AIMS Mathematics, 2017, 2(4): 580-585. doi: 10.3934/Math.2017.4.580

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

A note on derivations and Jordan ideals of prime rings

Department of Mathematics, Punjabi University, Patiala, Punjab-147001, INDIA

Let F : R → R be a generalized derivation of a 2-torsion free prime ring R together witha derivation d: In this paper, we show that a nonzero Jordan ideal J of R contains a nonzero ideal ofR. Further, we use this result to prove that if F([x,y]) ∈ Z(R) for all x, y ∈ J; then R is commutative.Consequently, it extends a result of Oukhtite, Mamouni and Ashraf.
  Figure/Table
  Supplementary
  Article Metrics

References

1. S. M. A. Zaidi, M. Ashraf, S. Ali, On Jordan ideals and left (θ;θ)-derivations in prime rings. Internat. J. Math. Math. Sci., 37 (2004), 1957-1964.

2. L. Oukhtite, Posner's second theorem for Jordan ideals in rings with involutions. Expo. Math., 29 (2011), 415-419.

3. L. Oukhtite, A. Mamouni, M. Ashraf, Commutativity theorems for rings with differential identities on Jordan ideals. Comment. Math. Univ. Carolin., 54 (2013), no. 4, 447-457.

4. L. Oukhtite, On Jordan ideals and derivations in rings with involution. Comment. Math. Univ. Carolin., 51 (2010), no. 3, 389-395.

5. N. Argac¸, V. de Filippis, Actions of generalized derivations on multilinear polynomials in prime rings. Algebra Colloq., 18(spec 1) (2011) , 955-964.

6. V. K. Kharchenko, Differential identities of prime rings. Algebra Logic, 17 (1979), 155-168.

7. C. L. Chuang, GPIs having coeffcients in Utumi quotient rings. Proc. Amer. Math. Soc., 103 (1988), 723-728.

8. T. S. Erickson, W. Martindale III, J .M. Osborn, Prime nonassociative algebras. Pac. J. Math., 60 (1975), 49-63.

9. W. S. Martindale III, Prime rings satisfying a generalized polynomial identity. J. Algebra, 12 (1969), 576-584.

10. N. Jacobson, Structure of Rings. Colloquium Publications, vol. 37, Amer. Math. Soc. VII, Provindence, RI, 1956.

11. X. W. Xu, The Power Values Properties of Generalized Derivations. Doctoral Thesis of Jilin University, Changchun, 2006.

12. K. I. Beidar, W. S. Martindale III, A. V. Mikhalev, Rings with Generalized Identities. Pure and Applied Mathematics. vol. 196, Marcel Dekker, New York, 1996.

13. M. Brešar, On the distance of the composition of two derivations to the generalized derivations. Glasg. Math. J., 33 (1991), 89-93.

14. T. K. Lee, Generalized derivations of left faithful rings. Comm. Algebra, 27 (1999), no. 8, 4057-4073.

15. R. Awtar, Lie and Jordan structure in prime rings with derivations. Proc. Amer. Math. Soc., 41 (1973), 67-74.

16. I. N. Herstein, A note on derivations. Canad. Math. Bull., 21 (1978), 369-370.

17. H. E. Bell, M. N. Daif, On derivations and commutativity in prime rings. Acta Math. Hungar., 66 (1995), 337-343.

Copyright Info: © 2017, Gurninder S. Sandhu, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved