Mathematics

Research article

Permutational behavior of reversed Dickson polynomials over finite fields II

Kaimin Cheng
School of Mathematics and Information, China West Normal University, Nanchong 637009, P.R. China

* Correspondence: ckm20@126.com

Abstract

In this paper, we study the special reversed Dickson polynomial of the form $D_{p^{e_{1}}+\ldots+p^{e_{s}+\ell, k}}(1, x)$, where s, e_{1}, \ldots, e_{s} are positive integers, ℓ is an integer with $0 \leq \ell<p$. In fact, by using Hermite criterion we first give an answer to the question that the reversed Dickson polynomials of the forms $D_{p^{s}+1, k}(1, x), D_{p^{s}+2, k}(1, x), D_{p^{s}+3, k}(1, x), D_{p^{s}+4, k}(1, x), D_{p^{s}+p^{t}, k}(1, x)$ and $D_{p^{s}+p^{t}+1, k}(1, x)$ are permutation polynomials of \mathbb{F}_{q} or not. Finally, utilizing the recursive formula of the reversed Dickson polynomials, we represent $D_{p^{e_{1}}+\ldots+p^{e_{s}} \ell \ell, k}(1, x)$ as the linear combination of the elementary symmetric polynomials with the power of $1-4 x$ being the variables. From this, we present a necessary and sufficient condition for $D_{p^{e_{1}}+\ldots+p^{e_{s}}+\ell, k}(1, x)$ to be a permutation polynomial of \mathbb{F}_{q}.

Keywords: Permutation polynomial; Reversed Dickson polynomial of $(k+1)$-th kind; Hermite's Criterion
Mathematics Subject Classification: Primary 11T06, 11T55, 11C08

1. Introduction

Permutation polynomials and Dickson polynomials are two of the most important topics in the area of finite fields. Let \mathbb{F}_{q} be the finite field of characteristic p with q elements. Let $\mathbb{F}_{q}[x]$ be the ring of polynomials over \mathbb{F}_{q} in the indeterminate x. If the polynomial $f(x) \in \mathbb{F}_{q}[x]$ induces a bijective map from \mathbb{F}_{q} to itself, then $f(x) \in \mathbb{F}_{q}[x]$ is called a permutation polynomial (denoted as PP for convenience) of \mathbb{F}_{q}. Properties, constructions and applications of permutation polynomials may be found in [5], [6] and [7]. The reversed Dickson polynomial of the first kind, denoted by $D_{n}(a, x)$, was introduced in [4] and defined as follows

$$
D_{n}(a, x):=\sum_{i=0}^{\left[\frac{n}{2}\right]} \frac{n}{n-i}\binom{n-i}{i}(-x)^{i} a^{n-2 i}
$$

if $n \geq 1$ and $D_{0}(a, x)=2$, where $\left[\frac{n}{2}\right]$ means the largest integer no more than $\frac{n}{2}$. Wang and Yucas [8] extended this concept to that of the n-th reversed Dickson polynomial of $(k+1)$-th kind $D_{n, k}(a, x) \in$
$\mathbb{F}_{q}[x]$, which is defined for $n \geq 1$ by

$$
\begin{equation*}
D_{n, k}(a, x):=\sum_{i=0}^{\left[\frac{n}{2}\right]} \frac{n-k i}{n-i}\binom{n-i}{i}(-x)^{i} a^{n-2 i} \tag{1.1}
\end{equation*}
$$

and $D_{0, k}(a, x)=2-k$. Some families of permutation polynomials from the revered Dickson polynomials of the first kind were obtained in [4]. Hong, Qin and Zhao [3] studied the revered Dickson polynomial $E_{n}(a, x)$ of the second kind. Very recently, the author [1] investigated the reversed Dickson polynomial $D_{n, k}(a, x)$ of the $(k+1)$-th kind and obtained some properties and permutational behaviors of them.

In this paper, we study the special reversed Dickson polynomial of the form $D_{p^{e_{1}}+\ldots+p^{e_{s}}+\ell, k}(1, x)$, where s, e_{1}, \ldots, e_{s} are positive integers, ℓ is an integer with $0 \leq \ell<p$. In fact, by using Hermite criterion we first give an answer to the question that the reversed Dickson polynomials of the forms $D_{p^{s}+1, k}(1, x), D_{p^{s}+2, k}(1, x), D_{p^{s}+3, k}(1, x), D_{p^{s}+4, k}(1, x), D_{p^{s}+p^{t}, k}(1, x)$ and $D_{p^{s}+p^{t}+1, k}(1, x)$ are permutation polynomials of \mathbb{F}_{q} or not. Finally, utilizing the recursive formula of the reversed Dickson polynomials, we represent $D_{p^{e_{1}}+\ldots+p^{e_{s}+\ell, k}}(1, x)$ as the linear combination of the elementary symmetric polynomials with the power of $1-4 x$ being the variables. From this, we present a necessary and sufficient condition for $D_{p^{e_{1}}+\ldots+p^{e_{s}+\ell, k}}(1, x)$ to be a permutation polynomial of \mathbb{F}_{q}.

Throughout this paper, as usual, for any given prime number p, we let $v_{p}(x)$ denote the p-adic valuation of any positive integer x, i.e., $v_{p}(x)$ is the largest nonnegative integer k such that p^{k} divides x. We also assume $p=\operatorname{char}\left(\mathbb{F}_{q}\right) \geq 3$ and restrict $0 \leq k<p$.

2. Preliminary lemmas

In this section, we list several properties of the reversed Dickson polynomials $D_{n, k}(a, x)$ of the $(k+1)$-th kind and some useful lemmas.

Lemma 2.1. [5] Let $f(x) \in \mathbb{F}_{q}[x]$. Then $f(x)$ is a PP of \mathbb{F}_{q} if and only if $c f(d x)+b$ is a PP of \mathbb{F}_{q} for any given $c, d \in \mathbb{F}_{q}^{*}$ and $b \in \mathbb{F}_{q}$.
Lemma 2.2. Let $s \geq 0$ be an integer and a, b be in $\mathbb{F}_{q}{ }^{*}$. Then the binomial ax $\frac{x^{\frac{s}{}-1}}{2}+b x^{\frac{s^{s}+1}{2}}$ is a PP of \mathbb{F}_{q} if and only if $s=0$.
Proof. First we assume that the binomial $a x^{\frac{p^{s}-1}{2}}+b x^{\frac{p^{s}+1}{2}}$ is a PP of \mathbb{F}_{q}. If $s>0$, then the equation $a x^{\frac{p^{s}-1}{2}}+b x^{\frac{p^{s}+1}{2}}=x^{\frac{p^{s}-1}{2}}(a+b x)=0$ has two distinct roots $0,-\frac{b}{a}$ which are in \mathbb{F}_{q}. This is a contradiction. So the integer s must be zero. Conversely, if $s=0$, then it is easy to check that $a x^{\frac{p^{s}-1}{2}}+b x^{\frac{p^{s}+1}{2}}$ is a PP of \mathbb{F}_{q}. Therefore Lemma 2.2 is proved.

Lemma 2.3. [1] For any integer $n \geq 0$, we have

$$
D_{n, k}\left(1, \frac{1}{4}\right)=\frac{k n-k+2}{2^{n}}
$$

and

$$
D_{n, k}(1, x)=\frac{(k-1-(k-2) y) y^{n}-(1+(k-2) y)(1-y)^{n}}{2 y-1}
$$

if $x=y(1-y) \neq \frac{1}{4}$.

Lemma 2.4. [1] Let $n \geq 2$ be an integer. Then the recursion

$$
D_{n, k}(1, x)=D_{n-1, k}(1, x)-x D_{n-2, k}(1, x)
$$

holds for any $x \in \mathbb{F}_{q}$.
Lemma 2.5. [1] Let $p=\operatorname{char}\left(\mathbb{F}_{q}\right) \geq 3$ and s be a positive integer. Then

$$
2 D_{p^{s}, k}(1, x)+k-2=k(1-4 x)^{\frac{p^{s}-1}{2}} .
$$

Lemma 2.6. [2] Let α and e be positive integers. Let $d=\operatorname{gcd}(\alpha, e)$ and p be an odd prime. Then

$$
\operatorname{gcd}\left(p^{\alpha}+1, p^{e}-1\right)= \begin{cases}2, & \text { if } \frac{e}{d} \text { is odd } \\ p^{d}+1, & \text { if } \frac{e}{d} \text { is even } .\end{cases}
$$

Lemma 2.7. [5] Let $f(x) \in \mathbb{F}_{q}[x]$. Then $f(x)$ is permutation polynomial of \mathbb{F}_{q} if and only if the following conditions hold:
(i) $f(x)$ has exactly one root in \mathbb{F}_{q};
(ii) For each integer t with $0<t<q-1$ and $t \not \equiv 0(\bmod p)$, the reduction of $f(x)^{t}\left(\bmod x^{q}-x\right)$ has degree less than $q-1$.
Lemma 2.8. Let p be a prime with $p>3$ and a be a nonzero element in \mathbb{F}_{p}. Then the binomial $x^{\frac{p^{s}-1}{2}}+a x$ is a PP of $\mathbb{F}_{p^{e}}$ if and only if $s=0$.
Proof. Let $p>3, a \in \mathbb{F}_{p}^{*}$. Clearly, if $s=0$, then $w(x):=x^{\frac{p^{s}-1}{2}}+a x=1+a x$ is a PP of $\mathbb{F}_{p^{e}}$. In what follows, we show that $w(x)=x^{\frac{p^{s}-1}{2}}+a x$ is not a PP of $\mathbb{F}_{p^{e}}$ when $s>0$. Let $s>0$ and $s \equiv s_{0}(\bmod 2 e)$ with $0 \leq s_{0} \leq 2 e-1$. Then

$$
w(x) \equiv x^{\frac{p^{s_{0}-1}}{2}}+a x \quad\left(\bmod x^{p^{e}}-x\right)
$$

for any $x \in \mathbb{F}_{p^{e}}^{*}$ since $\frac{p^{s}-1}{2} \equiv \frac{p^{s_{0}-1}}{2}\left(\bmod p^{e}-1\right)$, i.e.,

$$
\begin{equation*}
w(x)=x^{\frac{p^{s_{0}-1}}{2}}+a x \tag{2.1}
\end{equation*}
$$

for any $x \in \mathbb{F}_{p^{e}}^{*}$. We consider the following three cases.
CASE 1. $s>0$ and $s_{0}=0$. Then by (2.1) one has $w(x)=1+a x$ for any $x \in \mathbb{F}_{p^{e}}^{*}$. So $f_{2}\left(\frac{1}{a}\right)=0$. It then follows from $f_{2}(0)=0$ that $w(x)=x^{\frac{p^{s}-1}{2}}+a x$ is not a PP of $\mathbb{F}_{p^{e}}$.

CASE 2. $s>0$ and s_{0} is a positive even number. Then $x^{\frac{s^{s_{0}-1}}{2}}=1$ for each $x \in \mathbb{F}_{p}^{*}$. By (2.1) one get $w(x)=1+a x$ for any $x \in \mathbb{F}_{p}^{*}$. Therefore $w(x)=0$ has one nonzero root $-\frac{1}{a} \in \mathbb{F}_{p}^{*}$. Hence $w(x)=x^{\frac{p^{s}-1}{2}}+a x$ does not permute \mathbb{F}_{p} since $f_{2}(0)=0$. Note that $f_{2}\left(\mathbb{F}_{p}\right) \subseteq \mathbb{F}_{p}$. So one has that $w(x)=x^{\frac{p^{s}-1}{2}}+a x$ does not permute $\mathbb{F}_{p^{e}}$.

CASE 3. $s>0$ and s_{0} is an odd number. Then $x^{\frac{p_{0}-1}{2}}=x^{\frac{p-1}{2}}$ for each $x \in \mathbb{F}_{p}^{*}$. It follows from (2.1) that

$$
w(x)=x^{\frac{p-1}{2}}+a x
$$

for any $x \in \mathbb{F}_{p}^{*}$. Then we have

$$
(w(x))^{2}=x^{p-1}+\text { the terms of } x \text { with the degree less than } p-1\left(\bmod x^{p}-x\right)
$$

Then by Lemma 2.7, we know that $w(x)$ is not a PP of \mathbb{F}_{p}. Also note that $f_{2}\left(\mathbb{F}_{p}\right) \subseteq \mathbb{F}_{p}$. So $w(x)$ is not a PP of $\mathbb{F}_{p^{e}}$.

The above three cases tell us that $w(x)=x^{\frac{p^{s}-1}{2}}+a x$ is not a PP of $\mathbb{F}_{p^{e}}$ when $s>0$. This finishes the proof of Lemma 2.8.

3. Reversed Dickson polynomials $D_{p^{s}+\ell, k}(1, x)$

In this section, we present an explicit formula for $D_{n, k}(1, x)$ when $n=p^{s}+\ell$ with $s \geq 0$ and $0 \leq \ell<p$. Then we characterize $D_{n, k}(1, x)$ to be a PP of \mathbb{F}_{q} in this case.

Theorem 3.1. Let $p=\operatorname{char}\left(\mathbb{F}_{q}\right) \geq 3$ and s be a positive integer. Then

$$
\begin{equation*}
D_{p^{s}+1, k}(1, x)=\frac{2-k}{4}(1-4 x)^{\frac{p^{s}+1}{2}}+\frac{k}{4}(1-4 x)^{\frac{p^{s}-1}{2}}+\frac{1}{2} . \tag{3.1}
\end{equation*}
$$

Furthermore, we have

$$
D_{p^{s}+2 \ell, k}(1, x)=\sum_{i=0}^{\ell} A_{2 \ell, p^{s}+2 i-1}(1-4 x)^{\frac{p^{s}+2 i-1}{2}}+\sum_{j=0}^{\ell} A_{2 \ell, 2 j}(1-4 x)^{j}, \ell \geq 0
$$

and

$$
D_{p^{s}+2 \ell+1, k}(1, x)=\sum_{i=0}^{\ell+1} A_{2 \ell+1, p^{s}+2 i-1}(1-4 x)^{\frac{p^{s}+2 i-1}{2}}+\sum_{j=0}^{\ell} A_{2 \ell+1,2 j}(1-4 x)^{j}, \ell \geq 0,
$$

where all the coefficients $A_{i, j}$ are given as follows:

$$
A_{0, p^{s}-1}=\frac{k}{2}, A_{0,0}=\frac{2-k}{2}, A_{1, p^{s}+1}=\frac{2-k}{4}, A_{1, p^{s}-1}=\frac{k}{4}, A_{1,0}=\frac{1}{2},
$$

and

$$
\begin{cases}A_{2 m+2, p^{s}+2 m+1}=A_{2 m+1, p^{s}+2 m+1}+\frac{1}{4} A_{2 m, p^{s}+2 m-1}, & \text { if } m \geq 0 \tag{3.2}\\ A_{2 m+2, p^{s}+2 i-1}=A_{2 m+1, p^{s}+2 i-1}-\frac{1}{4} A_{2 m, p^{s}+2 i-1}+\frac{1}{4} A_{2 m, p^{s}+2 i-3}, & \text { if } 1 \leq i \leq m \\ A_{2 m+2, p^{s}-1}=A_{2 m+1, s^{s}-1}-\frac{1}{4} A_{2 m, p^{s}-1}, & \text { if } m \geq 0 \\ A_{2 m+2,0}=A_{2 m+1,0}-\frac{1}{4} A_{2 m, 0}, & \text { if } m \geq 0 \\ A_{2 m+2,2 j}=A_{2 m+1,2 j}-\frac{1}{4} A_{2 m, 2 j}+\frac{1}{4} A_{2 m, 2 j-2}, & \text { if } 1 \leq j \leq m \\ A_{2 m+2,2 m+2}=\frac{1}{4} A_{2 m, 2 m}, & \text { if } m \geq 0\end{cases}
$$

as well as

$$
\begin{cases}A_{2 m+1, p^{s}+2 m+1}=\frac{1}{4} A_{2 m-1, p^{s}+2 m-1}, & \text { if } m \geq 0 \tag{3.3}\\ A_{2 m+1, p^{s}+2 i-1}=A_{2 m, p^{s}+2 i-1}-\frac{1}{4} A_{2 m-1, p^{s}+2 i-1}+\frac{1}{4} A_{2 m-1, p^{s}+2 i-3}, & \text { if } 1 \leq i \leq m \\ A_{2 m+1, p^{s}-1}=A_{2 m, p^{s}-1}-\frac{1}{4} A_{2 m-1, p^{s}-1}, & \text { if } m \geq 0 \\ A_{2 m+1,0}=A_{2 m, 0}-\frac{1}{4} A_{2 m-1,0}, & \text { if } m \geq 0 \\ A_{2 m+1,2 j}=A_{2 m, 2 j}-\frac{1}{4} A_{2 m-1,2 j}+\frac{1}{4} A_{2 m-1,2 j-2}, & \text { if } 1 \leq j \leq m-1 \\ A_{2 m+1,2 m}=A_{2 m, 2 m}+\frac{1}{4} A_{2 m-1,2 m-2}, & \text { if } m \geq 0 .\end{cases}
$$

