣∣∣∣∣∣ , z ∈ E.

The class k − UCV was discussed earlier in [7], see also [8] with same extra restriction and without
geometrical interpretation by Bharati et.al [8]. In 1985, Nasr et al., studied a natural extension of
classical starlikness in order terminology. We say that a function f (z) ∈ A is in the class S∗k,γ, k ≥ 0,
γ ∈ C\{0}, if and only if

<

{
1
γ

(
z f
′

(z)
f (z)

− 1
)}
> k

∣∣∣∣∣∣1γ
(
z f
′

(z)
f (z)

− 1
)∣∣∣∣∣∣ , z ∈ E.

Several author investigated the properties of the class, S∗k,γ and their generalizations in several direc-
tions for detail study see [4, 6, 9, 10, 11, 12, 13]. The convolution or Hadamard product of two function
f and g is denoted by f ∗ g is defined as

( f ∗ g)z) =

∞∑
n=0

anbnzn,

where f (z) is given by (1.1) and g(z) =
∑∞

n=2 bnzn, (z ∈ E).
If f (z) and g(z) are analytic in E, we say that f (z) is subordinate to g(z), written as f (z) ≺ g(z),
if there exists a Schwarz function w(z), which is analytic in E with w(0) = 0 and |w(z)| < 1 such
that f (z) = g(w(z)). Furthermore, if the function g(z) is univalent in E, then we have the following
equivalence, see [3, 14].

f (z) ≺ g(z)⇐⇒ f (0) = g(0) and f (E) ⊂ g(E). z ∈ E.
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Note that the q-difference operator plays an important role in the theory of hypergeometric series and
quantum theory, number theory, statistical mechanics, etc. At the beginning of the last century studies
on q-difference equations appeared in intensive works especially by Jackson [33], Carmichael [32],
Mason [34], Adams [31] and Trjitzinsky [35]. Research work in connection with function theory and
q-theory together was first introduced by Ismail et al. [36]. Till now only non-significant interest in
this area was shown although it deserves more attention.
Many differential and integral operators can be written in term of convolution, for details we refer [21].
It is worth mentioning that the technique of convolution helps researchers in further investigation of
geometric properties of analytic functions.
For any non-negative integer n, the q-integer number n denoted by [n]q, is defined by

[n]q =
1 − qn

1 − q
, [0]q = 0.

For non-negative integer n the q-number shift factorial is defined by

[n]q! = [1]q[2]q[3]q...[n]q,
(
[0]q! = 1

)
.

We note that when q→ 1, [n]! reduces to classical definition of factorial. In general, for a non-integer
number t, [t]q is defined by [t]q =

1−qt

1−q , [0]q = 0. Throughout in this paper, we will assume q to be a
fixed number between 0 and 1
The q-difference operator related to the q-calculus was introduced by Andrews et al. (see in [30] CH
10). For f ∈ A, the q-derivative operator or q-difference operator is defined as.

∂q f (z) =
f (qz) − f (z)

z(q − 1)
, z ∈ E, z ,, q , 1.

It can easily be seen that for n ∈ N = {1, 2, 3, ...} and z ∈ E.

∂qzn = [n]qzn−1, ∂q

 ∞∑
n=1

anzn

 =

∞∑
n=1

[n]qanzn−1.

Recently, Govindaraj and Sivasubramanian defined Salagean q-differential operator [28] as:
Let f ∈ A, let Salagean q-differential operator

S 0
q f (z) = f (z), S 1

q f (z) = z∂q f (z), ,S m
q f (z) = z∂q

(
S m−1

q f (z)
)
.

A simple calculation implies
S m

q f (z) = f (z) ∗Gq,m(z) (1.2)

Gq,m(z) = z +

∞∑
n=2

[n]m
q zn, (1.3)

Making use of (1.2) and (1.3), the power series of S m
q f (z) for f of the form (1.1) is given by

S m
q f (z) = z +

∞∑
n=2

[n]m
q anzn (1.4)
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Note that

Limq→1Gq,m(z) = z +

∞∑
n=2

nmzn

Limq→1S m
q f (z) = z +

∞∑
n=2

nmanzn

which is the familiar Salagean derivative [29].
Taking motivation from the work shahid et.al [23], we introduce new subclass k − US(q, γ,m), of
analytic functions with the theory of q-calculus by using Salagean q-differential operator.

Definition 1.1. Let f (z) ∈ A. Then f (z) is in the class k − US(q, γ,m), γ ∈ C\{0}, if it satisfies the
condition

<

{
1 +

1
γ

(z∂qS m
q f (z)

S m
q f (z)

− 1
)}
> k

∣∣∣∣∣∣1γ
(z∂qS m

q f (z)

S m
q f (z)

− 1
)∣∣∣∣∣∣ , z ∈ E.

By taking specific values of parameters, we obtain many important subclasses studied by various au-
thors in earlier papers. Here we inlist some of them.
(1) For m = 0, q→ 1, and γ = 1

1−β , β ∈ C\{1}, the class k −US(q, γ,m) reduce into the class SD(k, β)
studied by Shams et.al [24].
(2) For m = 0, q→ 1, and γ = 2

1−β , β ∈ C\{1}, the class k−US(q, γ,m) reduces into the classKD(k, β),
studied by Owa et.al [26].
(3) For k = 1, m = 0, q → 1, and γ = 1

1−β , β ∈ C\{1}, the class k − US(q, γ,m) reduce into the class
Sp(β) studied by Ali et.al [27].
(4) For k = 1, m = 0, q → 1, and γ = 2

1−β , β ∈ C\{1}, the class k − US(q, γ,m) reduces into the class
Kp(β), studied by Ali et.al [27].
(5) For m = 0, q → 1, the class k − US(q, γ,m) reduce into the class K − ST , introduced by Kanas
and Wisniowska [5].
(6) For k = 0, m = 0, q → 1, and γ = 1

1−β , β ∈ C\{1}, the class k − US(q, γ,m) reduce into the class
S∗(β) , well-known class of starlike of order respectively.
Geometric Interpretation
A function f (z) ∈ A is in the class k − US(q, γ,m) if and only if

z∂qS m
q f (z)

S m
q f (z) takes all the values in the

conic domain Ωk,γ = pk,γ(E), such that

Ωk,γ = γΩk + (1 − α),

where

Ωk =

{
u + iv : u > k

√
(u − 1)2 + v2

}
.

Since pk,γ(z) is convex univalent, so above definition can be written as

z∂qS m
q f (z)

S m
q f (z)

≺ pk,γ(z), (1.5)
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where

pk,γ(z) =



1+z
1−z , for k = 0,

1 +
2γ
π2

(
log 1+

√
z

1−
√

z

)2
, for k = 1,

1 +
2γ

1−k2 sinh2
{(

2
π

arccos k
)

arctan h
√

z
}
, for 0 < k < 1,

1 +
γ

k2−1 sin
(

π
2R(t)

∫ u(z)
√

t

0
1

√
1−x2
√

1−(tx)2
dx

)
+

γ

1−k2 , for k > 1.

(1.6)

The boundary ∂Ωk,γ of the above set becomes the imaginary axis when k = 0, while a hyperbola when
0 < k < 1. For k = 1 the boundary ∂Ωk,γ becomes a parabola and it is an ellipse when k > 1 and in this
case where

u(z) =
z −
√

t

1 −
√

tz
, z ∈ E,

and t ∈ (0, 1) is chosen such that k = cosh (πK′(t)/(4K(t))). Here K(t) is Legender’s complete elliptic
integral of first kind and K′(t) = K(

√
1 − t2) and K′ (t) is the complementary integral of K (t) for details

see [5, 6, 14, 17]. Moreover, pk,γ(E) is convex univalent in E, see [5, 6]. All of these curves have the
vertex at the point k+γ

k+1 .

2. Set of Lemmas

Each of the following lemmas will be needed in our present investigation.

