Loading [Contrib]/a11y/accessibility-menu.js
Research article

Action of $ n $-derivations and $ n $-multipliers on ideals of (semi)-prime rings

  • Received: 30 January 2023 Revised: 27 April 2023 Accepted: 04 May 2023 Published: 17 May 2023
  • MSC : 16W25, 16R50, 16N60

  • The present paper aims to investigate the containment of nonzero central ideal in a ring $ \mathcal{R} $ when the trace of symmetric $ n $-derivations satisfies some differential identities. Lastly, we prove that in a prime ring $ \mathcal{R} $ of suitable torsion restriction, if $ \mathfrak{D}, \mathcal{G} : \mathcal{R}^n \rightarrow \mathcal{R} $ are two nonzero symmetric $ n $-derivations such that $ \mathcal{f}(\vartheta)\vartheta +\vartheta\mathcal{g}(\vartheta) = 0 $ holds $ \forall \; \vartheta \in \mathcal{W} $, a nonzero left ideal of $ \mathcal{R} $ where $ \mathcal{f} $ and $ \mathcal{g} $ are the traces of $ \mathfrak{D} $ and $ \mathcal{G} $, respectively, then either $ \mathcal{R} $ is commutative or $ \mathcal{G} $ acts as a left $ n $-multiplier. Finally, we characterize symmetric $ n $-derivations in terms of left $ n $-multipliers.

    Citation: Shakir Ali, Turki M. Alsuraiheed, Nazia Parveen, Vaishali Varshney. Action of $ n $-derivations and $ n $-multipliers on ideals of (semi)-prime rings[J]. AIMS Mathematics, 2023, 8(7): 17208-17228. doi: 10.3934/math.2023879

    Related Papers:

    [1] Shakir Ali, Amal S. Alali, Sharifah K. Said Husain, Vaishali Varshney . Symmetric $ n $-derivations on prime ideals with applications. AIMS Mathematics, 2023, 8(11): 27573-27588. doi: 10.3934/math.20231410
    [2] Vajiheh Nazemi Niya, Hojat Babaei, Akbar Rezaei . On fuzzy sub-semi-rings of nexuses. AIMS Mathematics, 2024, 9(12): 36140-36157. doi: 10.3934/math.20241715
    [3] Gurninder Singh Sandhu . On an identity involving generalized derivations and Lie ideals of prime rings. AIMS Mathematics, 2020, 5(4): 3472-3479. doi: 10.3934/math.2020225
    [4] Jayanta Ghosh, Dhananjoy Mandal, Tapas Kumar Samanta . Soft prime and semiprime int-ideals of a ring. AIMS Mathematics, 2020, 5(1): 732-745. doi: 10.3934/math.2020050
    [5] Xinfeng Liang, Lingling Zhao . Bi-Lie n-derivations on triangular rings. AIMS Mathematics, 2023, 8(7): 15411-15426. doi: 10.3934/math.2023787
    [6] Pakorn Palakawong na Ayutthaya, Bundit Pibaljommee . On $ n $-ary ring congruences of $ n $-ary semirings. AIMS Mathematics, 2022, 7(10): 18553-18564. doi: 10.3934/math.20221019
    [7] Gurninder S. Sandhu, Deepak Kumar . Correction: A note on derivations and Jordan ideals in prime rings. AIMS Mathematics, 2019, 4(3): 684-685. doi: 10.3934/math.2019.3.684
    [8] Gurninder S. Sandhu, Deepak Kumar . A note on derivations and Jordan ideals of prime rings. AIMS Mathematics, 2017, 2(4): 580-585. doi: 10.3934/Math.2017.4.580
    [9] Shatha Alghueiri, Khaldoun Al-Zoubi . On graded 2-absorbing $I_{e}$-prime submodules of graded modules over graded commutative rings. AIMS Mathematics, 2020, 5(6): 7624-7631. doi: 10.3934/math.2020487
    [10] Abu Zaid Ansari, Faiza Shujat, Ahlam Fallatah . Generalized differential identities on prime rings and algebras. AIMS Mathematics, 2023, 8(10): 22758-22765. doi: 10.3934/math.20231159
  • The present paper aims to investigate the containment of nonzero central ideal in a ring $ \mathcal{R} $ when the trace of symmetric $ n $-derivations satisfies some differential identities. Lastly, we prove that in a prime ring $ \mathcal{R} $ of suitable torsion restriction, if $ \mathfrak{D}, \mathcal{G} : \mathcal{R}^n \rightarrow \mathcal{R} $ are two nonzero symmetric $ n $-derivations such that $ \mathcal{f}(\vartheta)\vartheta +\vartheta\mathcal{g}(\vartheta) = 0 $ holds $ \forall \; \vartheta \in \mathcal{W} $, a nonzero left ideal of $ \mathcal{R} $ where $ \mathcal{f} $ and $ \mathcal{g} $ are the traces of $ \mathfrak{D} $ and $ \mathcal{G} $, respectively, then either $ \mathcal{R} $ is commutative or $ \mathcal{G} $ acts as a left $ n $-multiplier. Finally, we characterize symmetric $ n $-derivations in terms of left $ n $-multipliers.