Proof. First of all, we show (3.1) is true. We consider the following two cases.
Case 1. $x \neq \frac{1}{4}$. For this case, putting $x=y(1-y)$ in second identity of Lemma 2.3 gives us that

$$
\begin{aligned}
& D_{p^{s}+1, k}(1, x)=D_{p^{s}+1, k}(1, y(1-y)) \\
= & \frac{\frac{k+(2-k) u}{2}\left(\frac{u+1}{2}\right)^{p^{s}+1}-\frac{k+(k-2) u}{2}\left(\frac{1-u}{2}\right)^{s^{s}+1}}{u} \\
= & \frac{2-k}{8}\left((u+1)^{p^{s}}(u+1)+(1-u)^{p^{s}}(1-u)\right)+\frac{k}{8 u}\left((u+1)^{p^{s}}(u+1)-(1-u)^{p^{s}}(1-u)\right) \\
= & \frac{2-k}{4}\left(u^{p^{s}+1}+1\right)+\frac{k}{4}\left(u^{p^{s}-1}+1\right) \\
= & \frac{2-k}{4}\left(\left(u^{2}\right)^{\frac{p^{s}+1}{2}}\right)+\frac{k}{4}\left(\left(u^{2}\right)^{\frac{p^{s}-1}{2}}\right)+\frac{1}{2},
\end{aligned}
$$

where $u=2 y-1$ and $u^{2}=1-4 x$. So (3.1) follows if $x \neq \frac{1}{4}$.
Case 2. $x=\frac{1}{4}$. By the first identity of Lemma 2.3, one has

$$
D_{p^{s}+1, k}\left(1, \frac{1}{4}\right)=\frac{k\left(p^{s}+1\right)-k+2}{2^{p^{s}+1}}=\frac{2-k}{4}\left(1-4 \times \frac{1}{4}\right)^{\frac{p^{s}+1}{2}}+\frac{k}{4}\left(1-4 \times \frac{1}{4}\right)^{\frac{p^{s}-1}{2}}+\frac{1}{2}
$$

as required. Thus (3.1) is true for any $x \in \mathbb{F}_{q}$.
Now we give the the remainder proof of Theorem 3.1. By Lemmas 2.4-2.5 and (3.1), we readily find that there exists coefficients $A_{i, j} \in \mathbb{F}_{q}$ such that

$$
\begin{equation*}
D_{p^{s}+2 \ell, k}(1, x)=\sum_{i=0}^{\ell} A_{2 \ell, p^{s}+2 i-1}(1-4 x)^{\frac{p^{s}+2 i-1}{2}}+\sum_{j=0}^{\ell} A_{2 \ell, 2 j}(1-4 x)^{j} \tag{3.4}
\end{equation*}
$$

with $0 \leq \ell \leq \frac{p-1}{2}$ and

$$
\begin{equation*}
D_{p^{s}+2 \ell+1, k}(1, x)=\sum_{i=0}^{\ell+1} A_{2 \ell+1, p^{s}+2 i-1}(1-4 x)^{\frac{\rho^{s}+2 i-1}{2}}+\sum_{j=0}^{\ell} A_{2 \ell+1,2 j}(1-4 x)^{j} \tag{3.5}
\end{equation*}
$$

with $0 \leq \ell<\frac{p-1}{2}$. Therefore we now only need to determine all the coefficients $A_{i, j}$. Let $u^{2}=1-4 x$. On the one hand, by (3.4) and (3.5), one then has

$$
\begin{aligned}
& D_{p^{s}+2 \ell, k}(1, x)-x D_{p^{s}+2 \ell-1, k}(1, x)=D_{p^{s}+2 \ell, k}(1, x)-\frac{1-u^{2}}{4} D_{p^{s}+2 \ell-1, k}(1, x) \\
& =\sum_{i=0}^{\ell+1} A_{2 \ell, p^{s}+2 i-1} u^{p^{s}+2 i-1}+\sum_{j=0}^{\ell} A_{2 \ell, 2 j} u^{2 j}-\frac{1}{4} \sum_{i=0}^{\ell} A_{2 \ell-1, p^{s}+2 i-1} u^{s^{s}+2 i-1} \\
& \quad-\frac{1}{4} \sum_{j=0}^{\ell-1} A_{2 \ell-1,2 j} u^{2 j}+\frac{1}{4} \sum_{i=0}^{\ell} A_{2 \ell-1, p^{s}+2 i-1} u^{p^{s}+2 i+1}+\frac{1}{4} \sum_{j=0}^{\ell-1} A_{2 \ell-1,2 j} u^{2 j+2} \\
& =\frac{1}{4} A_{2 \ell-1, p^{s}+2 \ell-1} u^{p^{s}+2 \ell+1}+\sum_{i=1}^{\ell}\left(A_{2 \ell, p^{s}+2 i-1}-\frac{1}{4} A_{2 \ell-1, p^{s}+2 i-1}+\frac{1}{4} A_{2 \ell-1, p^{s}+2 i-3}\right) u^{p^{s}+2 i-1} \\
& \quad+\left(A_{2 \ell, p^{s}-1}-\frac{1}{4} A_{2 \ell-1, p^{s}-1}\right) u^{p^{s}-1}+\left(A_{2 \ell, 2 \ell}+\frac{1}{4} A_{2 \ell-1,2 \ell-2}\right) u^{2 \ell}
\end{aligned}
$$

$$
\begin{equation*}
+\sum_{j=1}^{\ell-1}\left(A_{2 \ell, 2 j}-\frac{1}{4} A_{2 \ell-1,2 j}+\frac{1}{4} A_{2 \ell-1,2 j-2}\right) u^{2 j}+A_{2 \ell, 0}-\frac{1}{4} A_{2 \ell-1,0} . \tag{3.6}
\end{equation*}
$$

On the other hand, Lemma 2.4 tells us that

$$
D_{p^{s}+2 \ell+1, k}(1, x)=D_{p^{s}+2 \ell, k}(1, x)-x D_{p^{s}+2 \ell-1, k}(1, x) .
$$

So by comparing the coefficient of the term u^{i} in the right hand side of (3.6) and (3.5), one can get the desired results as (3.3). Following the similar way, one also obtain the recursions of $A_{i, j}$ as (3.2). So the proof Theorem 3.1 is complete.

For any nonzero integer x, let $v_{2}(x)$ be the 2-adic valuation of x. By Theorem 3.1, the following results are established.

Theorem 3.2. Let $q=p^{e}$ with p being an odd prime and e being a positive integer. Let s be a nonnegative integer. Then each offollowing is true.
(i). If $k=0$, then $D_{p^{s}+1, k}(1, x)$ is a PP of \mathbb{F}_{q} if and only if either $p \equiv 1(\bmod 4)$ and $v_{2}(s) \geq v_{2}(e)$, or $p \equiv 3(\bmod 4)$ and $v_{2}(s) \geq \max \left\{v_{2}(e), 1\right\}$.
(ii). If $k=2$, then $D_{p^{s}+1, k}(1, x)$ is a PP of \mathbb{F}_{q} if and only if $p=3, v_{2}(s)=0$ and $\operatorname{gcd}(s, e)=1$.
(iii). If $k \neq 2$ and $k \neq 0$, then $D_{p^{s}+1, k}(1, x)$ is a PP of \mathbb{F}_{q} if and only if $s=0$.

Proof. By (3.1) of Theorem 3.1, we have that $D_{p^{s}+1, k}(1, x)$ is a PP of \mathbb{F}_{q} if and only if the polynomial

$$
(2-k) x^{p^{\frac{s}{2}+1}}+k x^{\frac{p^{\frac{s}{2}-1}}{2}}
$$

is a PP of \mathbb{F}_{q}.
(i). Let $k=0$. Then $D_{p^{s}+1, k}(1, x)$ is a PP of \mathbb{F}_{q} if and only if the monomial $x^{\frac{p^{s}+1}{2}}$ is a PP of \mathbb{F}_{q}, namely,

$$
\operatorname{gcd}\left(\frac{p^{s}+1}{2}, p^{e}-1\right)=1 .
$$

So we consider the following two cases on the odd prime p.
Case 1. $p \equiv 1(\bmod 4)$. Then $\frac{p^{s}+1}{2}$ must be odd. It then follows that

$$
\operatorname{gcd}\left(\frac{p^{s}+1}{2}, p^{e}-1\right)=\operatorname{gcd}\left(\frac{p^{s}+1}{2}, \frac{p^{e}-1}{2}\right)=\frac{1}{2} \operatorname{gcd}\left(p^{s}+1, p^{e}-1\right) .
$$

So in this case, by Lemma 2.6 we get that $\operatorname{gcd}\left(\frac{p^{s}+1}{2}, p^{e}-1\right)=1$ if and only if $\frac{e}{\operatorname{gcd}(s, e)}$ is odd which is equivalent to $v_{2}(e) \leq v_{2}(s)$.

CASE 2. $p \equiv 3(\bmod 4)$. Then $v_{2}\left(\frac{p^{s}+1}{2}\right) \geq 1$ when s is odd. In this case we have $2 \left\lvert\, \operatorname{gcd}\left(\frac{p^{s}+1}{2}, p^{e}-1\right)\right.$ which is not allowed. So in the case of $p \equiv 3(\bmod 4), s$ must be even. Then $\frac{p^{s}+1}{2}$ is an odd number. It follows from Lemma 2.6 that $\operatorname{gcd}\left(\frac{p^{s}+1}{2}, p^{e}-1\right)=1$ if and only if $\frac{e}{\operatorname{gcd}(s, e)}$ is odd which is equivalent to $v_{2}(e) \leq v_{2}(s)$ and $v_{2}(s) \geq 1$, i.e., $v_{2}(s) \geq \max \left\{1, v_{2}(e)\right\}$ as desired. Part (i) is proved.
(ii). Let $k=2$. Assume that $D_{p^{s}+1, k}(1, x)$ is a PP of $\mathbb{F}_{p^{e}}$. Then $D_{p^{s}+1, k}(1, x)$ is a PP of $\mathbb{F}_{p^{e}}$ if and only if $x^{\frac{p^{s}-1}{2}}$ is a PP of $\mathbb{F}_{p^{e}}$. Clearly, $s>0$ in this case. Suppose $p>3$, then $x^{\frac{p^{s}-1}{2}}$ is a PP of $\mathbb{F}_{p^{e}}$ if and only if

$$
\operatorname{gcd}\left(\frac{p^{s}-1}{2}, p^{e}-1\right)=1
$$

This is impossible since $\frac{p-1}{2} \left\lvert\, \operatorname{gcd}\left(\frac{p^{s}-1}{2}, q-1\right)\right.$ implies that

$$
\operatorname{gcd}\left(\frac{p^{s}-1}{2}, q-1\right) \geq \frac{p-1}{2}>1 .
$$

So $p=3$ and $s>0$ in what follows. Now Suppose $s>0$ is even, then it is easy to see that $2 \left\lvert\, \operatorname{gcd}\left(\frac{3^{s}-1}{2}, 3^{e}-1\right)\right.$ which is a contradiction. This means that s must be an odd number and then so is $\frac{3^{s}-1}{2}$. Thus we have that $x^{\frac{3^{s}-1}{2}}$ is a PP of $\mathbb{F}_{3^{e}}$ if and only if

$$
\operatorname{gcd}\left(\frac{3^{s}-1}{2}, 3^{e}-1\right)=\frac{1}{2} \operatorname{gcd}\left(3^{s}-1,3^{e}-1\right)=\frac{1}{2}\left(3^{\operatorname{gcd}(s, e)}-1\right)=1,
$$

which is equivalent to that s is odd and $\operatorname{gcd}(s, e)=1$. So Part (ii) is proved.
(iii). $k \neq 0$ and $k \neq 2$. Then the desired result follows from Lemma 2.2 that $(2-k) x^{\frac{p^{s}+1}{2}}+k x^{\frac{p^{s}-1}{2}}$ is a PP of \mathbb{F}_{q} if and only if $s=0$. Part (iii) is proved.

Theorem 3.3. Let $q=p^{e}$ with p being an odd prime and e being a positive integer. Let s be a nonnegative integer and s_{0} be the least nonnegative residue of s modulo $2 e$. Then each of following is true.
(i). If $k=0, p=3$, then $D_{p^{s}+2, k}(1, x)$ is not a PP of \mathbb{F}_{3} e.
(ii). If $k=0, p>3, s_{0}=0$, then $D_{p^{s}+2, k}(1, x)$ is a PP of $\mathbb{F}_{p^{e}}$.
(iii). If $k=0, p>3, s=e$, then $D_{p^{e}+2, k}(1, x)$ is a PP of \mathbb{F}_{q} if and only if $q=p^{e} \equiv 1(\bmod 3)$.
(iv). If $k=2$, then $D_{p^{s}+2, k}(1, x)$ is a PP of \mathbb{F}_{q} if and only if $s=0$.
(v). Let $k=4, p=3$. If $s=0$ or $s_{0}=1$, then the binomial $D_{p^{s}+2, k}(1, x)$ is a PP of $\mathbb{F}_{3^{e}}$. If $s>0$ and s_{0} is even, then $D_{p^{s}+2, k}(1, x)$ is not a PP of \mathbb{F}_{3} e.
(vi). Let $k=4, p>3$. Then $D_{p^{s}+2, k}(1, x)$ is a PP of $\mathbb{F}_{p^{e}}$ if and only if $s=0$.
(vii). If $k \neq 0,2,4$ and $p \nmid(4-k)$, then $D_{p^{s}+2, k}(1, x)$ is a PP of \mathbb{F}_{q} if and only if $s=0$ and $k \neq 3$.