Lemma 2.1. [18]. Let p(z) =
∑∞

n=1 pnzn ≺ F(z) =
∑∞

n=1 dnzn in E. If F(z) is convex univalent in E then

|pn| ≤ |d1| , n ≥ 1. (2.1)

Lemma 2.2. [19]. Let k ∈ [0,∞) be fixed and let pk,γ be defined (1.6). If

pk,γ(z) = 1 + Q1z + Q2z2 + ... (2.2)

Q1 =


2γA2

1−k2 , 0 ≤ k < 1
8γ
π2 , k = 1,

π2γ

4(1+t)
√

tK2(t)(k2−1) , k > 1,
(2.3)

Q2 =


A2+2

3 Q1, 0 ≤ k < 1
2
3 Q1, k = 1,
4K2(t)(t2+6t+1)−π2

24K2(t)(1+t)
√

t
Q1, k > 1,

(2.4)

where A = 2 cos−1 k
π

,and t ∈ (0, 1) is chosen such that k = cosh
(
πK
′
(t)

K(t)

)
, K(t) is the Legendre’s complete

elliptic integral of the first kind.

Lemma 2.3. [20]. Let p(z) = 1 +
∑∞

n=1 cnzn ∈ P, let p(z) be analytic in E and satisfy Re{p(z)} > 0 for z
in E, then the following sharp estimate holds∣∣∣c2 − µc2

1

∣∣∣ ≤ 2 max {1, |2µ − 1|} , ∀µ ∈ C. (2.5)
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3. Main Results

In this section, we will prove our main results.

Theorem 3.1. Let f (z) ∈ k −US(q, γ,m). Then

S m
q f (z) ≺ z exp

∫ z

0

pk,γ(w(ξ)) − 1
ζ

dξ, (3.1)

where w(z) is analytic in E with w(0) = 0 and |w(z)| < 1. Moreover, for |z| = ρ, we have

exp
(∫ 1

0

pk,γ(−ρ) − 1
ρ

dρ
)
≤

∣∣∣∣∣∣S m
q f (z)

z

∣∣∣∣∣∣ ≤ exp
(∫ 1

0

pk,γ(ρ) − 1
ρ

dρ
)
, (3.2)

where pk,γ(z) is defined by (1.6).

Proof. If f (z) ∈ k −US(q, γ,m) then using the identity (1.5), we obtain

z∂qS m
q f (z)

S m
q f (z)

−
1
z

=
pk,γ(w(z)) − 1

z
. (3.3)

For some function w(z) is analytic in E with w(0) = 0 and |w(z)| < 1. Integrating (3.3) and after some
simplification we have

S m
q f (z) ≺ z exp

∫ z

0

pk,γ(w(ξ)) − 1
ζ

dξ. (3.4)

This proves (3.1). Noting that the univalent function pk,γ(z) maps the disk |z| < ρ (0 < ρ ≤ 1) onto a
region which is convex and symmetric with respect to the real axis, we see

pk,γ(−ρ |z|) ≤ <
{
pk,γ(w(ρz)

}
≤ pk,γ(ρ |z|) (0 < ρ ≤ 1, z ∈ E). (3.5)

Using (3.4) and (3.5) gives∫ 1

0

pk,γ(−ρ |z|) − 1
ρ

dρ ≤ <
∫ 1

0

pk,γ(w (ρ (z)) − 1
ρ

dρ ≤
∫ 1

0

pk,γ(ρ |z|) − 1
ρ

dρ,

for z ∈ E. Consequently, subordination (3.4) leads us to∫ 1

0

pk,γ(−ρ |z|) − 1
ρ

dρ ≤ log

∣∣∣∣∣∣S m
q f (z)

z

∣∣∣∣∣∣ ≤
∫ 1

0

pk,γ(ρ |z|) − 1
ρ

dρ

pk,γ(−ρ) ≤ pk,γ(−ρ |z|), pk,γ(ρ |z|) ≤ pk,γ(ρ)

implies that

exp
∫ 1

0

pk,γ(−ρ) − 1
ρ

dρ ≤

∣∣∣∣∣∣S m
q f (z)

z

∣∣∣∣∣∣ ≤ exp
∫ 1

0

pk,γ(ρ) − 1
ρ

dρ.

this completes the proof. �
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Theorem 3.2. If f (z) ∈ k −US(q, γ,m). Then

|a2| ≤
δ

[2]m
q

{
[2]q − 1

} , (3.6)

and

|an| ≤
δ

[n]m
q

{
[n]q − 1

} n−2∏
j=1

(
1 +

δ

[ j + 1]q − 1

)
, for n = 3, 4, .... (3.7)

where δ = |Q1| with Q1 is given by (2.3).