    Throughout, $ \mathcal{R} $ will be an associative ring with $ \mathcal{Z}(\mathcal{R}) $ as its center. A ring $ \mathcal{R} $ is said to be prime if $ \vartheta \mathcal{R}\ell = \{0\} $ implies that either $ \vartheta = 0 $ or $ \ell = 0 $ and semiprime if $ \vartheta \mathcal{R}\vartheta = \{0\} $ implies that $ \vartheta = 0 $, where $ \vartheta, \ell \in \mathcal{R} $. The symbols $ [\vartheta, \ell ] $ and $ \vartheta \circ \ell $ denote the commutator $ \vartheta \ell -\ell \vartheta $ and the anti-commutator $ \vartheta \ell + \ell \vartheta $, respectively, for any $ \vartheta, \ell \in \mathcal{R} $. A ring $ \mathcal{R} $ is said to be $ n $-torsion free if $ n\vartheta = 0 $ implies that $ \vartheta = 0 \; \forall \; \vartheta \in \mathcal{R} $. If $ \mathcal{R} $ is $ n! $-torsion free, then it is $ m $-torsion free for every divisor $ m $ of $ n! $. An additive mapping $ \mathcal{D}:\mathcal{R} \rightarrow \mathcal{R} $ is called a derivation if $ \mathcal{D}(\vartheta \ell) = \mathcal{D}(\vartheta)\ell +\vartheta \mathcal{D}(\ell) $ holds $ \forall \; \vartheta, \ell \in \mathcal{R} $. In order to broaden the scope of derivation, Maksa [12] introduced the notion of symmetric bi-derivations on rings, which Vukman examined in greater detail in [17,18]. A bi-additive map $ \mathfrak{D}:\mathcal{R} \times \mathcal{R} \rightarrow \mathcal{R} $ is said to be a bi-derivation if

    $ \mathfrak{D}(\vartheta \vartheta ',\ell ) = \mathfrak{D}(\vartheta ,\ell )\vartheta '+\vartheta \mathfrak{D}(\vartheta ',\ell ), $
    $ \mathfrak{D}(\vartheta ,\ell \ell ') = \mathfrak{D}(\vartheta ,\ell )\ell '+\ell \mathfrak{D}(\vartheta ,\ell ') $

    hold for any $ \vartheta, \vartheta ', \ell, \ell ' \in \mathcal{R} $. The foregoing conditions are identical if $ \mathfrak{D} $ is also a symmetric map, that is, if $ \mathfrak{D}(\vartheta, \ell) = \mathfrak{D}(\ell, \vartheta) $ for every $ \vartheta, \ell \in \mathcal{R} $. In this case, $ \mathfrak{D} $ is referred to as a symmetric bi-derivation on $ \mathcal{R} $. Several authors have studied symmetric bi-derivations on rings (see [3,11,16] and references therein) and produced highly helpful outcomes.

    The study of tri-derivation was initiated in [13], by $ \ddot{\text{O}} $zt$ \ddot{\text{u}} $rk, in which he proved various results. Several results have been obtained by various authors in this direction (see [13,19] and references therein). In light of the concepts of bi-derivation and tri-derivation, Park [14] introduced the concept of permuting $ n $-derivation as follows:

    Definition 1.1. Let $ n \geq 2 $ be a fixed integer, and $ \mathcal{R}^n = \underbrace{\mathcal{R} \times \mathcal{R} \times \cdots \times \mathcal{R}}_{n-\text{times}} $. A map $ \mathfrak{D}:\mathcal{R}^n \rightarrow \mathcal{R} $ is said to be symmetric (permuting) if

    $ \mathfrak{D}(\vartheta _1,\vartheta _2,\ldots,\vartheta _n) = \mathfrak{D}(\vartheta _{\pi(1)}, \vartheta _{\pi(2)}, \ldots ,\vartheta _{\pi(n)}) $

    for all permutations $ \pi(t) \in S_n $ and $ \vartheta _t \in R $, where $ t = 1, 2, \ldots, n $.