Proof. By Theorem 3.1, we have that $D_{p^{s}+2, k}(1, x)$ is a PP of \mathbb{F}_{q} if and only if the polynomial

$$
(4-k) x^{\frac{s^{s}+1}{2}}+k x^{\frac{s^{s}-1}{2}}+(2-k) x
$$

is a PP of \mathbb{F}_{q}.
(i). Let $k=0, p=3$. Then $D_{p^{s}+2, k}(1, x)$ is a PP of \mathbb{F}_{q} if and only if the monomial $x^{\frac{p^{s}+1}{2}}+\frac{1}{2} x$ is a PP of \mathbb{F}_{q}. Let

$$
f_{1}(x):=x^{\frac{p^{s}+1}{2}}+\frac{1}{2} x .
$$

It is easy to see that $f_{1}(x)$ is not a PP of $\mathbb{F}_{3^{e}}$ since $f_{1}(0)=f_{1}(1)=0$. So in this case $D_{p^{s}+2, k}(1, x)$ is not a PP of $\mathbb{F}_{3^{e}}$.
(ii). Let $k=0, p>3, s_{0}=0$. Then $\frac{p^{s}+1}{2} \equiv 1\left(\bmod p^{e}-1\right)$ which implies that

$$
f_{1}(x) \equiv \frac{3}{2} x \quad\left(\bmod x^{p^{e}}-x\right)
$$

for any $x \in \mathbb{F}_{q}^{*}$. Note that $f_{1}(0)=\frac{3}{2} \times 0=0$ and the monomial $\frac{3}{2} x$ is a PP of \mathbb{F}_{q}. So $f_{1}(x)$ is a PP of \mathbb{F}_{q}. That is to say $D_{p^{s}+2, k}(1, x)$ is not a PP of $\mathbb{F}_{p^{e}}$.
(iii). Let $k=0, p>3, s=e$. Then by Theorem 7.11 in [5] we have $f_{1}(x)$ is a PP of \mathbb{F}_{q} if and only if $\eta\left(\left(\frac{1}{2}\right)^{2}-1\right)=1$, i.e., $\eta(-3)=1$, where $\eta(\cdot)$ denotes the quadratic character of \mathbb{F}_{q}. One can also find that $\eta(-3)=1$ if and only if $q=p^{e} \equiv 1(\bmod 3)$, as desired.
(iv). If $k=2$, then the desired result follows from Lemma 2.2 that the binomial $2 x^{\frac{p^{s}+1}{2}}+2 x^{\frac{p^{s}-1}{2}}$ is a PP of \mathbb{F}_{q} if and only if $s=0$. So $D_{p^{s}+2, k}(1, x)$ is not a PP of $\mathbb{F}_{p^{e}}$ if and only if $s=0$.
(v). Let $k=4, p=3$. Then $D_{p^{s}+2, k}(1, x)$ is a PP of \mathbb{F}_{q} if and only if $2 x^{\frac{p^{s}-1}{2}}-x$ is a PP of \mathbb{F}_{q}. Let

$$
f_{2}(x):=x^{\frac{p^{s}-1}{2}}+\frac{1}{2} x .
$$

Obviously $f_{2}(x)=x^{\frac{3^{s}-1}{2}}+x=1+x$ is a PP of $\mathbb{F}_{3^{e}}$ when $s=0$. Now let $0<s \equiv s_{0}(\bmod 2 e)$ with $0 \leq s_{0} \leq 2 e-1$. Then $\frac{p^{s}-1}{2} \equiv \frac{p^{s} 0-1}{2}\left(\bmod p^{e}-1\right)$. Therefore

$$
f_{2}(x) \equiv x^{\frac{3^{s_{0}-1}}{2}}+x \quad\left(\bmod x^{3^{e}}-x\right)
$$

for any $x \in \mathbb{F}_{q}^{*}$. If $s_{0}=1, f_{2}(x) \equiv 2 x\left(\bmod x^{3^{e}}-x\right)$ and $f_{2}(0)=2 \times 0=0$. This means that $f_{2}(x)=2 x$ for any $x \in \mathbb{F}_{q}$. So $f_{2}(x)$ is a PP of \mathbb{F}_{q} when $s_{0}=1$. If $s>0$ and s_{0} is even, then $x^{\frac{3^{s_{0}-1}}{2}}+x=1+x$ for any $x \in \mathbb{F}_{3}^{*}$. Note that $f_{2}\left(\mathbb{F}_{3}\right) \subseteq \mathbb{F}_{3}$ and $f_{2}(0)=f_{2}(-1)=0$, which tells us that $f_{2}(x)$ is not a PP of \mathbb{F}_{3}. Thus the desired results follows. Unfortunately, following the similar way, we cannot say anything for the case of $s>0$ and s_{0} being odd with $s_{0} \geq 3$.
(vi). Let $k=4, p>3$. Then $D_{p^{s}+2, k}(1, x)$ is a PP of \mathbb{F}_{q} if and only if $2 x^{\frac{p^{s}-1}{2}}-x$ is a PP of \mathbb{F}_{q}. It then follows from Lemma 2.8 that $D_{p^{s}+2, k}(1, x)$ is a PP of \mathbb{F}_{q} if and only if $s=0$, as required.
(vii). Let $p \geq 3, k \neq 0,2,4$ and $p \nmid(k-4)$. Denote

$$
f_{3}(x):=(4-k) x^{\frac{p^{s}+1}{2}}+k x^{\frac{p^{s}-1}{2}}+(2-k) x .
$$

First, if $s=0$, then $f_{3}(x)=(6-2 k) x+k$ which is a PP of $\mathbb{F}_{p^{e}}$ if and only if $k \neq 3$. In what follows we will show that $f_{3}(x)$ is not a PP of $\mathbb{F}_{p^{e}}$ when $s>0$. Let $0<s \equiv s_{0}(\bmod 2 e)$ with $0 \leq s_{0} \leq 2 e-1$. Then

$$
\begin{equation*}
f_{3}(x) \equiv(4-k) x^{\frac{p^{s_{0}+1}}{2}}+k x^{\frac{s^{0}-1}{2}}+(2-k) x \quad\left(\bmod x^{p^{e}}-x\right) . \tag{3.7}
\end{equation*}
$$

We consider the following cases.
Case 1. $s>0, s_{0}=0$. By (3.7) we have $f_{3}(x) \equiv(6-2 k) x+k\left(\bmod x^{p^{e}}-x\right)$, which means that $f_{3}(x)=(6-2 k) x+k$ for any $x \in \mathbb{F}_{p^{e}}^{*}$. If $k=3$, then $\forall x \in \mathbb{F}_{p^{e}}^{*} f_{3}(x)=k$. Obviously, $f_{3}(x)$ is not a PP of $\mathbb{F}_{p^{e}}$. If $k \neq 3$, then $f_{3}(x)=0$ has one nonzero root $\frac{k}{2 k-6} \in \mathbb{F}_{p^{e}}^{*}$ since $k \neq 0$. But $f_{3}(0)=0$. So $f_{3}(x)$ is not a PP of $\mathbb{F}_{p^{e}}$ in this case.

CASE 2. $s>0$ and s_{0} is a positive even number. Then $x^{\frac{s^{s_{0}+1}}{2}}=x$ and $x^{\frac{p^{s_{0}-1}}{2}}=1$ for each $x \in \mathbb{F}_{p}^{*}$, which together with (3.7) imply that $f_{3}(x)=(6-2 k) x+k$ for any $x \in \mathbb{F}_{p}^{*}$. If $k=3$, then $\forall x \in \mathbb{F}_{p}^{*}$, $f_{3}(x)=k$. Obviously, $f_{3}(x)$ is not a PP of \mathbb{F}_{p}. If $k \neq 3$, then $f_{3}(x)=0$ has one nonzero root $\frac{k}{2 k-6} \in \mathbb{F}_{p}^{*}$ since $k \neq 0$. But $f_{3}(0)=0$. Therefore $f_{3}(x)$ is not a PP of \mathbb{F}_{p} in this case. So is $f_{3}(x)$ of $\mathbb{F}_{p^{e}}$ since $f_{3}\left(\mathbb{F}_{p}\right) \subseteq \mathbb{F}_{p}$.

CASE 3. $s>0$ and s_{0} is odd. Then $x^{\frac{p_{0} s_{0}}{2}}=x^{\frac{p+1}{2}}$ and $x^{\frac{s_{0}-1}{2}}=x^{\frac{p-1}{2}}$ for each $x \in \mathbb{F}_{p}^{*}$, which together with (3.7) imply that $f_{3}(x)=(4-k) x^{\frac{p+1}{2}}+k x^{\frac{p-1}{2}}+(2-k) x$ for any $x \in \mathbb{F}_{p}^{*}$. If $p=3$, then k must equal 1 since $0 \leq k<p$ and $k \neq 0,2,4$, which contradicts to the condition $p \nmid(4-k)$. So one has $p>3$. Then

$$
\left[f_{3}(x)\right]^{2} \equiv k^{2} x^{p-1}+\text { the terms of } x \text { with the degree less than } p-1\left(\bmod x^{p}-x\right)
$$

Then by Lemma 2.7, we know that $f_{3}(x)$ is not a PP of \mathbb{F}_{p}. Also note that $f_{3}\left(\mathbb{F}_{p}\right) \subseteq \mathbb{F}_{p}$. So $f_{3}(x)$ is not a PP of $\mathbb{F}_{p^{e}}$.

Combining the above cases, we verify that $f_{3}(x)$ is not a PP of $\mathbb{F}_{p^{e}}$ when $s>0$. Thus Part (vii) is proved. So the proof of Theorem 3.3 is complete.

Theorem 3.4. Let $q=p^{e}$ with p being an odd prime and e being a positive integer. Let s be a nonnegative integer and s_{0} be the least nonnegative residue of s modulo $2 e$. Then each of following is true.
(i). If $k=0, p=3$, then $D_{3^{s}+3,0}(1, x)$ is a PP of $\mathbb{F}_{3^{e}}$ if and only if $v_{2}(s-1) \geq \max \left\{1, v_{2}(e)\right\}$.
(ii). Let $k=0, p>3$. If s_{0} is an even number, then $D_{p^{s}+3,0}(1, x)$ is not a $P P$ of $\mathbb{F}_{p^{e}}$.
(iii). If $k=2, s=0$, then $D_{p^{s}+3, k}(1, x)$ is a PP of \mathbb{F}_{q}
(iv). Let $k=2, s>0, p=3$. If $s_{0}=1$, then $D_{3^{s}+3,2}(1, x)$ is a PP of $\mathbb{F}_{3^{e}}$. If s_{0} is even, then $D_{3^{s}+3,2}(1, x)$ is not a PP of \mathbb{F}_{3}.
(v). Let $k=2, p>3$. Then $D_{p^{s}+3,2}(1, x)$ is a $P P$ of $\mathbb{F}_{p^{e}}$ if and if $s=0$.
(vi). If $k=3$, then $D_{p^{s}+3, k}(1, x)$ is a PP of \mathbb{F}_{q} if and only if $p=3$ and $v_{2}(s-1) \geq \max \left\{1, v_{2}(e)\right\}$.
(vii). If $k \neq 0,2,3$, then $D_{p^{s}+3, k}(1, x)$ is not a PP of $\mathbb{F}_{p^{e}}$.

Proof. By Theorem 3.1, we have that $D_{p^{s}+3, k}(1, x)$ is a PP of \mathbb{F}_{q} if and only if the polynomial

$$
\begin{equation*}
(2-k) x^{\frac{p^{s}+3}{2}}+6 x^{\frac{p^{s}+1}{2}}+k x^{\frac{p^{s}-1}{2}}+(6-2 k) x \tag{3.8}
\end{equation*}
$$

is a PP of \mathbb{F}_{q}.
(i). Letting $k=0$, we have $D_{p^{s}+3, k}(1, x)$ is a PP of \mathbb{F}_{q} if and only if (3.8) is a PP of \mathbb{F}_{q}, i.e., the trinomial $x^{\frac{p^{s}+3}{2}}+3 x^{\frac{p^{s}+1}{2}}+3 x$ is a PP of \mathbb{F}_{q}. Let

$$
f_{4}(x):=x^{\frac{p^{s}+3}{2}}+3 x^{\frac{p^{s}+1}{2}}+3 x .
$$

Now let $p=3$. Then $f_{4}(x)$ is a PP of \mathbb{F}_{q} if and only if $x^{\frac{3^{3}+3}{2}}$ is a PP of \mathbb{F}_{q}. The latter is equivalent to $\operatorname{gcd}\left(\frac{3^{s}+3}{2}, 3^{e}-1\right)=1$. Now we let $\operatorname{gcd}\left(\frac{3^{s}+3}{2}, 3^{e}-1\right)=1$. If s is even, then one has $v_{2}\left(\frac{3^{s}+3}{2}\right) \geq 1$. It follows that $2 \left\lvert\, \operatorname{gcd}\left(\frac{3^{s}+3}{2}, 3^{e}-1\right)\right.$, which is a contradiction. So s must be odd. Then $\frac{3^{s}+3}{2}$ is an odd integer. It follows from Lemma 2.6 that $\operatorname{gcd}\left(\frac{3^{s}+3}{2}, 3^{e}-1\right)=\operatorname{gcd}\left(\frac{3^{s-1}+1}{2}, \frac{3^{e}-1}{2}\right)=\frac{1}{2} \operatorname{gcd}\left(3^{s-1}+1,3^{e}-1\right)=1$ if and only if $\frac{e}{\operatorname{gcd}(s-1, e)}$ is odd. This means that $\operatorname{gcd}\left(\frac{3^{s}+3}{2}, 3^{e}-1\right)=1$ if and only if $v_{2}(e) \leq v_{2}(s-1)$ and $v_{2}(s-1) \geq 1$, namely, $v_{2}(s-1) \geq \max \left\{1, v_{2}(e)\right\}$, as desired.
(ii). Let $k=0, p>3$. Then $\frac{p^{s}+3}{2} \equiv \frac{p^{s_{0}+3}}{2}\left(\bmod p^{e}-1\right)$ and $\frac{p^{s}+1}{2} \equiv \frac{p^{s_{0}+1}}{2}\left(\bmod p^{e}-1\right)$. So

$$
\begin{equation*}
f_{4}(x) \equiv x^{\frac{p^{s_{0}}+3}{2}}+3 x^{\frac{p^{s_{0}}+1}{2}}+3 x \quad\left(\bmod x^{p^{e}}-x\right) . \tag{3.9}
\end{equation*}
$$

Clearly, if s_{0} is even, then $x^{\frac{p_{0}+3}{2}}=x^{2}$ and $x^{\frac{p^{s_{0}+1}}{2}}=x$ for any $x \in \mathbb{F}_{p}^{*}$. Then by (3.9) we have $f_{4}(x)=$ $x^{2}+6 x=x(x+6)$ for any $x \in \mathbb{F}_{p}^{*}$. Hence $f_{4}(x)=0$ has one nonzero root -6 in \mathbb{F}_{p}^{*}. But $f_{4}(0)=0$. It then follows that $f_{4}(x)$ is not a PP of \mathbb{F}_{p}. One notes that $f_{4}\left(\mathbb{F}_{p}\right) \subseteq \mathbb{F}_{p}$. Therefore $f_{4}(x)$ is not a PP of $\mathbb{F}_{p^{e}}$. It follows that $D_{p^{s}+3, k}(1, x)$ is not a PP of \mathbb{F}_{q} when s_{0} is even.
(iii). Letting $k=2$, we have $D_{p^{s}+3, k}(1, x)$ is a PP of \mathbb{F}_{q} if and only if (3.8) is a PP of \mathbb{F}_{q}, i.e., $3 x^{\frac{p^{s}+1}{2}}+x^{\frac{p^{s}-1}{2}}+x$ is a PP of \mathbb{F}_{q}. Let

$$
f_{5}(x):=3 x^{\frac{p^{\frac{s}{s}+1}}{2}}+x^{\frac{p^{s}-1}{2}}+x .
$$

Let $s=0$. Then $f_{5}=4 x+1$, which clearly is a PP of \mathbb{F}_{q}. So $D_{p^{s}+3, k}(1, x)$ is a PP of \mathbb{F}_{q}.
(iv). Let $k=2, p=3, s>0$. Then the desired result follows from the proof of Part (v) of Theorem 3.3.
(v). Let $k=2, p>3$. By Part (iii) we only need to show that $D_{p^{s}+3, k}(1, x)$ is not a PP of \mathbb{F}_{q} when $s>0$. Let $0<s \equiv s_{0}(\bmod 2 e)$ with $0 \leq s_{0} \leq 2 e-1$. Then one has

$$
f_{5}(x) \equiv 3 x^{\frac{p^{s}+1}{2}}+x^{\frac{p^{s}-1}{2}}+x \quad\left(\bmod x^{p^{e}}-x\right)
$$