Proof. Let
z∂qS m

q f (z)

S m
q f (z)

= p(z). (3.8)

where p(z) is analytic in E and p(0) = 1.Let p(z) = 1 +
∑∞

n=1 cnzn and S m
q f (z) is given by (1.4). Then

(3.8) becomes

z +

∞∑
n=2

[n]m+1
q anzn =

 ∞∑
n=0

cnzn

 z +

∞∑
n=2

[n]m
q anzn

 .
Now comparing the coefficients of zn, we obtain

[n]m+1
q an = [n]m

q an +

n−1∑
j=1

[ j]m
q a jcn− j.

which implies

an =
1

[n]m
q

{
[n]q − 1

} n−1∑
j=1

[ j]m
q a jhn− j.

Using the results that |cn| ≤ |Q1| given in ([17]), we have

|an| ≤
Q1

[n]m
q

{
[n]q − 1

} n−1∑
j=1

[ j]m
q

∣∣∣a j

∣∣∣ .
Let us take δ = |Q1| . Then we have

|an| ≤
δ

[n]m
q

{
[n]q − 1

} n−1∑
j=1

[ j]m
q

∣∣∣a j

∣∣∣ . (3.9)

For n = 2 in (3.9), we have

|a2| ≤
δ

[2]m
q

{
[2]q − 1

} , (3.10)

which shows that (3.7) holds for n = 2. To prove (3.7) we use principle of mathematical induction, for
this, consider the case n = 3

|a3| ≤
δ

[3]m
q

{
[3]q − 1

} {1 + [2]m
q |a2|}.

AIMS Mathematics Volume 2, Issue 4, 622-634



629

Using (3.10), we have

|a3| ≤
δ

[3]m
q

{
[3]q − 1

} {1 +
δ

[2]q − 1
}.

which shows that (3.7) holds for n = 3. Let us assume that (3.7) is true for n ≤ t, that is,

|at| ≤
δ

[t]m
q

{
[t]q − 1

} t−2∏
j=1

(
1 +

δ

[ j + 1]q − 1

)
, for n = 3, 4, ....

consider

|at+1| ≤
δ

[t + 1]m
q

{
[t + 1]q − 1

} {
1 + [2]m

q |a2| + [3]m
q |a3| + [4]m

q |a4| + ...[t]m
q |at|

}

≤
δ

[t + 1]m
q

{
[t + 1]q − 1

}


1 + δ
[2]q−1 + δ

[3]q−1

(
1 + δ

[2]q−1

)
+ ...

+ δ
[t]q−1

∏t−2
j=1

(
1 + δ

[ j+1]q−1

)


=
δ

[t + 1]m
q

{
[t + 1]q − 1

} t−1∏
j=1

(
1 +

δ

[ j + 1]q − 1

)
.

which proves the assertion of theorem n = t + 1. Hence (3.7) holds for all n, n ≥ 3.
This completes the proof.

�

Theorem 3.3. Let 0 ≤ k < ∞ be fixed and let f (z) ∈ k − US(q, γ,m) with the form (1.1) then for a
complex number µ ∣∣∣a3 − µa2

2

∣∣∣ ≤ d1

2 [3]m
q

{
[3]q − 1

} max [1, |2v − 1|] , (3.11)

where

v =
1
2

1 −
d2

d1
− d1

 1{
[2]q − 1

} − µ [3]m
q

{
[3]q − 1

}
2 [2]m

q

{
[2]q − 1

}
 . (3.12)

Q1 and Q2 are given by (2.3) and (2.4).

