AIMS Mathematics, 2017, 2(4): 586-609. doi: 10.3934/Math.2017.4.586.

Research article

Export file:

Format

• RIS(for EndNote,Reference Manager,ProCite)
• BibTex
• Text

Content

• Citation Only
• Citation and Abstract

Permutational behavior of reversed Dickson polynomials over finite fields II

School of Mathematics and Information, China West Normal University, Nanchong 637009, P.R.China

## Abstract    Full Text(HTML)    Figure/Table

In this paper, we study the special reversed Dickson polynomial of theform $D_{p^{e_1}+...+p^{e_s}+\ell, k}(1,x)$, where $s,e_1, ..., e_s$are positive integers, $\ell$ is an integer with $0 ≤ \ell < p$. In fact, by using Hermite criterion we first give an answer to the questionthat the reversed Dickson polynomials of the forms $D_{p^{s}+1, k}(1,x)$,$D_{p^{s}+2, k}(1,x)$, $D_{p^{s}+3, k}(1,x)$, $D_{p^{s}+4, k}(1,x)$,$D_{p^{s}+p^{t}, k}(1,x)$ and $D_{p^{s}+p^{t}+1, k}(1,x)$ are permutationpolynomials of ${\mathbb F}_{q}$ or not. Finally, utilizing the recursiveformula of the reversed Dickson polynomials, we represent$D_{p^{e_1}+...+p^{e_s}+\ell, k}(1,x)$ as the linear combinationof the elementary symmetric polynomials with the power of $1-4x$being the variables. From this, we present a necessary and sufficient conditionfor $D_{p^{e_1}+...+p^{e_s}+\ell, k}(1,x)$ to be a permutation polynomialof ${\mathbb F}_{q}$.
Figure/Table
Supplementary
Article Metrics

Citation: Kaimin Cheng. Permutational behavior of reversed Dickson polynomials over finite fields II. AIMS Mathematics, 2017, 2(4): 586-609. doi: 10.3934/Math.2017.4.586

References

• 1. K. Cheng, Permutational Behavior of Reversed Dickson Polynomials over Finite Fields, AIMS Math., 2 (2017), 244-259.
• 2. R. Coulter, Explicit evaluation of some Weil sums, Acta Arith., 83 (1998), 241-251.
• 3. S. Hong, X. Qin andW. Zhao, Necessary conditions for reversed Dickson polynomials of the second kind to be permutational, Finite Fields Appl., 37 (2016), 54-71.
• 4. X. Hou, G. L. Mullen, J.A. Sellers and J.L. Yucas, Reversed Dickson polynomials over finite fields, Finite Fields Appl., 15 (2009), 748-773.
• 5. R. Lidl and H. Niederreiter, Finite Fields, second ed., Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 20, 1997.
• 6. X. Qin and S. Hong, Constructing permutation polynomials over finite fields, Bull. Aust. Math. Soc., 89 (2014), 420-430.
• 7. X. Qin, G. Qian and S. Hong, New results on permutation polynomials over finite fields, Int. J. Number Theory, 11 (2015), 437-449.
• 8. Q. Wang and J. Yucas, Dickson polynomials over finite fields, Finite Fields Appl., 18 (2012), 814-831.

## Reader Comments

your name: *   your email: *

Copyright Info: 2017, Kaimin Cheng, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF
Copyright © AIMS Press All Rights Reserved