If s_{0} is even, then $f_{5}(x)=4 x+1$ for any $x \in \mathbb{F}_{p}^{*}$. In this situation, $f_{5}(x)=0$ has one nonzero root $-\frac{1}{4} \in \mathbb{F}_{p}^{*}$. So $f_{5}(x)$ is not a PP of \mathbb{F}_{p} since $f_{5}(0)=0$. Also note that $f_{5}\left(\mathbb{F}_{p}\right) \subseteq \mathbb{F}_{p}$. Thus $f_{5}(x)$ is not a PP of $\mathbb{F}_{p^{e}}$ in this case. If s_{0} is odd, then $f_{5}(x)=3 x^{\frac{p+1}{2}}+x^{\frac{p-1}{2}}+x$ for any $x \in \mathbb{F}_{p}^{*}$. So in \mathbb{F}_{p}^{*}, we have

$$
\left(f_{5}(x)\right)^{2} \equiv x^{p-1}+\text { the terms of } x \text { with the degree less than } p-1\left(\bmod x^{p}-x\right)
$$

Then by Lemma 2.7, we know that $f_{5}(x)$ is not a PP of \mathbb{F}_{p}. We note that $f_{5}\left(\mathbb{F}_{p}\right) \subseteq \mathbb{F}_{p}$. Therefore $f_{5}(x)$ is not a PP of $\mathbb{F}_{p^{e}}$. It infers that $D_{p^{s}+3, k}(1, x)$ is not a PP of \mathbb{F}_{q} when $s>0$. Part (v) is proved.
(vi). Let $k=3$. Then $D_{p^{s}+3, k}(1, x)$ is a PP of \mathbb{F}_{q} if and only if (3.8) is a PP of \mathbb{F}_{q}, i.e., the trinomial

$$
f_{6}(x):=-x^{\frac{p^{s}+3}{2}}+6 x^{\frac{p^{s}+1}{2}}+3 x^{\frac{p^{s}-1}{2}}
$$

is a PP of \mathbb{F}_{q}. By the result of Part (i), we then have from the fact $D_{3^{s}+3,3}(1, x)=D_{3^{s}+3,0}(1, x)$ that $f_{6}(x)$ is a PP of of $\mathbb{F}_{3^{e}}$ if and only if $v_{2}(s-1) \geq \max \left\{1, v_{2}(e)\right\}$. Then we only need to show that $f_{6}(x)$ is not a PP of $\mathbb{F}_{p^{e}}$ when $p>3$. Let $s \equiv s_{0}(\bmod 2 e)$ with $0 \leq s_{0} \leq 2 e-1$. Then one has

$$
f_{6}(x) \equiv-x^{\frac{p^{s_{0}+3}}{2}}+6 x^{\frac{p^{s_{0}+1}}{2}}+3 x^{\frac{p^{s_{0}-1}}{2}} \quad\left(\bmod x^{p^{e}}-x\right)
$$

If s_{0} is even, then $f_{6}(x)=-x^{2}+6 x+3$ for any $x \in \mathbb{F}_{p}^{*}$. Then $f_{6}(x)$ is not a PP of \mathbb{F}_{p} since $f_{6}(2)=$ $f_{6}(4)=11$. Also note that $f_{6}\left(\mathbb{F}_{p}\right) \subseteq \mathbb{F}_{p}$. Thus $f_{6}(x)$ is not a PP of $\mathbb{F}_{p^{p}}$ for $p>3$ and s_{0} being even. If s_{0} is odd, then $f_{6}(x)=-x^{\frac{p+3}{2}}+6 x^{\frac{p+1}{2}}+3 x^{\frac{p-1}{2}}$ for any $x \in \mathbb{F}_{p}^{*}$. So in \mathbb{F}_{p}^{*}, we have

$$
\left(f_{6}(x)\right)^{2} \equiv 9 x^{p-1}+\text { the terms of } x \text { with the degree less than } p-1\left(\bmod x^{p}-x\right) .
$$

Then by Lemma 2.7, we know that $f_{6}(x)$ is not a PP of \mathbb{F}_{p}. We note that $f_{6}\left(\mathbb{F}_{p}\right) \subseteq \mathbb{F}_{p}$. Therefore $f_{6}(x)$ is not a PP of $\mathbb{F}_{p^{e}}$ when $p>3$ and s_{0} is odd. So $f_{6}(x)$ is a PP of \mathbb{F}_{q} if and only if $p=3$ and $v_{2}(s-1) \geq$ $\max \left\{1, v_{2}(e)\right\}$, that is, $D_{p^{s}+3, k}(1, x)$ is a PP of \mathbb{F}_{q} if and only if $p=3$ and $v_{2}(s-1) \geq \max \left\{1, v_{2}(e)\right\}$. Part (vi) is proved.
(iv). Let $k \neq 0,2,3$ and $0 \leq k<p$. Then $D_{p^{s}+3, k}(1, x)$ is a PP of \mathbb{F}_{q} if and only if (3.8) is a PP of \mathbb{F}_{q}, i.e., if and only if

$$
f_{7}(x):=(2-k) x^{\frac{p^{s}+3}{2}}+6 x^{\frac{p^{s}+1}{2}}+k x^{\frac{p^{s}-1}{2}}+(6-2 k) x
$$

is a PP of \mathbb{F}_{q}. Let $s \equiv s_{0}(\bmod 2 e)$ with $0 \leq s_{0} \leq 2 e-1$. Then one has

$$
f_{7}(x) \equiv(2-k) x^{\frac{p^{s_{0}}+3}{2}}+6 x^{\frac{p^{\frac{p_{0}}{}}}{2}}+k x^{\frac{p^{s_{0}}-1}{2}}+(6-2 k) x \quad\left(\bmod x^{p^{e}}-x\right) .
$$

If s_{0} is even, then $f_{7}(x)=(2-k) x^{2}+(12-2 k) x+k$ for any $x \in \mathbb{F}_{p}^{*}$. One then finds that $f_{7}\left(\frac{4}{k-2}\right)=f_{7}\left(\frac{8-2 k}{k-2}\right)$ and $\frac{4}{k-2} \neq \frac{8-2 k}{k-2}$ when $k \neq 4$. If $k=4$, then $p \geq 5$. In this case, $f_{7}(x)=-2 x^{2}+4 x+4$ for any $x \in \mathbb{F}_{p}^{*}$,
which implies $f_{7}(-1)=f_{7}(3)$ when $k=4$. Therefore $f_{7}(x)$ is not a PP of \mathbb{F}_{p}. Also note that $f_{7}\left(\mathbb{F}_{p}\right) \subseteq \mathbb{F}_{p}$. Thus $f_{7}(x)$ is not a PP of $\mathbb{F}_{p^{e}}$ when s_{0} is even. If s_{0} is odd, then

$$
\begin{equation*}
f_{7}(x)=(2-k) x^{\frac{p+3}{2}}+6 x^{\frac{p+1}{2}}+k x^{\frac{p-1}{2}}+(6-2 k) x \tag{3.10}
\end{equation*}
$$

for any $x \in \mathbb{F}_{p}^{*}$. We consider the following two cases.
Case 1. Let $p=3$. Then $k=1$ since $k<p$ and $k \neq 0,2$. Hence $\forall x \in \mathbb{F}_{3}^{*}, f_{7}(x)=x^{3}+2 x$. It then follows from $f_{7}(0)=f_{7}(1)=0$ that $f_{7}(x)$ is not a PP of \mathbb{F}_{3}. We note that $f_{7}\left(\mathbb{F}_{3}\right) \subseteq \mathbb{F}_{3}$. Therefore $f_{7}(x)$ is not a PP of $\mathbb{F}_{3^{e}}$.
Case 2. Let $p>3$. By (3.10), in \mathbb{F}_{p} we have

$$
\left(f_{7}(x)\right)^{2} \equiv k^{2} x^{p-1}+\text { the terms of } x \text { with the degree less than } p-1\left(\bmod x^{p}-x\right) .
$$

Then by Lemma 2.7, we know that $f_{7}(x)$ is not a PP of \mathbb{F}_{p}. We note that $f_{7}\left(\mathbb{F}_{p}\right) \subseteq \mathbb{F}_{p}$. Therefore $f_{7}(x)$ is not a PP of $\mathbb{F}_{p^{e}}$ when $p>3$ and s_{0} is odd.

Hence $f_{7}(x)$ is not a PP of $\mathbb{F}_{p^{e}}$ when $k \neq 0,2,3$, from which we deduce immediately that $D_{p^{s}+3, k}(1, x)$ is not a PP of $\mathbb{F}_{p^{e}}$ when $k \neq 0,2,3$. Part (vii) is proved. So we completes the proof of Theorem 3.4.

Theorem 3.5. Let $q=p^{e}$ with p being an odd prime and e being a positive integer. Let s be a nonnegative integer and s_{0} be the least nonnegative residue of s modulo $2 e$. If $D_{p^{s}+4, k}(1, x)$ is a PP of \mathbb{F}_{q}, then either $k=0$ and s_{0} is odd, or $k>0, k \neq 2$ and $s=0$.

Proof. It is sufficient to show that $D_{p^{s}+4, k}(1, x)$ is not a PP of \mathbb{F}_{q} when $k=0, s_{0}$ is even, or $k>0, s>0$. By Theorem 3.1, we get

$$
\begin{aligned}
32 D_{p^{s}+4, k}(1, x) & =k(1-4 x)^{\frac{p^{s}-1}{2}}+(8+2 k)(1-4 x)^{\frac{p^{s}+1}{2}} \\
& +(8-3 k)(1-4 x)^{\frac{p^{s}+3}{2}}+2+3 k+(12-2 k)(1-4 x)+(2-k)(1-4 x)^{2} .
\end{aligned}
$$

Then $D_{p^{s}+4, k}(1, x)$ is a PP of \mathbb{F}_{q} if and only if $k x^{\frac{p^{s}-1}{2}}+(8+2 k) x^{\frac{p^{s}+1}{2}}+(8-3 k) x^{\frac{p^{s}+3}{2}}+(12-2 k) x+(2-k) x^{2}$ is a PP of \mathbb{F}_{q}. Let

$$
f_{8}(x):=k x^{\frac{p^{\frac{s}{2}-1}}{2}}+(8+2 k) x^{\frac{p^{s}+1}{2}}+(8-3 k) x^{\frac{p^{s}+3}{2}}+(12-2 k) x+(2-k) x^{2} .
$$

Now we show that $f_{8}(x)$ is not a PP of \mathbb{F}_{q} when $k=0, s_{0}$ is even, or $k>0, s>0$. Then the following cases are considered.

Case 1. $k=0$ and s_{0} is an even. Then $f_{8}(x)=4 x^{\frac{p^{s_{0}+1}}{2}}+4 x^{\frac{s_{0}+3}{2}}+6 x+x^{2}$. It infers that

$$
f_{8}(x) \equiv 4 x^{\frac{p^{s_{0}}+1}{2}}+4 x^{\frac{p^{s_{0}}+3}{2}}+6 x+x^{2} \quad\left(\bmod x^{q}-x\right)
$$

Additionally, $\forall x \in \mathbb{F}_{p}^{*}, x^{\frac{p^{s_{0}+1}}{2}}=x$ and $x^{\frac{p_{0}+3}{2}}=x^{2}$ since s_{0} is an even. Therefore

$$
f_{8}(x)=5 x(x+2)
$$

for any $x \in \mathbb{F}_{p}^{*}$. Then $f_{8}(0)=f_{8}(-2)=0$. So $f_{8}(x)$ is not a PP of \mathbb{F}_{p}. Also $f_{8}(x)$ is not a PP of $\mathbb{F}_{p^{e}}$ since $f_{8}\left(\mathbb{F}_{p}\right) \subseteq \mathbb{F}_{p}$.

Case 2. $k=2$. Then

$$
f_{8}(x)=2 x^{\frac{p^{s}-1}{2}}+12 x^{\frac{p^{s}+1}{2}}+2 x^{\frac{p^{s}+3}{2}}+8 x .
$$

SUBCASE 2-1. $p=3$. Then $f_{8}(x)=2 x^{\frac{p^{s}-1}{2}}+2 x^{\frac{p^{s}+3}{2}}+2 x$. So $f_{8}(x)=2 x^{2}+2 x+2$ when $s=0$, which then follows that $f_{8}(0)=f_{8}(2)=2$. If $s>0$, we have easily that $f_{8}(0)=f_{8}(1)=0$. Thus $f_{8}(x)$ is not a PP of $\mathbb{F}_{3^{e}}$ whenever.
subcase 2-2. $p>3$. Then

$$
f_{8}(x) \equiv 2 x^{\frac{p^{s_{0}-1}}{2}}+12 x^{\frac{p^{p_{0}+1}}{2}}+2 x^{{\frac{p}{}{ }^{s_{0}+3}}_{2}^{2}}+8 x \quad\left(\bmod x^{p^{e}}-x\right) .
$$

If s_{0} is even, then $f_{8}(x)=2 x^{2}+20 x+2$ for any $x \in \mathbb{F}_{p}^{*}$. This implies that $f_{8}(-4)=f_{8}(-6)$, which then follows that $f_{8}(x)$ is not a PP of \mathbb{F}_{p}. Note that $f_{8}\left(\mathbb{F}_{p}\right) \subseteq \mathbb{F}_{p}$. So $f_{8}(x)$ is not a PP of \mathbb{F}_{q} when s_{0} is even. If s_{0} is odd, then $f_{8}(x)=2 x^{\frac{p-1}{2}}+12 x^{\frac{p+1}{2}}+2 x^{\frac{p+3}{2}}+8 x$ for any $x \in \mathbb{F}_{p}^{*}$. We then deduces that

$$
\left(f_{8}(x)\right)^{2} \equiv 4 x^{p-1}+\text { the terms of } x \text { with the degree less than } p-1\left(\bmod x^{p}-x\right) .
$$

Then by Lemma 2.7, we know that $f_{8}(x)$ is not a PP of \mathbb{F}_{p}. We note that $f_{8}\left(\mathbb{F}_{p}\right) \subseteq \mathbb{F}_{p}$. Therefore $f_{8}(x)$ is not a PP of $\mathbb{F}_{p^{e}}$ when s_{0} is odd.

Thus $D_{p^{s}+4,2}(1, x)$ is not a PP of $\mathbb{F}_{p^{e}}$ for any nonnegative integer s and odd prime p.
Case 3. $k=6, s>0$. Then $p \geq 7$ and

$$
f_{8}(x)=6 x^{\frac{p^{s}-1}{2}}+20 x^{\frac{p^{s}+1}{2}}-10 x^{\frac{p^{s}+3}{2}}-4 x^{2} .
$$

If $s>0$ and s_{0} is even, then $f_{8}(x)=-14 x^{2}+20 x+6$ for any $x \in \mathbb{F}_{p}^{*}$. This implies that $f_{8}(0)=f_{8}(-1)=0$ if $p=7$, or $f_{8}\left(\frac{4}{7}\right)=f_{8}\left(\frac{6}{7}\right)$ if $p>7$. This means that $f_{8}(x)$ is not a PP of \mathbb{F}_{p}. Note that $f_{8}\left(\mathbb{F}_{p}\right) \subseteq \mathbb{F}_{p}$. So $f_{8}(x)$ is not a PP of \mathbb{F}_{q} when s_{0} is even. If $s>0$ and s_{0} is odd, then $f_{8}(x)=6 x^{\frac{p-1}{2}}+20 x^{\frac{p+1}{2}}-10 x^{\frac{p+3}{2}}-4 x^{2}$ for any $x \in \mathbb{F}_{p}^{*}$, which implies that

$$
\left(f_{8}(x)\right)^{2} \equiv 36 x^{p-1}+\text { the terms of } x \text { with the degree less than } p-1\left(\bmod x^{p}-x\right) .
$$

Then by Lemma 2.7, we know that $f_{8}(x)$ is not a PP of \mathbb{F}_{p}. We note that $f_{8}\left(\mathbb{F}_{p}\right) \subseteq \mathbb{F}_{p}$. Therefore $f_{8}(x)$ is not a PP of $\mathbb{F}_{p^{e}}$ when s_{0} is odd.