Proof. Let f (z) ∈ k−US(q, γ,m), then there exists Schwarz function w(z), with w(0) = 0 and |w(z)| < 1
such that

z∂qS m
q f (z)

S m
q f (z)

= pk,γ(w(z)) z ∈ E. (3.13)

Let p(z) ∈ P be a function defined as

p(z) =
1 + w(z)
1 − w(z)

= 1 + c1z + c2z2 + ...

This gives

w(z) =
c1

2
z +

1
2

(c2 −
c2

1

2
)z2 + ...
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and

pk,γ(w(z)) = 1 +
Q1c1

2
z +

{
Q2c2

1

4
+

1
2

(c2 −
c2

1

2
)Q1

}
z2 + ... (3.14)

z∂qS m
q f (z)

S m
q f (z)

= 1 + [2]m
q

{
[2]q − 1

}
a2z +

{
[3]m

q

{
[3]q − 1

}
a3 −

(
[2]m

q

)2 {
[2]q − 1

}
a2

2

}
z2 (3.15)

Using (3.14) in (3.13) and coparing with (3.15), we obtain

a2 =
Q1c1

2 [2]m
q

{
[2]q − 1

} .
and

a3 =
1

[3]m
q

{
[3]q − 1

}
Q1c2

2
+

c2
1

4

Q2 − Q1 +
Q2

1{
[2]q − 1

}
 .

For any complex number µ and after some calculation we have

a3 − µa2
2 =

Q1

2 [3]m
q

{
[3]q − 1

} {
c2 − vc2

1

}
, (3.16)

where

v =
1
2

1 −
Q2

Q1
− Q1

 1{
[2]q − 1

} − µ [3]m
q

{
[3]q − 1

}
2 [2]m

q

{
[2]q − 1

}
 .

Using a lemm(2.5) on (3.16) we have the required results.
�

Theorem 3.4. If a function f (z) ∈ A has the form (1.1) satisfies the condition

∞∑
n=2

{{
[n]q − 1

}
(k + 1) + |γ|

} ∣∣∣[n]m
q

∣∣∣ |an| ≤ |γ| (3.17)

then f (z) ∈ k −US(q, γ,m).

Proof. Let we note that∣∣∣∣∣∣z∂qS m
q f (z)

S m
q f (z)

− 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣z∂qS m
q f (z) − S m

q f (z)

S m
q f (z)

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑∞

n=2[n]m
q

{
[n]q − 1

}
anzn

z +
∑∞

n=2[n]m
q anzn

∣∣∣∣∣∣∣∣
≤

∑∞
n=2

∣∣∣∣[n]m
q

{
[n]q − 1

}∣∣∣∣ |an|

1 −
∑∞

n=2

∣∣∣[n]m
q

∣∣∣ |an|
. (3.18)

From (3.17) it follows that

1 −
∞∑

n=2

∣∣∣[n]m
q

∣∣∣ |an| > 0.
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To show that f (z) ∈ k −US(q, γ,m) it is suffies that∣∣∣∣∣∣ kγ
(z∂qS m

q f (z)

S m
q f (z)

− 1
)∣∣∣∣∣∣ −<

{
1
γ

(z∂qS m
q f (z)

S m
q f (z)

− 1
)}
≤ 1.

From (3.18), we have ∣∣∣∣∣∣ kγ
(z∂qS m

q f (z)

S m
q f (z)

− 1
)∣∣∣∣∣∣ −<

{
1
γ

(z∂qS m
q f (z)

S m
q f (z)

− 1
)}

≤
k
|γ|

∣∣∣∣∣∣z∂qS m
q f (z)

S m
q f (z)

− 1

∣∣∣∣∣∣ +
1
|γ|

∣∣∣∣∣∣z∂qS m
q f (z)

S m
q f (z)

− 1

∣∣∣∣∣∣
≤

(k + 1)
|γ|

∣∣∣∣∣∣z∂qS m
q f (z)

S m
q f (z)

− 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣z∂qS m
q f (z) − S m

q f (z)

S m
q f (z)

∣∣∣∣∣∣
≤

(k + 1)
|γ|

∑∞
n=2

∣∣∣∣[n]m
q

{
[n]q − 1

}∣∣∣∣ |an|

1 −
∑∞

n=2

∣∣∣[n]m
q

∣∣∣ |an|

≤ 1.