Thus $D_{p^{s}+4,6}(1, x)$ is not a PP of $\mathbb{F}_{p^{e}}$ when $s>0$.
Case 4. $k=p-4, s>0$. Then $p \geq 5$ and

$$
f_{8}(x)=(p-4) x^{\frac{p^{s}-1}{2}}+(20-3 p) x^{\frac{p^{s}+3}{2}}+(20-2 p) x+(6-p) x^{2} .
$$

If $s>0, s_{0}$ is even, then $f_{8}(x)=26 x^{2}+20 x-4$ for any $x \in \mathbb{F}_{p}^{*}$. This implies that $f_{8}(0)=f_{8}\left(\frac{1}{5}\right)=0$ if $p=13$, or $f_{8}\left(\frac{-4}{13}\right)=f_{8}\left(\frac{-6}{13}\right)$ if $p \neq 13$. This means that $f_{8}(x)$ is not a PP of \mathbb{F}_{p}. Note that $f_{8}\left(\mathbb{F}_{p}\right) \subseteq \mathbb{F}_{p}$. So $f_{8}(x)$ is not a PP of \mathbb{F}_{q} when s_{0} is even. If $s>0, s_{0}$ is odd, then $f_{8}(x)=-4 x^{\frac{p-1}{2}}+20 x^{\frac{p+3}{2}}+20 x+6 x^{2}$ for any $x \in \mathbb{F}_{p}^{*}$, which implies that

$$
\left(f_{8}(x)\right)^{2} \equiv 16 x^{p-1}+\text { the terms of } x \text { with the degree less than } p-1\left(\bmod x^{p}-x\right)
$$

Then by Lemma 2.7, we know that $f_{8}(x)$ is not a PP of \mathbb{F}_{p}. We note that $f_{8}\left(\mathbb{F}_{p}\right) \subseteq \mathbb{F}_{p}$. Therefore $f_{8}(x)$ is not a PP of $\mathbb{F}_{p^{e}}$ when s_{0} is odd.

Thus $D_{p^{s}+4, p-4}(1, x)$ is not a PP of $\mathbb{F}_{p^{e}}$ when $s>0$.
Case 5. $p \mid(3 k-8), s>0$. Then $p \geq 5, p \nmid(2-k)$ and

$$
f_{8}(x)=k x^{\frac{p^{s}-1}{2}}+(8+2 k) x^{\frac{p^{s}+1}{2}}+(12-2 k) x+(2-k) x^{2}
$$

If $s>0, s_{0}$ is even, then $f_{8}(x)=(2-k) x^{2}+20 x+k$ for any $x \in \mathbb{F}_{p}^{*}$. This implies that $f_{8}\left(\frac{-11}{2-k}\right)=f_{8}\left(\frac{-9}{2-k}\right)=0$. This means that $f_{8}(x)$ is not a PP of \mathbb{F}_{p}. Note that $f_{8}\left(\mathbb{F}_{p}\right) \subseteq \mathbb{F}_{p}$. So $f_{8}(x)$ is not a PP of \mathbb{F}_{q} when s_{0} is even. If $s>0, s_{0}$ is odd, then $f_{8}(x)=k x^{\frac{p-1}{2}}+(8+2 k) x^{\frac{p+1}{2}}+(12-2 k) x+(2-k) x^{2}$ for any $x \in \mathbb{F}_{p}^{*}$, which implies that

$$
\left(f_{8}(x)\right)^{2} \equiv k^{2} x^{p-1}+\text { the terms of } x \text { with the degree less than } p-1\left(\bmod x^{p}-x\right)
$$

Then by Lemma 2.7, we know that $f_{8}(x)$ is not a PP of \mathbb{F}_{p}. We note that $f_{8}\left(\mathbb{F}_{p}\right) \subseteq \mathbb{F}_{p}$. Therefore $f_{8}(x)$ is not a PP of $\mathbb{F}_{p^{e}}$ when s_{0} is odd.

Thus $D_{p^{s}+4, k}(1, x)$ is not a PP of $\mathbb{F}_{p^{e}}$ when $p \mid(3 k-8)$ and $s>0$.
Case 6. $k \neq 0,2,6, p-4, s>0$ and $p \nmid(3 k-8)$. Then

$$
f_{8}(x)=k x^{\frac{p^{s}-1}{2}}+(8+2 k) x^{\frac{p^{s}+1}{2}}+(8-3 k) x^{\frac{p^{s}+3}{2}}+(12-2 k) x+(2-k) x^{2}
$$

If $s>0, s_{0}$ is even, then $f_{8}(x)=(10-4 k) x^{2}+20 x+k$ for any $x \in \mathbb{F}_{p}^{*}$. If $p \mid(2 k-5)$, then $p \neq 5$ and $f_{8}(x)=20 x+k, \forall x \in \mathbb{F}_{p}^{*}$. It implies that $f_{8}(0)=f_{8}\left(\frac{-k}{20}\right)=0$. So $f_{8}(x)$ is not a PP of \mathbb{F}_{p} when $p \mid(2 k-5)$. If $p \nmid(2 k-5)$, then $f_{8}\left(\frac{4}{2 k-5}\right)=f_{8}\left(\frac{6}{2 k-5}\right)$, which means that $f_{8}(x)$ is not a PP of \mathbb{F}_{p} when $p \nmid(2 k-5)$. Thus $f_{8}(x)$ is not a PP of \mathbb{F}_{p} when $s>0$, s_{0} is even. Note that $f_{8}\left(\mathbb{F}_{p}\right) \subseteq \mathbb{F}_{p}$. So $f_{8}(x)$ is not a PP of \mathbb{F}_{q} when s_{0} is even. If $s>0, s_{0}$ is odd, then $f_{8}(x)=k x^{\frac{p-1}{2}}+(8+2 k) x^{\frac{p+1}{2}}+(8-3 k) x^{\frac{p+3}{2}}+(12-2 k) x+(2-k) x^{2}$ for any $x \in \mathbb{F}_{p}^{*}$. If $p=3$, then $k=1$. In this case $f_{8}(x)=2 x+2 x^{2}+2 x^{3}$, which implies that $f_{8}(0)=f_{8}(1)=0$. It then follows that $f_{8}(x)$ is not a PP of \mathbb{F}_{3}. If $p>3$, then

$$
\left(f_{8}(x)\right)^{2} \equiv k^{2} x^{p-1}+\text { the terms of } x \text { with the degree less than } p-1\left(\bmod x^{p}-x\right)
$$

Then by Lemma 2.7, we know that $f_{8}(x)$ is not a PP of \mathbb{F}_{p}. Thus $f_{8}(x)$ is not a PP of \mathbb{F}_{p} when s_{0} is odd. We note that $f_{8}\left(\mathbb{F}_{p}\right) \subseteq \mathbb{F}_{p}$. Therefore $f_{8}(x)$ is not a PP of $\mathbb{F}_{p^{e}}$ when s_{0} is odd.

Thus $D_{p^{s}+4, k}(1, x)$ is not a PP of $\mathbb{F}_{p^{e}}$ when $k \neq 0,2,6, p-4, s>0$ and $p \nmid(3 k-8)$. Combining all of the above cases, we have the desired result. Therefore Theorem 3.5 is proved.

Corollary 3.6. Let $q=p^{e}$ with p being an odd prime and e being a positive integer. Let s and k be nonnegative integers with $0<k<p$. Then $D_{p^{s}+4, k}(1, x)$ is a $P P$ of \mathbb{F}_{q} if and only if $s=0$ and $p \mid(2 k-5)$.
Proof. The desired result follows immediately from the proof of Theorem 3.5.

4. Reversed Dickson polynomials $D_{p^{s}+p^{t}+\ell, k}(1, x)$

In this section, we present an explicit formula for $D_{n, k}(1, x)$ when $n=p^{s}+p^{t}+\ell$ with $\leq s<t$ and $0 \leq \ell<p$. Then we characterize $D_{n, k}(1, x)$ to be a PP of \mathbb{F}_{q} in this case.

Theorem 4.1. Let $p=\operatorname{char}\left(\mathbb{F}_{q}\right)$ be an odd prime. Let s and t be integers such that $0 \leq s<t$. Then

$$
D_{p^{s}+p^{t}, k}(1, x)=\frac{k}{4}\left((1-4 x)^{\frac{p^{s}-1}{2}}+(1-4 x)^{\frac{p^{t}-1}{2}}\right)-\frac{k-2}{4}\left(1+(1-4 x)^{\frac{p^{s}+p^{t}}{2}}\right)
$$

Proof. We consider the following two cases.
Case 1. $x \neq \frac{1}{4}$. For this case, putting $x=y(1-y)$ in the second identity of Lemma 2.3 gives us that

$$
\begin{aligned}
D_{p^{s}+p^{t}, k}(1, x) & =D_{p^{s}+p^{t}, k}(1, y(1-y)) \\
& =\frac{(k-1-(k-2) y) y^{s}+p^{t}}{2 y-(1+(k-2) y)(1-y)^{p^{s}+p^{t}}} \\
& =\frac{\frac{k+(2-k) u}{2}\left(\frac{u+1}{2}\right)^{p^{s}+p^{t}}-\frac{k+(k-2) u}{2}\left(\frac{1-u}{2}\right) p^{p^{s}+p^{t}}}{u} \\
& =\frac{k}{4}\left(u^{p^{s}-1}+u^{p^{t}-1}\right)-\frac{k-2}{4}\left(1+u^{p^{s}+p^{t}}\right) \\
& =\frac{k}{4}\left(\left(u^{2}\right)^{\frac{p^{s}-1}{2}}+\left(u^{2}\right)^{\frac{p^{t}-1}{2}}\right)-\frac{k-2}{4}\left(1+\left(u^{2}\right)^{\frac{p^{s}+p^{t}}{2}}\right),
\end{aligned}
$$

where $u=2 y-1$ and $u^{2}=1-4 x$. So we obtain that

$$
D_{p^{s}+p^{t}, k}(1, x)=\frac{k}{4}\left((1-4 x)^{\frac{p^{s}-1}{2}}+(1-4 x)^{\frac{p^{t}-1}{2}}\right)-\frac{k-2}{4}\left(1+(1-4 x)^{\frac{p^{s}+p^{t}}{2}}\right)
$$

as desired.
Case 2. $x=\frac{1}{4}$. By the first identity of Lemma 2.3, one has

$$
D_{p^{s}+p^{t}, k}\left(1, \frac{1}{4}\right)=\frac{k\left(p^{s}+p^{t}\right)-k+2}{2^{p^{s}+p^{t}}}=\frac{-k+2}{4} .
$$

Besides,

$$
\frac{k}{4}\left(\left(1-4 \times \frac{1}{4}\right)^{\frac{p^{s}-1}{2}}+\left(1-4 \times \frac{1}{4}\right)^{\frac{p^{t}-1}{2}}\right)-\frac{k-2}{4}\left(1+\left(1-4 \times \frac{1}{4}\right)^{\frac{p^{s}+p^{t}}{2}}\right)=\frac{-k+2}{4} .
$$

Thus the required result follows. So Theorem 4.1 is proved.
Theorem 4.2. Let $q=p^{e}$ with p being an odd prime and e being a positive integer. Let s and t be positive integers with $s<t$. Then each of following is true.
(i). If $k=0$, then $D_{p^{s}+p^{t}, k}(1, x)$ is a PP of \mathbb{F}_{q} if and only if either $p \equiv 1(\bmod 4)$ and $v_{2}(t-s) \geq v_{2}(e)$, or $p \equiv 3(\bmod 4)$ and $v_{2}(t-s) \geq \max \left\{v_{2}(e), 1\right\}$.
(ii). Let $k=2$. If $p>3$, then $D_{p^{s}+p^{t}, k}(1, x)$ is not a PP of $\mathbb{F}_{p^{e}}$. If $p=3$ and st is even, then $D_{p^{s}+p^{t}, k}(1, x)$ is not a PP of $\mathbb{F}_{p^{e}}$.
(iii). If $k \neq 0,2$, then $D_{p^{s}+p^{t}, k}(1, x)$ is not a $P P$ of \mathbb{F}_{q}.

Proof. By Theorem 4.1, we have that $D_{p^{s}+p^{t}, k}(1, x)$ is a PP of \mathbb{F}_{q} if and only if

$$
k\left(x^{\frac{p^{s}-1}{2}}+x^{\frac{p^{t}-1}{2}}\right)-(k-2) x^{\frac{p^{s}+p^{t}}{2}}
$$

is a PP of \mathbb{F}_{q}.
(i). Let $k=0$. Then $D_{p^{s}+p^{t}, k}(1, x)$ is a PP of \mathbb{F}_{q} if and only if $x^{\frac{p^{s}+p^{p}}{2}}$ is a PP of \mathbb{F}_{q} if and only if

$$
\operatorname{gcd}\left(\frac{p^{s}+p^{t}}{2}, p^{e}-1\right)=1
$$

Additionally, $\operatorname{gcd}\left(\frac{p^{s}+p^{t}}{2}, p^{e}-1\right)=\operatorname{gcd}\left(\frac{p^{t-s}+1}{2}, p^{e}-1\right)$. Then the desired result follows from the same way as proving Part (i) of Theorem 3.2.
(ii). Let $k=2$. Then $D_{p^{s}+p^{t}, k}(1, x)$ is a PP of \mathbb{F}_{q} if and only if $x^{\frac{p^{s}-1}{2}}+x^{\frac{p^{t}-1}{2}}$ is a PP of \mathbb{F}_{q}. Let

$$
g_{1}(x):=x^{\frac{p^{s}-1}{2}}+x^{\frac{p^{t}-1}{2}}
$$

So

$$
g_{1}(x) \equiv x^{\frac{p^{s_{0}-1}}{2}}+x^{\frac{p_{0} 0-1}{2}} \quad\left(\bmod x^{p^{e}}-x\right) .
$$

Then the following cases are considered.
Case 1. $s>0$ and both s_{0} and t_{0} are even. Then $g_{1}(x)=2$ for any $x \in \mathbb{F}_{p}^{*}$. So $g_{1}(x)$ is not a PP of \mathbb{F}_{p}. One also notices that $g_{1}\left(\mathbb{F}_{p}\right) \subseteq \mathbb{F}_{p}$. Thus $g_{1}(x)$ is not a PP of \mathbb{F}_{q}.

CASE 2. $s>0$ and one of s_{0} and t_{0} is even, the other is odd. Then $g_{1}(x)=x^{\frac{p-1}{2}}+1$ for any $x \in \mathbb{F}_{p}^{*}$. If $p=3$, then $\forall x \in \mathbb{F}_{p}^{*}, g_{1}(x)=x+1$, which implies $g_{1}(0)=g_{1}(-1)=0$. So $g_{1}(x)$ is not a PP of \mathbb{F}_{3}. If $p>3$, then

$$
\left(g_{1}(x)\right)^{2} \equiv x^{p-1}+2 x^{\frac{p-1}{2}}+1 \quad\left(\bmod x^{p}-x\right)
$$

It follows from Lemma 2.7 that $g_{1}(x)$ is not a PP of \mathbb{F}_{p} when $p>3$. Therefore $g_{1}(x)$ is not a PP of \mathbb{F}_{p}. Obviously, $g_{1}\left(\mathbb{F}_{p}\right) \subseteq \mathbb{F}_{p}$. Hence $g_{1}(x)$ is not a PP of \mathbb{F}_{q} in this case.

CASE 3. $s>0, p>3$ and both s_{0} and t_{0} are odd. Then $g_{1}(x)=2 x^{\frac{p-1}{2}}$ for any $x \in \mathbb{F}_{p}$. But $\operatorname{gcd}\left(\frac{p-1}{2}, p-1\right)=\frac{p-1}{2}>1$. Therefore $g_{1}(x)$ is not a PP of \mathbb{F}_{p}. Note that $g_{1}\left(\mathbb{F}_{p}\right) \subseteq \mathbb{F}_{p}$. Hence $g_{1}(x)$ is not a PP of \mathbb{F}_{q} in this case.

Combining the above cases, we know that part (ii) is true.
(iii). Let $k \neq 0$ and $k \neq 2$. Let

$$
g_{2}(x):=k\left(x^{\frac{p^{s}-1}{2}}+x^{\frac{p^{t}-1}{2}}\right)-(k-2) x^{\frac{p^{s}+p^{t}}{2}} .
$$

Then

$$
g_{2}(x) \equiv k\left(x^{\frac{p^{s_{0}}-1}{2}}+x^{\frac{p^{p_{0}}-1}{2}}\right)-(k-2) x^{\frac{p^{5} 0}{} \frac{p^{\prime} 0}{2}}\left(\bmod x^{q}-x\right) .
$$

Then we divide the proof into the following three cases.
Case 1. Both s_{0} and t_{0} are even. Then $g_{2}(x)=2 k-(k-2) x$ for any $x \in \mathbb{F}_{p}^{*}$. So $g_{2}(x)$ is not a PP of \mathbb{F}_{p} since $g_{2}(0)=g_{2}\left(\frac{2 k}{k-2}\right)$. One also notices that $g_{2}\left(\mathbb{F}_{p}\right) \subseteq \mathbb{F}_{p}$. Thus $g_{2}(x)$ is not a PP of \mathbb{F}_{q}.

Case 2. One of s_{0} and t_{0} is even, the other is odd. Then $g_{2}(x)=k+k x^{\frac{p-1}{2}}-(k-2) x^{\frac{p+1}{2}}$ for any $x \in \mathbb{F}_{p}^{*}$. If $p=3$, then $k=1$ and so $g_{2}(0)=g_{2}(1)=0$, which implies $g_{2}(x)$ is not a PP of \mathbb{F}_{3}. If $p>3$, then

$$
\left(g_{2}(x)\right)^{2} \equiv k^{2} x^{p-1}+\text { the terms of } x \text { with the degree less than } p-1\left(\bmod x^{p}-x\right) .
$$

It follows from Lemma 2.7 that $g_{2}(x)$ is not a PP of \mathbb{F}_{p} when $p>3$. Therefore $g_{2}(x)$ is not a PP of \mathbb{F}_{p}. Obviously, $g_{2}\left(\mathbb{F}_{p}\right) \subseteq \mathbb{F}_{p}$. Hence $g_{2}(x)$ is not a PP of \mathbb{F}_{q} in this case.

Case 3. Both s_{0} and t_{0} are odd. Then $g_{2}(x)=2 k x^{\frac{p-1}{2}}-(k-2) x$ for any $x \in \mathbb{F}_{p}^{*}$. If $p=3$, then $k=1$ and so $g_{2}(x)=0, \forall x \in \mathbb{F}_{p}$, which implies $g_{2}(x)$ is not a PP of \mathbb{F}_{3}. If $p>3$, then

$$
\left(g_{2}(x)\right)^{2} \equiv 4 k^{2} x^{p-1}+\text { the terms of } x \text { with the degree less than } p-1\left(\bmod x^{p}-x\right)
$$

Since $4 k^{2} \in \mathbb{F}_{p}^{*}$, it then follows from Lemma 2.7 that $g_{2}(x)$ is not a PP of \mathbb{F}_{p} when $p>3$. Therefore $g_{2}(x)$ is not a PP of \mathbb{F}_{p}. Obviously, $g_{2}\left(\mathbb{F}_{p}\right) \subseteq \mathbb{F}_{p}$. Hence $g_{2}(x)$ is not a PP of \mathbb{F}_{q} in this case.

Combining the above cases, we deduce that $g_{2}(x)$ is not a PP of \mathbb{F}_{q} in the condition of $k \neq 0,2$. Thus $D_{p^{s}+p^{\prime}, k}(1, x)$ is not a PP of \mathbb{F}_{q}. The proof of Theorem 4.2 is completed.

Theorem 4.3. Let $q=p^{e}$ with p being an odd prime and e being a positive integer. Let s and t be positive integers with $s<t$. Then

$$
\begin{align*}
D_{p^{s}+p^{t}+1, k}(1, x) & =\frac{1}{4}(1-4 x)^{\frac{p^{s}+p^{t}}{2}}+\frac{1}{4}+\frac{1}{8}\left((1-4 x)^{\frac{p^{s}-1}{2}}+(1-4 x)^{\frac{p^{t}-1}{2}}\right) \\
& -\frac{k-2}{8}\left((1-4 x)^{\frac{p^{s}+1}{2}}+(1-4 x)^{\frac{p^{t}+1}{2}}\right) \tag{4.1}
\end{align*}
$$

Furthermore, $D_{p^{s}+p^{t}+1, k}(1, x)$ is not a PP of \mathbb{F}_{q}.
Proof. We consider the following two cases.
Case 1. $x \neq \frac{1}{4}$. For this case, putting $x=y(1-y)$ in the second identity of Lemma 2.3 gives us that

$$
\begin{aligned}
& D_{p^{s}+p^{t}+1, k}(1, x)=D_{p^{s}+p^{t}+1, k}(1, y(1-y)) \\
= & \frac{(k-1-(k-2) y) y^{p^{s}+p^{t}+1}-(1+(k-2) y)(1-y)^{p^{s}+p^{t}+1}}{2 y-1} \\
= & \frac{\frac{k+(2-k) u}{2}\left(\frac{u+1}{2}\right)^{p^{s}+p^{t}+1}-\frac{k+(k-2) u}{2}\left(\frac{1-u}{2}\right)^{p^{s}+p^{t}+1}}{u} \\
= & \frac{k}{8}\left(1+u^{p^{s}-1}+u^{p^{t}-1}+u^{p^{s}+p^{t}}\right)-\frac{k-2}{8}\left(1+u^{p^{s}+1}+u^{p^{t}+1}+u^{p^{s}+p^{t}}\right) \\
= & \frac{1}{4} u^{p^{s}+p^{t}}+\frac{1}{4}+\frac{k}{8}\left(u^{p^{s}-1}+u^{p^{t}-1}\right)-\frac{k-2}{8}\left(u^{p^{s}+1}+u^{p^{t}+1}\right)
\end{aligned}
$$

where $u=2 y-1$ and $u^{2}=1-4 x$. Then we have that

$$
\begin{aligned}
& D_{p^{s}+p^{t}+1, k}(1, x)=\frac{1}{4}(1-4 x)^{\frac{p^{s}+p^{t}}{2}}+\frac{1}{4} \\
& +\frac{1}{8}\left((1-4 x)^{\frac{p^{s}-1}{2}}+(1-4 x)^{\frac{p^{t}-1}{2}}\right)-\frac{k-2}{8}\left((1-4 x)^{\frac{p^{s}+1}{2}}+(1-4 x)^{\frac{p^{t}+1}{2}}\right)
\end{aligned}
$$

as desired.
Case 2. $x=\frac{1}{4}$. On the one hand, by the first identity of Lemma 2.3, one has

$$
D_{p^{s}+p^{t}+1, k}\left(1, \frac{1}{4}\right)=\frac{k\left(p^{s}+p^{t}+1\right)-k+2}{2^{p^{s}+p^{t}}}=\frac{1}{4}
$$

On the other hand,

$$
\frac{1}{4}\left(1-4 \times \frac{1}{4}\right)^{\frac{p^{s}+p^{t}}{2}}+\frac{1}{4}+\frac{1}{8}\left(\left(1-4 \times \frac{1}{4}\right)^{\frac{p^{s}-1}{2}}+\left(1-4 \times \frac{1}{4}\right)^{\frac{p^{t}-1}{2}}\right)-\frac{k-2}{8}\left(\left(1-4 \times \frac{1}{4}\right)^{\frac{p^{s}+1}{2}}+\left(1-4 \times \frac{1}{4}\right)^{\frac{p^{t}+1}{2}}\right)=\frac{1}{4}
$$

Combing Case 1 and Case 2, we know that (4.1) always holds. So $D_{p^{s}+p^{t}+1, k}(1, x)$ is a PP of \mathbb{F}_{q} if and only if the polynomial

$$
g_{3}(x):=2 x^{\frac{p^{s}+p^{t}}{2}}+2\left(x^{\frac{p^{s}-1}{2}}+x^{\frac{p^{t}-1}{2}}\right)-(k-2)\left(x^{\frac{p^{s}+1}{2}}+x^{\frac{p^{t}+1}{2}}\right)
$$

is a PP of \mathbb{F}_{q}.

In what follows, we show that $g_{3}(x)$ is not a PP of \mathbb{F}_{q}. Now let $s \equiv s_{0}(\bmod 2 e)$ and $t \equiv t_{0}(\bmod 2 e)$ with $0 \leq s_{0} \leq 2 e-1,0 \leq t_{0} \leq 2 e-1$. Then

$$
g_{3}(x) \equiv 2 x^{\frac{p^{s_{0}}+p^{p_{0}}}{2}}+2\left(x^{\frac{p^{s_{0}-1}}{2}}+x^{\frac{p^{t_{0}}-1}{2}}\right)-(k-2)\left(x^{\frac{p^{s_{0}}+1}{2}}+x^{\frac{p^{t_{0}}+1}{2}}\right) \quad\left(\bmod x^{q}-x\right) .
$$

First we let $k=2$. In this case we have

$$
g_{3}(x) \equiv 2 x^{\frac{p^{s_{0}}+p^{t_{0}}}{2}}+2 x^{\frac{p^{s_{0}-1}}{2}}+2 x^{\frac{p^{p_{0}}-1}{2}} \quad\left(\bmod x^{q}-x\right) .
$$

If both s_{0} and t_{0} are even, then $\forall x \in \mathbb{F}_{p}^{*}, g_{3}(x)=2 x+4$. It follows that $g_{3}(x)$ is not a PP of \mathbb{F}_{p} since $g_{3}(0)=g_{3}(-2)=0$.

If exactly one of s_{0} and t_{0} is even, then $g_{3}(x)=2 x^{\frac{p-1}{2}}+2 x^{\frac{p+1}{2}}+2$ for any $x \in \mathbb{F}_{p}^{*}$. In this case if $p=3$, then $g_{3}(0)=g_{3}(1)=0$, which implies $g_{3}(x)$ is not a PP of \mathbb{F}_{3}. If $p>3$, then

$$
\left(g_{3}(x)\right)^{2} \equiv 4 x^{p-1}+\text { the terms of } x \text { with the degree less than } p-1\left(\bmod x^{p}-x\right) .
$$

It follows from Lemma 2.7 that $g_{3}(x)$ is not a PP of \mathbb{F}_{p} when $p>3$. Therefore $g_{3}(x)$ is not a PP of \mathbb{F}_{p}.
If both s_{0} and t_{0} are odd, then $g_{3}(x)=2 x+4 x^{\frac{p-1}{2}}$ for any $x \in \mathbb{F}_{p}^{*}$. If $p=3$, then $g_{3}(x)=0, \forall x \in \mathbb{F}_{p}^{*}$, which implies $g_{3}(x)$ is not a PP of \mathbb{F}_{3}. If $p>3$, then

$$
\left(g_{3}(x)\right)^{2} \equiv 4 x^{p-1}+\text { the terms of } x \text { with the degree less than } p-1\left(\bmod x^{p}-x\right)
$$

It follows from Lemma 2.7 that $g_{3}(x)$ is not a PP of \mathbb{F}_{p} when $p>3$. Therefore $g_{3}(x)$ is not a PP of \mathbb{F}_{p}.
Combining the above discussions, we derive that $g_{3}(x)$ is not a PP of \mathbb{F}_{p}. Note that $g_{3}\left(\mathbb{F}_{p}\right) \subseteq \mathbb{F}_{p}$. So $g_{3}(x)$ is not a PP of \mathbb{F}_{q} when $k=2$.

Now let $k \neq 2$. The following cases are considered.
If both s_{0} and t_{0} are even, then $\forall x \in \mathbb{F}_{p}^{*}, g_{3}(x)=(6-2 k) x+4$. Clearly, if $k=3$, then $g_{3}(x)$ is not a PP of \mathbb{F}_{p}. If $k \neq 3$, then $g_{3}(0)=g_{3}\left(\frac{2}{k-3}\right)=0$. This implies that $g_{3}(x)$ is not a PP of \mathbb{F}_{p}.

If exactly one of s_{0} and t_{0} is even then $g_{3}(x)=(4-k) x^{\frac{p+1}{2}}+2 x^{\frac{p-1}{2}}-(k-2) x+2$ for any $x \in \mathbb{F}_{p}^{*}$. If $p=3$, then $k=0$ or $k=1$. And $g_{3}(0)=0, g_{3}(1)=k+2, g_{3}(-1)=2$. So in this case, either $g_{3}(1)=g_{3}(-1)=2$ if $k=0$, or $g_{3}(1)=g_{3}(0)=0$ if $k=1$, which implies $g_{3}(x)$ is not a PP of \mathbb{F}_{3}. If $p>3$, then

$$
\left(g_{3}(x)\right)^{2} \equiv 4 x^{p-1}+\text { the terms of } x \text { with the degree less than } p-1\left(\bmod x^{p}-x\right) .
$$

It follows from Lemma 2.7 that $g_{3}(x)$ is not a PP of \mathbb{F}_{p} when $p>3$. Therefore $g_{3}(x)$ is not a PP of \mathbb{F}_{p}.
If both s_{0} and t_{0} are odd then $g_{3}(x)=2 x^{p}+4 x^{\frac{p-1}{2}}-2(k-2) x^{\frac{p+1}{2}}$ for any $x \in \mathbb{F}_{p}^{*}$. If $p=3$, then $g_{3}(1)=g_{3}(-1)=k-2$, which implies $g_{3}(x)$ is not a PP of \mathbb{F}_{3}. If $p>3$, then

$$
\left(g_{3}(x)\right)^{2} \equiv 16 x^{p-1}+\text { the terms of } x \text { with the degree less than } p-1\left(\bmod x^{p}-x\right) .
$$

It follows from Lemma 2.7 that $g_{3}(x)$ is not a PP of \mathbb{F}_{p} when $p>3$. Therefore $g_{3}(x)$ is not a PP of \mathbb{F}_{p}.
From them, we derive that $g_{3}(x)$ is not a PP of \mathbb{F}_{p} when $k \neq 2$. Note that $g_{3}\left(\mathbb{F}_{p}\right) \subseteq \mathbb{F}_{p}$. So $g_{3}(x)$ is not a PP of \mathbb{F}_{q} when $k \neq 2$. Hence $g_{3}(x)$ is not a PP of \mathbb{F}_{q}. Thus $D_{p^{s}+p^{t}+1, k}(1, x)$ is not a PP of \mathbb{F}_{q}.

By Lemma 2.4 , Theorem 4.1 and Theorem 4.3, we have the following general result.