Because from (3.8).
�

When q → 1, m = 0, γ = 1 − α, with 0 ≤ α < 1, then we have the following known result, proved
by Shams et-al. in [24].

Corollary 3.1. A function f ∈ A and of the form (1.1) is in the class k −US (1 − 2α), if it satisfies the
condition

∞∑
n=2

{n(k + 1) − (k + α)} |an| ≤ 1 − α

where 0 ≤ α < 1 and k ≥ 0.
When q → 1, m = 0, γ = 1 − α, with 0 ≤ α < 1 and k = 0, then we have the following known result,
proved by Selverman in [25]

Corollary 3.2. A function f ∈ A and of the form (1.1) is in the class 0 −US (1 − α, ), if it satisfies the
condition

∞∑
n=2

{n − α} |an| ≤ 1 − α, 0 ≤ α < 1.

Theorem 3.5. Let f (z) ∈ k −US(q, γ,m). Then f (E) contains an open disk of radius

[2]m
{
[2]q − 1

}
2[2]m

q

{
[2]q − 1

}
+ δ

.

where Q1 is given by (2.3)
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Proof. Let w0 , 0 be a complex number such that f (z) , w0 for z ∈ E. Then

f1(z) =
w0 f (z)

w0 − f (z)
= z +

(
a2 +

1
w0

)
z2 + ...

since f1(z) is univalent, so ∣∣∣∣∣a2 +
1

w0

∣∣∣∣∣ ≤ 2.

know using (3.6), we have ∣∣∣∣∣ 1
w0

∣∣∣∣∣ ≤ 2[2]m
q

{
[2]q − 1

}
+ δ

[2]m
q

{
[2]q − 1

} ,

hence we have.

|w0| ≥
[2]m

q

{
[2]q − 1

}
2[2]m

q

{
[2]q − 1

}
+ δ

.

�

Acknowledgments

The authors wish to thank the referee for the helpful suggestions and comments.

Conflict of Interest

No potential conflict of interest was reported by the authors.

References

1. W. Ma, D. Minda, Uniformly convex functions, Ann. Polon. Math., 57 (1992), 165-175.

2. F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc.
Am. Math. Soc., 118 (1993), 189-196.

3. A. W Goodman, Univalent Functions, vols. I, II, Polygonal Publishing House, New Jersey, 1983.

4. A. W Goodman, On uniformly convex functions, Ann. Polon. Math., 56 (1991), 87-92.

5. S. Kanas, A. Wisniowska, Conic domains and k-starlike functions, Rev. Roum. Math. Pure Appl.,
45 (2000), 647-657.

6. S. Kanas, A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105
(1999), 327-336.

7. K.G Subramanian, G. Murugusundaramoorthy, P.Balasubrahmanyam, H. Silverman, Subclasses
of uniformly convex and uniformly starlike functions, Math. Jpn., 42 (1995), 517-522.

8. R. Bharati, R. Parvatham, A. Swaminathan, On subclasses of uniformly convex functions and
corresponding class of starlike functions, Tamkang J. Math., 28 (1997), 17-32.

9. H. S. Al-Amiri, T. S. Fernando, On close-to-convex functions of complex order, Int. J. Math. Math.
Sci., 13 (1990), 321-330.

AIMS Mathematics Volume 2, Issue 4, 622-634



633

10. M. Acu, Some subclasses of α-uniformly convex functions, Acta Math. Acad. Pedagogicae Nyir-
egyhaziensis, 21 (2005), 49-54.

11. A. Gangadharan, T. N Shanmugam, H. M., Srivastava, Generalized hypergeometric functions
associated with k-uniformly convex functions, Comput. Math. Appl., 44 (2002), 1515-1526.

12. A. Swaminathan, Hypergeometric functions in the parabolic domain, Tamsui Oxf. J. Math. Sci.,
20 (2004), 1-16.

13. S. Kanas, Techniques of the differential subordination for domain bounded by conic sections, Int.
J. Math. Math. Sci., 38 (2003), 2389-2400.