Theorem 4.4. Let $q=p^{e}$ with p being an odd prime and e being a positive integer. Let s and t be positive integers with $s<t$. Then

$$
\begin{align*}
D_{p^{s}+p^{t}+2, k}(1, x)= & \frac{2-k}{16}(1-4 x)^{\frac{p^{s}+p^{t}+2}{2}}+\frac{2+k}{16}(1-4 x)^{\frac{p^{s}+p^{t}}{2}}+\frac{4-k}{16}\left((1-4 x)^{\frac{p^{s}+1}{2}}+(1-4 x)^{\frac{p^{t}+1}{2}}\right) \\
& +\frac{2-k}{16}\left((1-4 x)^{\frac{p^{s}-1}{2}}+(1-4 x)^{\frac{p^{t} 11}{2}}\right)+\frac{2-k}{16}(1-4 x)+\frac{2-k}{16} . \tag{4.2}
\end{align*}
$$

Consequently, $D_{p^{s}+p^{t}+2, k}(1, x)$ is a PP of \mathbb{F}_{q} if and only if the polynomial

$$
(2-k)\left(x^{\frac{p^{s}+p^{t}+2}{2}}+x^{\frac{p^{s}-1}{2}}+x^{\frac{p^{t}-1}{2}}\right)+(2+k) x^{\frac{p^{s}+p^{t}}{2}}+(4-k)\left(x^{\frac{p^{s}+1}{2}}+x^{\frac{p^{p^{\prime}+1}}{2}}\right)
$$

is a PP of \mathbb{F}_{q}. Furthermore, let $\ell \geq 0$ be an integer. Then

$$
\begin{aligned}
& D_{p^{s}+p^{t}+2 \ell, k}(1, x)=\sum_{i=0}^{\ell} B_{2 \ell, p^{s}+p^{t}+2 i}(1-4 x)^{\frac{p^{s}+p^{t}+2 i}{2}}+\sum_{j=0}^{\ell} B_{2 \ell, 2 j}(1-4 x)^{j} \\
& \quad+\sum_{i=0}^{\ell} B_{2 \ell, p^{s}+2 i-1}\left((1-4 x)^{\frac{p^{s}+2 i-1}{2}}+(1-4 x)^{\frac{p^{t}+2 i-1}{2}}\right), 0 \leq \ell \leq \frac{p-1}{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& D_{p^{s}+p^{t}+2 \ell+1, k}(1, x)=\sum_{i=0}^{\ell} B_{2 \ell+1, p^{s}+p^{t}+2 i}(1-4 x)^{\frac{p^{s}+p^{t}+2 i}{2}}+\sum_{j=0}^{\ell} B_{2 \ell+1,2 j}(1-4 x)^{j} \\
& \quad+\sum_{i=0}^{\ell+1} B_{2 \ell+1, p^{s}+2 i-1}\left((1-4 x)^{\frac{p^{s}+2 i-1}{2}}+(1-4 x)^{\frac{p^{t}+2 i-1}{2}}\right), 0 \leq \ell<\frac{p-1}{2},
\end{aligned}
$$

where all the coefficients $B_{i, j}$ are given as follows:

$$
\begin{gathered}
B_{0, p^{s}+p^{t}}=\frac{2-k}{4}, B_{0, p^{s}-1}=\frac{k}{4}, B_{0,0}=\frac{2-k}{4}, \\
B_{1, p^{s}+p^{t}}=\frac{1}{4}, B_{1, p^{s}+1}=\frac{2-k}{8}, B_{1, p^{s}-1}=\frac{1}{8}, B_{1,0}=\frac{1}{4},
\end{gathered}
$$

and

$$
\begin{cases}B_{2 m+2, p^{s}+p^{t}+2 m+2}=\frac{1}{4} B_{2 m, p^{s}+p^{t}+2 m}, & \text { if } m \geq 0 \tag{4.3}\\ B_{2 m+2, p^{s}+p^{t}+2 i}=B_{2 m+1, p^{s}+2 i}-\frac{1}{4} B_{2 m, p^{s}+p^{t}+2 i}+\frac{1}{4} B_{2 m, p^{s}+2 i-2}, & \text { if } 1 \leq i \leq m \\ B_{2 m+2, p^{s}+p^{t}}=B_{2 m+1, p^{s}+p^{t}}-\frac{1}{4} B_{2 m, p^{s}+p^{t}}, & \text { if } m \geq 0 \\ B_{2 m+2, p^{s}+2 m+1}=B_{2 m+1, p^{s}+2 m+1}+\frac{1}{4} B_{2 m, p^{s}+2 m-1}, & \text { if } m \geq 0 \\ B_{2 m+2, p^{s}+2 i-1}=B_{2 m+1, p^{s}+2 i-1}-\frac{1}{4} B_{2 m, p^{s}+2 i-1}+\frac{1}{4} B_{2 m, p^{s}+2 i-3}, & \text { if } 1 \leq i \leq m \\ B_{2 m+2, p^{s}-1}=B_{2 m+1, p^{s-1}}-\frac{1}{4} B_{2 m, p^{s}-1}, & \text { if } m \geq 0 \\ B_{2 m+2,0}=B_{2 m+1,0}-\frac{1}{4} B_{2 m, 0}, & \text { if } m \geq 0 \\ B_{2 m+2,2 j}=B_{2 m+1,2 j}-\frac{1}{4} B_{2 m, 2 j}+\frac{1}{4} B_{2 m, 2 j-2}, & \text { if } 1 \leq j \leq m \\ B_{2 m+2,2 m+2}=\frac{1}{4} B_{2 m, 2 m}, & \text { if } m \geq 0\end{cases}
$$

as well as

$$
\begin{cases}B_{2 m+1, p^{s}+p^{t}+2 m}=B_{2 m, p^{s}+p^{t}+2 m}+\frac{1}{4} B_{2 m-1, p^{s}+p^{t}+2 m-2}, & \text { if } m \geq 0 \tag{4.4}\\ B_{2 m+1, p^{s}+p^{t}+2 i}=B_{2 m, p^{s}+2 i}-\frac{1}{4} B_{2 m-1, p^{s}+p^{t}+2 i}+\frac{1}{4} B_{2 m-1, p^{s}+2 i-2}, & \text { if } 1 \leq i \leq m-1 \\ B_{2 m+1, p^{s}+p^{t}}=B_{2 m, p^{s}+p^{t}-\frac{1}{4} B_{2 m-1, p^{s}+p^{\prime}},} & \text { if } m \geq 0 \\ B_{2 m+1, p^{s}+2 m+1}=\frac{1}{4} B_{2 m-1, p^{s}+2 m-1}, & \text { if } m \geq 0 \\ B_{2 m+1, p^{s}+2 i-1}=B_{2 m, p^{s}+2 i-1}-\frac{1}{4} B_{2 m-1, p^{s}+2 i-1}+\frac{1}{4} B_{2 m-1, p^{s}+2 i-3}, & \text { if } 1 \leq i \leq m \\ B_{2 m+1, p^{s}-1}=B_{2 m, p^{s}-1}-\frac{1}{4} B_{2 m-1, p^{s}-1}, & \text { if } m \geq 0 \\ B_{2 m+1,0}=B_{2 m, 0}-\frac{1}{4} B_{2 m-1,0}, & \text { if } m \geq 0 \\ B_{2 m+1,2 j}=B_{2 m, 2 j}-\frac{1}{4} B_{2 m-1,2 j}+\frac{1}{4} B_{2 m-1,2 j-2}, & \text { if } 1 \leq j \leq m-1 \\ B_{2 m+1,2 m}=B_{2 m, 2 m}+\frac{1}{4} B_{2 m-1,2 m-2}, & \text { if } m \geq 0\end{cases}
$$

Proof. The identity immediately follows from Lemma 2.4, Theorem 4.1 and Theorem 4.3. Moreover we readily find that there exists coefficients $B_{i, j} \in \mathbb{F}_{q}$ such that

$$
\begin{align*}
& D_{p^{s}+p^{t}+2 \ell, k}(1, x)=\sum_{i=0}^{\ell} B_{2 \ell, p^{s}+p^{t}+2 i} i^{p^{s}+p^{t}+2 i}+\sum_{j=0}^{\ell} B_{2 \ell, 2 j} u^{2 j} \\
& \quad+\sum_{i=0}^{\ell+1} B_{2 \ell, p^{s}+2 i-1}\left(u^{p^{s}+2 i-1}+u^{p^{t}+2 i-1}\right), \quad 0 \leq \ell<\frac{p-1}{2} \tag{4.5}
\end{align*}
$$

and

$$
\begin{align*}
& D_{p^{s}+p^{t}+2 \ell-1, k}(1, x)=\sum_{i=0}^{\ell} B_{2 \ell-1, p^{s}+p^{t}+2 i} u^{p^{s}+p^{t}+2 i}+\sum_{j=0}^{\ell} B_{2 \ell-1,2 j} u^{2 j} \\
& \quad+\sum_{i=0}^{\ell+1} B_{2 \ell-1, p^{s}+2 i-1}\left(u^{p^{s}+2 i-1}+u^{p^{t}+2 i-1}\right), \quad 0 \leq \ell<\frac{p-1}{2}, \tag{4.6}
\end{align*}
$$

where $u^{2}=1-4 x$. Now let's determine all the coefficients $B_{i, j}$. On the one hand, by (4.5) and (4.6), one then has

$$
\begin{aligned}
& D_{p^{s}+p^{t}+2 \ell, k}(1, x)-x D_{p^{s}+p^{t}+2 \ell-1, k}(1, x)=D_{p^{s}+p^{t}+2 \ell, k}(1, x)-\frac{1-u^{2}}{4} D_{p^{s}+p^{t}+2 \ell-1, k}(1, x) \\
&= \sum_{i=0}^{\ell} B_{2 \ell, p^{s}+p^{t}+2 i} u^{p^{s}+p^{t}+2 i}+\sum_{i=0}^{\ell} B_{2 \ell, p^{s}+2 i-1}\left(u^{p^{s}+2 i-1}+u^{p^{t}+2 i-1}\right)+\sum_{j=0}^{\ell} B_{2 \ell, 2 j} u^{2 j} \\
&-\frac{1}{4} \sum_{i=0}^{\ell-1} B_{2 \ell-1, p^{s}+p^{t}+2 i} u^{p^{s}+p^{t}+2 i}-\frac{1}{4} \sum_{j=0}^{\ell} B_{2 \ell-1, p^{s}+2 i-1}\left(u^{p^{s}+2 i-1}+u^{p^{t}+2 i-1}\right) \\
&-\frac{1}{4} \sum_{j=0}^{\ell-1} B_{2 \ell-1,2 j} u^{2 j}+\frac{1}{4} \sum_{j=0}^{\ell-1} B_{2 \ell-1, p^{s}+p^{t}+2 i} u^{u^{s}+p^{t}+2 i+2} \\
&+\frac{1}{4} \sum_{j=0}^{\ell} B_{2 \ell-1, p^{s}+2 i-1}\left(u^{p^{s}+2 i+1}+u^{p^{t}+2 i+1}\right)+\frac{1}{4} \sum_{j=0}^{\ell-1} B_{2 \ell-1,2 j} u^{2 j+2}
\end{aligned}
$$

$$
\begin{align*}
= & \left(B_{2 \ell, p^{s}+p^{t}+2 l}+\frac{1}{4}\right) u^{p^{s}+p^{t}+2 \ell}+\sum_{i=1}^{\ell-1}\left(B_{2 \ell, p^{s}+p^{t}+2 i}-\frac{1}{4} B_{2 \ell-1, p^{s}+p^{t}+2 i}+\frac{1}{4} B_{2 \ell-1, p^{s}+p^{t}+2 i-2}\right) u^{p^{s}+p^{t}+2 i} \\
& +\left(B_{2 \ell, p^{s}+p^{t}}-\frac{1}{4} B_{2 \ell-1, p^{s}+p^{t}}\right) u^{p^{s}+p^{t}}+\frac{1}{4} B_{2 \ell-1, p^{s}+2 \ell-1}\left(u^{p^{s}+2 \ell+1}+u^{p^{t}+2 \ell+1}\right) \\
+ & \sum_{i=1}^{\ell}\left(B_{2 \ell, p^{s}+2 i-1}-\frac{1}{4} B_{2 \ell-1, p^{s}+2 i-1}+\frac{1}{4} B_{2 \ell-1, p^{s}+2 i-3}\right)\left(u^{p^{s}+2 i-1}+u^{p^{t}+2 i-1}\right) \\
+ & \left(B_{2 \ell, p^{s}-1}-\frac{1}{4} B_{2 \ell-1, p^{s}-1}\right)\left(u^{p^{s}-1}+u^{p^{t}-1}\right)+\left(B_{2 \ell, 2 \ell}+\frac{1}{4} B_{2 \ell-1,2 \ell-2}\right) u^{2 \ell} \\
+ & \sum_{j=1}^{\ell-1}\left(B_{2 \ell 2 j}-\frac{1}{4} B_{2 \ell-1,2 j}+\frac{1}{4} B_{2 \ell-1,2 j-2}\right) u^{2 j}+B_{2 \ell, 0}-\frac{1}{4} B_{2 \ell-1,0} . \tag{4.7}
\end{align*}
$$

On the other hand, Lemma 2.4 tells us that

$$
D_{p^{s}+p^{t}+2 \ell+1, k}(1, x)=D_{p^{s}+p^{t}+2 \ell, k}(1, x)-x D_{p^{s}+p^{t}+2 \ell-1, k}(1, x) .
$$

So by comparing the coefficient of the term u^{i} in the right hand side of (4.6) and (4.7), one can get the desired results as (4.4). Following the similar way, one also obtain the recursions of $B_{i, j}$ as (4.3). So the proof Theorem 4.4 is complete.

5. Reversed Dickson polynomials $D_{p^{e_{1}}+p^{e_{2}}+\cdots+p^{e_{s}+\ell, k}}(1, x)$

Let $s \geq 1$ be an integer. Let $e_{1}, e_{2}, \cdots, e_{s}, \ell$ be integers with $0 \leq e_{1}<e_{2}<\cdots<e_{s}$ and $0 \leq \ell<$ p. In this section, we present an explicit formula for $D_{n, k}(1, x)$ presented by elementary symmetric polynomials in terms of the power of $(1-4 x)$ when $n=p^{e_{1}}+p^{e_{2}}+\cdots+p^{e_{s}}+\ell$. Then we characterize $D_{n, k}(1, x)$ to be a PP of \mathbb{F}_{q} in this case.

Let $\sigma_{i}\left(x_{1}, x_{2}, \cdots, x_{s}\right)$ be the elementary polynomials in s variables $x_{1}, x_{2}, \cdots, x_{s}$ which are defined by

$$
\begin{aligned}
& \sigma_{0}\left(x_{1}, x_{2}, \cdots, x_{s}\right)=1, \\
& \sigma_{1}\left(x_{1}, x_{2}, \cdots, x_{s}\right)=\sum_{1 \leq j \leq n} x_{j}, \\
& \sigma_{2}\left(x_{1}, x_{2}, \cdots, x_{s}\right)=\sum_{1 \leq j<k \leq n} x_{j} x_{k}, \\
& \sigma_{3}\left(x_{1}, x_{2}, \cdots, x_{s}\right)=\sum_{1 \leq j<k<\ell \leq n} x_{j} x_{k} x_{\ell},
\end{aligned}
$$

and so forth, ending with

$$
\sigma_{s}\left(x_{1}, x_{2}, \cdots, x_{s}\right)=x_{1} x_{2} \cdots x_{s} .
$$

Now we give the first result of this section.

Theorem 5.1. Let $q=p^{e}$ with p being an odd prime and e being a positive integer. Let s be a positive integer. Let e_{1}, \cdots, e_{s} be nonnegative integers with $e_{1}<\cdots<e_{s}$. Then

$$
\begin{aligned}
D_{p^{e_{1}}+\ldots+p^{e_{s}, k}}(1, x) & =\frac{1}{2^{s}}\left((2-k) \sum_{\substack{1 \leq i \leq s \\
i \text { even }}} \sigma_{i}\left((1-4 x)^{\frac{p^{e_{1}}}{2}}, \cdots,(1-4 x)^{\frac{p^{e_{s}}}{2}}\right)\right. \\
& \left.+k \sum_{\substack{1 \leq i \leq s \\
i \text { odd }}} \sigma_{i}\left((1-4 x)^{\frac{p^{e_{1}-1 / i}}{2}}, \cdots,(1-4 x)^{\frac{p^{e_{s}-1 / i}}{2}}\right)\right) .
\end{aligned}
$$

Consequently, $D_{p^{c_{1}}+\ldots+p^{e_{s}, k}}(1, x)$ is a PP of \mathbb{F}_{q} if and only if the polynomial

$$
(2-k) \sum_{\substack{0 \leq i \leq s \\ i \text { even }}} \sigma_{i}\left(x^{\frac{p_{1}}{2}}, \cdots, x^{\frac{p^{e_{s}}}{2}}\right)+k \sum_{\substack{1 \leq i \leq s \\ i \text { odd }}} \sigma_{i}\left(x^{\frac{p_{1}-1 / i /}{2}}, \cdots, x^{\frac{p^{e_{s}-1 / i}}{2}}\right)
$$

is a PP of \mathbb{F}_{q}.
Proof. We divide the proof into the following two cases.
CASE 1. $x \neq \frac{1}{4}$. For this case, putting $x=y(1-y)$ in the second identity of Lemma 2.3 gives us that

$$
\begin{aligned}
& D_{p^{e_{1}}+\ldots+p^{e_{s}, k}}(1, x)=D_{p^{e_{1}}+\ldots+p^{e_{s}, k}}(1, y(1-y)) \\
& =\frac{(k-1-(k-2) y) y^{p^{e_{1}}+\ldots+p^{e_{s}}}-(1+(k-2) y)(1-y)^{p^{e_{1}+\ldots+p^{e_{s}}}}}{2 y-1} \\
& =\frac{\frac{k+(2-k) u}{2}\left(\frac{u+1}{2}\right)^{p^{p_{1}+\cdots+p^{e_{s}}}-\frac{k+(k-2) u}{2}\left(\frac{1-u}{2}\right)^{p^{e_{1}+\cdots+p^{e_{s}}}}}}{u} \\
& =\frac{k+(2-k) u}{2^{p^{c_{1}}+\cdots+p^{e_{s}+1} u}} \prod_{i=1}^{s}\left(u^{p^{c_{i}}}+1\right)-\frac{k+(k-2) u}{2^{p^{e_{1}}+\cdots+p^{e_{s}}+1} u} \prod_{i=1}^{s}\left(1-u^{p^{i_{i}}}\right) \\
& =\frac{1}{2^{s+1} u}\left((k+(2-k) u) \sum_{0 \leq i \leq s} \sigma_{i}\left(u^{p^{p_{1}}}, \cdots, u^{p^{e s s_{s}}}\right)-(k+(k-2) u) \sum_{0 \leq i \leq s}(-1)^{i} \sigma_{i}\left(u^{p^{p_{1}}}, \cdots, u^{p^{e_{s}}}\right)\right) \\
& =\frac{1}{2^{s}}\left((2-k) \sum_{\substack{0 \leq i \leq s \\
i \text { iven }}} \sigma_{i}\left(u^{p^{e_{1}}}, \cdots, u^{p^{s} s}\right)+k \sum_{\substack{1 \leq i \leq s \\
i \text { odd }}} \sigma_{i}\left(u^{p^{p_{1}-1 / i}}, \cdots, u^{p^{p_{s}}-1 / i}\right)\right) \text {, }
\end{aligned}
$$

where $u=2 y-1$ and $u^{2}=1-4 x$. Then we have that

$$
\begin{aligned}
D_{p^{e_{1}}+\ldots+p^{e_{s}, k}}(1, x) & =\frac{1}{2^{s}}\left((2-k) \sum_{\substack{0 \leq i \leq s \\
i \text { ieven }}} \sigma_{i}\left((1-4 x)^{\frac{p_{1}}{2}}, \cdots,(1-4 x)^{\frac{p^{e_{s}}}{2}}\right)\right. \\
& \left.+k \sum_{\substack{1 \leq i \leq s \\
\text { iodd }}} \sigma_{i}\left((1-4 x)^{\frac{p^{e_{1}}-1 / i}{2}}, \cdots,(1-4 x)^{\frac{p^{s_{s}-1 / i}}{2}}\right)\right) .
\end{aligned}
$$

as desired.
Case 2. $x=\frac{1}{4}$. On the one hand, by the first identity of Lemma 2.3, one has

$$
D_{p^{e_{1}+\ldots+p^{s_{s}}, k}}\left(1, \frac{1}{4}\right)=\frac{k\left(p^{e_{1}}+\cdots+p^{e_{s}}\right)-k+2}{2^{p^{e_{1}+\cdots+p^{e_{s}}}}=\frac{2-k}{2^{s}}}
$$

On the other hand,

$$
\begin{aligned}
& \frac{1}{2^{s}}\left((2-k) \sum_{\substack{0 \leq i \leq s \\
i \text { iven }}} \sigma_{i}\left((1-4 x)^{\frac{p^{p_{1}}}{2}}, \cdots,(1-4 x)^{\frac{p^{e_{s}}}{2}}\right)\right. \\
& \left.+k \sum_{\substack{1 \leq i \leq s \\
i \text { odd }}} \sigma_{i}\left((1-4 x)^{\frac{p^{p_{1-1 / i}}}{2}}, \cdots,(1-4 x)^{\frac{p^{\rho_{s}-1 / i}}{2}}\right)\right)\left.\right|_{x=1 / 4}=\frac{2-k}{2^{s}} .
\end{aligned}
$$

Thus the required result follows. So Theorem 5.1 is proved.
Theorem 5.2. Let $q=p^{e}$ with p being an odd prime and e being a positive integer. Let s be a positive integer. Let e_{1}, \cdots, e_{s} be nonnegative integers with $e_{1}<\cdots<e_{s}$. Then

$$
\begin{aligned}
D_{p^{e_{1}}+\ldots+p^{e_{s}+1, k}}(1, x) & =\frac{1}{2^{s+1}}\left(2 \sum_{\substack{0 \leq i \leq s \\
i \text { even }}} \sigma_{i}\left((1-4 x)^{\frac{p^{p_{1}}}{2}}, \cdots,(1-4 x)^{\frac{p^{e_{s}}}{2}}\right)\right. \\
& \left.+((2-k)(1-4 x)+k) \sum_{\substack{1 \leq i \leq s \\
i \text { odd }}} \sigma_{i}\left((1-4 x)^{\frac{p^{e_{1}-1 / i}}{2}}, \cdots,(1-4 x)^{\frac{p^{s_{s}-1 / i}}{2}}\right)\right) .
\end{aligned}
$$

Consequently, $D_{p^{e_{1}+\ldots+p^{s_{s}}+1, k}}(1, x)$ is a PP of \mathbb{F}_{q} if and only if the polynomial

$$
2 \sum_{\substack{0 \leq i \leq s \\ i \text { even }}} \sigma_{i}\left(x^{\frac{p^{e_{1}}}{2}}, \cdots, x^{\frac{p_{s}}{2}}\right)+((2-k) x+k) \sum_{\substack{1 \leq i \leq s \\ i \text { odd }}} \sigma_{i}\left(x^{\frac{p^{e_{1}-1 / i}}{2}}, \cdots, x^{\frac{p^{e_{s}-1 / i}}{2}}\right)
$$

is a PP of \mathbb{F}_{q}.
Proof. We consider the following two cases.
Case 1. $x \neq \frac{1}{4}$. For this case, putting $x=y(1-y)$ in the second identity of Lemma 2.3 gives us that

$$
\begin{aligned}
& D_{p^{e_{1}}+\ldots+p^{e_{s}+1, k}}(1, x)=D_{p^{e_{1}}+\ldots+p^{e_{s}+1, k}}(1, y(1-y)) \\
& =\frac{(k-1-(k-2) y) y^{p^{q_{1}}+\ldots+p^{p_{s}}+1}-(1+(k-2) y)(1-y)^{p^{p_{1}+\ldots+p^{e_{s}}+1}}}{2 y-1} \\
& =\frac{\frac{k+(2-k) u}{2}\left(\frac{u+1}{2}\right)^{p^{e_{1}+\cdots+p^{e_{s}}+1}-\frac{k+(k-2) u}{2}\left(\frac{1-u}{2}\right)^{p^{e_{1}+\cdots+p^{e_{s}}+1}}} u{ }^{(1)}}{u}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2^{s+2} u}\left(\left(k+2+(2-k) u^{2}\right) \sum_{0 \leq i \leq s} \sigma_{i}\left(u^{p^{e_{1}}}, \cdots, u^{p^{e_{s}}}\right)-\left(2 k+(4-2 k) u^{2}\right) \sum_{0 \leq i \leq s}(-1)^{i} \sigma_{i}\left(u^{p^{e_{1}}}, \cdots, u^{p^{e_{s}}}\right)\right) \\
& =\frac{1}{2^{s+1}}\left(2 \sum_{\substack{0 \leq i \leq s \\
i \text { iven }}} \sigma_{i}\left(u^{p^{e_{1}}}, \cdots, u^{p^{e_{s}}}\right)+\left((2-k) u^{2}+k\right) \sum_{\substack{1 \leq i \leq s \\
i \text { odd }}} \sigma_{i}\left(u^{p^{e_{1}-1 / i}}, \cdots, u^{p^{e_{s}}-1 / i}\right)\right) \text {, }
\end{aligned}
$$

where $u=2 y-1$ and $u^{2}=1-4 x$. Then we have

$$
D_{p^{\varepsilon_{1}}+\ldots+p^{e_{s}+1, k}}(1, x)=\frac{1}{2^{s+1}}\left(2 \sum_{\substack{0 \leq i \leq s \\ i \text { ieven }}} \sigma_{i}\left((1-4 x)^{\frac{e_{1}}{2}}, \cdots,(1-4 x)^{\frac{p^{e_{s}}}{2}}\right)\right.
$$

$$
\left.+((2-k)(1-4 x)+k) \sum_{\substack{1 \leq i \leq s \\ i \text { odd }}} \sigma_{i}\left((1-4 x)^{\frac{p^{e_{1}-1 / i}}{2}}, \cdots,(1-4 x)^{\frac{p_{s} s-1 / i}{2}}\right)\right)
$$

as desired.
Case 2. $x=\frac{1}{4}$. On the one hand, by the first identity of Lemma 2.3, one has

$$
D_{p^{e_{1}}+\ldots+p^{e_{s}+1, k}}\left(1, \frac{1}{4}\right)=\frac{k\left(p^{e_{1}}+\cdots+p^{e_{s}}+1\right)-k+2}{2^{p_{1}+\cdots+p^{e_{s}}+1}}=\frac{2}{2^{s+1}} .
$$

On the other hand,

$$
\begin{aligned}
& \frac{1}{2^{s+1}}\left(2 \sum_{\substack{0 \leq i \leq s \\
\text { ieven }}} \sigma_{i}\left((1-4 x)^{\frac{p^{q_{1}}}{2}}, \cdots,(1-4 x)^{\frac{p^{e_{s}}}{2}}\right)\right. \\
& \left.+((2-k)(1-4 x)+k) \sum_{\substack{1 \leq i \leq s \\
\text { iodd }}} \sigma_{i}\left((1-4 x)^{\frac{p_{1},-1 / i}{2}}, \cdots,(1-4 x)^{\frac{p^{s_{s}-1 / i}}{2}}\right)\right)\left.\right|_{x=1 / 4}=\frac{2}{2^{s+1}} .
\end{aligned}
$$

Thus the required result follows. So Theorem 5.3 is proved.
Then Theorems 5.1-5.2 together with Lemma 2.4 show that the general result is true.
Theorem 5.3. Let $q=p^{e}$ with p being an odd prime and e being a positive integer. Let s be a positive integer. Let e_{1}, \cdots, e_{s} be nonnegative integers with $e_{1}<\cdots<e_{s}$. Then for any $\ell \geq 0$ each of the identities is true.

$$
\begin{aligned}
& D_{p^{e_{1}+\ldots+p^{e_{s}}+2 \ell, k}}(1, x)=\frac{1}{2^{s+2 \ell}}\left(\sum_{j=0}^{\ell} C_{2 \ell, 2 j} u^{2 j} \sum_{\substack{0 \leq i \leq s \\
i \text { even }}} \sigma_{i}\left(u^{p^{e_{1}}}, \cdots, u^{p^{e_{s}}}\right)+\sum_{j=0}^{\ell} Q_{2 \ell, 2 j} u^{2 j} \sum_{\substack{0<i \leq s \\
i \text { odd }}} \sigma_{i}\left(u^{p^{e_{1}-\frac{1}{i}}}, \cdots, u^{p^{p_{s}-\frac{1}{i}}}\right)\right), \\
& D_{p^{e_{1}}+\ldots+p^{e_{s}+2 \ell+1, k}}(1, x)=\frac{1}{2^{s+2 \ell+1}}\left(\sum_{j=0}^{\ell} C_{2 \ell+1,2 j} u^{2 j} \sum_{\substack{0 \leq i \leq s \\
i \text { even }}} \sigma_{i}\left(u^{p^{e_{1}}}, \cdots, u^{p^{e_{s} s}}\right)+\sum_{j=0}^{\ell+1} Q_{2 \ell+1,2 j} u^{2 j} \sum_{\substack{0 \leq i \leq s \\
i \text { odd }}} \sigma_{i}\left(u^{p_{1}-\frac{1}{i}}, \cdots, u^{p^{e_{s}}-\frac{1}{i}}\right)\right),
\end{aligned}
$$

where $u^{2}=1-4 x$, and the coefficients $C_{a, 2 b}$ and $Q_{a, 2 b}$ can be determined as follows:

$$
\begin{gather*}
C_{0,0}=2-k, Q_{0,0}=k, C_{1,0}=k, Q_{1,2}=2-k, \\
\begin{cases}C_{2 m+2,0}=2 C_{2 m+1,0}-C_{2 m, 0}, & \text { if } m \geq 0 \\
C_{2 m+2,2 j}=2 C_{2 m+1,2 j}+C_{2 m, 2 j-2}-C_{2 m, 2 j}, & \text { if } 1 \leq j \leq m \\
C_{2 m+2,2 m+2}=C_{2 m, 2 m}, & \text { if } m \geq 0 \\
Q_{2 m+2,0}=2 Q_{2 m+1,0}-Q_{2 m, 0}, & \text { if } m \geq 0 \\
Q_{2 m+2,2 j}=2 Q_{2 m+1,2 j}+Q_{2 m, 2 j-2}-Q_{2 m, 2 j}, & \text { if } 1 \leq j \leq m \\
Q_{2 m+2,2 m+2}=2 Q_{2 m+1,2 m+2}+Q_{2 m, 2 m}, & \text { if } m \geq 0\end{cases} \tag{5.1}
\end{gather*}
$$

as well as

$$
\begin{cases}C_{2 m+1,0}=2 C_{2 m, 0}-C_{2 m-1,0}, & \text { if } m \geq 1 \tag{5.2}\\ C_{2 m+1,2 j}=2 C_{2 m, 2 j}+C_{2 m-1,2 j-2}-C_{2 m-1,2 j}, & \text { if } 1 \leq j \leq m-1 \\ C_{2 m+1,2 m}=2 C_{2 m, 2 m}+C_{2 m-1,2 m-2}, & \text { if } m \geq 1 \\ Q_{2 m+1,0}=2 Q_{2 m, 2 j}-Q_{2 m-1,0}, & \text { if } m \geq 0 \\ Q_{2 m+1,2 j}=2 Q_{2 m, 2 j}+Q_{2 m-1,2 j-2}-Q_{2 m-1,2 j}, & \text { if } 1 \leq j \leq m \\ Q_{2 m+1,2 m+2}=2 Q_{2 m-1,2 m}, & \text { if } m \geq 1\end{cases}
$$

Acknowledgement

Cheng was supported partially by the General Project of Department of Education of Sichuan Province 15ZB0434. [2000]Primary 11T06, 11T55, 11C08.

Conflict of Interest

The author declares no conflicts of interest in this paper.

References

1. K. Cheng, Permutational Behavior of Reversed Dickson Polynomials over Finite Fields, AIMS Math., 2 (2017), 244-259.
2. R. Coulter, Explicit evaluation of some Weil sums, Acta Arith., 83 (1998), 241-251.
3. S. Hong, X. Qin and W. Zhao, Necessary conditions for reversed Dickson polynomials of the second kind to be permutational, Finite Fields Appl., 37 (2016), 54-71.
4. X. Hou, G. L. Mullen, J.A. Sellers and J.L. Yucas, Reversed Dickson polynomials over finite fields, Finite Fields Appl., 15 (2009), 748-773.
5. R. Lidl and H. Niederreiter, Finite Fields, second ed., Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 20, 1997.
6. X. Qin and S. Hong, Constructing permutation polynomials over finite fields, Bull. Aust. Math. Soc., 89 (2014), 420-430.
7. X. Qin, G. Qian and S. Hong, New results on permutation polynomials over finite fields, Int. J. Number Theory, 11 (2015), 437-449.
8. Q. Wang and J. Yucas, Dickson polynomials over finite fields, Finite Fields Appl., 18 (2012), 814831.
© 2017, Kaimin Cheng, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