14. N. Khan, B. Khan, Q. Z. Ahmad and S. Ahmad, Some Convolution Properties of Multivalent
Analytic Functions, AIMS Math., 2 (2017), 260-268.

15. S. S. Miller, P. T. Mocanu, Differential Subordinations: Theory and Applications, Series of Mono-
graphs and Textbooks in Pure and Application Mathematics, vol. 225. Marcel Dekker, New York,
2000.

16. S. Kanas, D. Raducanu, Some class of analytic functions related to conic domains, Math. Slovaca,
64 (2014), 1183-1196.

17. S. Ruscheweyh, New criteria for univalent functions, Proc. Am. Math. Soc., 49 (1975), 109-115.

18. K. I. .Noor, M. Arif, W. Ul-Haq, On k-uniformly close-to-convex functions of complex order,
Appl. Math. Comput., 215 (2009), 629-635.

19. W. Rogosinski, On the coefficients of subordinate functions, Proc. Lond. Math. Soc., 48 (1943),
48-82.

20. S. J. Sim, O. S., Kwon, N. E. Cho, H. M. Srivastava, Some classes of analytic functions associated
with conic regions, Taiwan. J. Math., 16 (2012), 387-408.

21. W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, in: Pro-
ceedings of the Conference on Complex Analysis, Tianjin, 1992, Z. Li, F. Ren, L. Yang, S. Zhang
(Eds.) pp. 157-169, International Press, Cambridge, MA, 1994.

22. Z. Shareef, S. Hussain, M. Darus, Convolution operator in geometric functions theory, J. Inequal.
Appl., 2012, 2012:213.

23. K. I. Noor, M. A Noor, On certain classes of analytic functions defined by Noor integral operator,
J. Math. Anal. Appl., 281 (2003), 244-252.

24. S. Mahmood, J. Sokol, New subclass of analytic functions in conical domain associated with
ruscheweyh q-Differential operator, Results Math., 71 (2017), 1345-1357.

25. S. Shams, S. R. Kulkarni, J. M. Jahangiri, Classes of uniformly starlike and convex functions, Int.
J. Math. Math. Sci., 55 (2004), 2959-2961.

26. H. Selverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 (1975),
109-116.

27. S. Owa, Y. Polatoglu, E.Yavuz, Coefficient inequalities for classes of uniformly starlike and con-
vex functions, J. Ineq. Pure Appl. Math., 7 (2006), 1-5.

28. R. M. Ali, Starlikeness associated with parabolic regions, Int. J. Math. Sci., 4 (2005), 561-570.

AIMS Mathematics Volume 2, Issue 4, 622-634



634

29. M. Govindaraj and S. Sivasubramanian, On a class of analytic functions related to conic domains
involving q-calculus, Analysis Math., 43 (2017), 475-487.

30. G. S. Salagean, Subclasses of univalent functions, in: Complex Analysis, fifth Romanian-Finnish
Seminar, Part 1 (Bucharest, 1981), Lecture Notes in Mathematics, 1013, Springer (Berlin, 1983),
362-372.

31. G. E. Andrews, G. E. Askey and R. Roy, Special Functions, Cambridge University Press, Cam-
bridge, 1999.

32. C. R. Adams, On the linear partial q-difference equation of general type, Trans. Amer. Math.
Soc., 31 (1929), 360-371.

33. R. D. Carmichael, The general theory of linear q-difference equations, Amer. J. Math., 34 (1912),
147-168.

34. F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-203.

35. T. E. Mason, On properties of the solution of linear q-difference equations with entire function
coefficients, Amer. J. Math., 37 (1915), 439-444.

36. W. J. Trjitzinsky, Analytic theory of linear q-difference equations, Acta Math., 61 (1933), 1-38.

37. M. E. H. Ismail, E. Merkes and D. Styer, A generalization of starlike functions, Complex Variables
Theory and Appl., 14 (1990), 77-84.

c© 2017, Shahid Khan et al., licensee AIMS Press.
This is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 2, Issue 4, 622-634

http://creativecommons.org/licenses/by/4.0

	Introduction
	 Set of Lemmas
	Main Results