    Definition 1.2. Let $ n \geq 2 $ be a fixed integer. An $ n $-additive mapping (i.e., additive in each argument) $ \mathfrak{D} : \mathcal{R}^n \rightarrow \mathcal{R} $ is called an $ n $-derivation on $ \mathcal{R} $ if the relations

    $ \mathfrak{D}(\vartheta _1\vartheta '_1, \vartheta _2, \ldots , \vartheta _n) = \mathfrak{D}(\vartheta _1, \vartheta _2, \ldots, \vartheta _n)\vartheta '_1 + \vartheta _1\mathfrak{D}(\vartheta '_1, \vartheta _2, \dots, \vartheta _n), $
    $ \mathfrak{D}(\vartheta _1, \vartheta _2\vartheta '_2, \ldots , \vartheta _n) = \mathfrak{D}(\vartheta _1, \vartheta _2, \ldots, \vartheta _n)\vartheta '_2 + \vartheta _2\mathfrak{D}(\vartheta _1, \vartheta '_2, \dots, \vartheta _n), $
    $ \vdots $
    $ \mathfrak{D}(\vartheta _1, \vartheta _2, \ldots , \vartheta _n\vartheta '_n) = \mathfrak{D}(\vartheta _1, \vartheta _2, \ldots, \vartheta _n)\vartheta '_n + \vartheta _n\mathfrak{D}(\vartheta _1, \vartheta _2, \dots, \vartheta '_n) $

    hold for all $ \vartheta _t, \vartheta '_t \in \mathcal{R}, \; t = 1, 2, \ldots, n{ } $.

    If, in addition, $ \mathfrak{D} $ is a permuting map, then all the above conditions are equivalent, and in that case $ \mathfrak{D} $ is called a permuting $ n $-derivation on $ \mathcal{R} $.

    Of course, $ 1 $-derivation is a derivation, a $ 2 $-derivation is a symmetric bi-derivation, and for $ n = 3 $, $ \mathfrak{D} $ is referred to as a permuting 3-derivation (or tri-derivation) on rings (see [17,19] for details).

    A map $ \mathcal{d}:\mathcal{R} \rightarrow \mathcal{R} $ defined by $ \mathcal{d}(\vartheta) = \mathfrak{D}(\vartheta, \vartheta, \ldots, \vartheta) $ is called the trace of $ \mathfrak{D} $. If $ \mathfrak{D} : \mathcal{R}^n \rightarrow \mathcal{R} $ is permuting and $ n $-additive, then the trace $ \mathcal{d} $ of $ \mathfrak{D} $ satisfies the relation

    $ \mathcal{d}(\vartheta + \ell ) = \mathcal{d}(\vartheta ) + \mathcal{d}(\ell ) + \sum\limits_{k = 1}^{n-1} {}^{n}C_{k} \; h_k(\vartheta ;\ell ) $

    $ \forall \; \vartheta, \ell \in \mathcal{R} $, where $ {}^{n}C_{k} = \binom{n}{k} $ and

    $ h_k(\vartheta ;\ell ) = \mathfrak{D}(\underbrace{\vartheta ,\ldots,\vartheta }_{(n-k)-\text{times}},\underbrace{\ell ,\ldots,\ell }_{k-\text{times}}). $

    Let $ S $ be a nonempty subset of $ \mathcal{R} $. A mapping $ \mathcal{d} :\mathcal{R} \rightarrow \mathcal{R} $ is said to be commuting (respectively, centralizing) on $ \mathcal{R} $ if $ [\mathcal{d}(\vartheta), \vartheta] = 0 $ (respectively, $ [\mathcal{d}(\vartheta), \vartheta] \in \mathcal{Z}(\mathcal{R})) $ for all $ \vartheta \in \mathcal{R} $. The study of commuting and centralizing mappings on a prime ring was initiated by Posner [15], who proved that if a prime ring $ \mathcal{R} $ admits a nonzero centralizing derivation, then $ \mathcal{R} $ is commutative. Being inspired by this result, Bre$ \breve{s} $ar [9, Theorem 4.1] proved this for left ideals. In fact, he proved that if $ \mathcal{R} $ is a prime ring, $ \mathcal{W} $ is a nonzero left ideal of $ \mathcal{R} $, and $ \mathcal{d} $ and $ \mathcal{g} $ are nonzero derivations of $ \mathcal{R} $ satisfying $ \mathcal{d}(\vartheta)\vartheta -\vartheta \mathcal{g}(\vartheta) \in \mathcal{Z}(\mathcal{R}) \; \forall \; \vartheta \in \mathcal{W} $, then $ \mathcal{R} $ is commutative. In [2], Argaç gave a partial extension of Bre$ \breve{s} $ar's result in the setting of semiprime rings. Motivated by the classical result due to Posner [15], Vukman obtained some results concerning the trace of symmetric bi-derivations in prime rings (see [17,18] for more details). In [3], Ashraf established similar results for semiprime rings. Further, Ashraf et al. [6,8] obtained commutativity of rings admitting $ n $-derivations whose traces satisfy certain polynomial conditions. Recently, Ashraf et al. [4] introduced the concepts of permuting $ n $-multipliers and proved that for a fixed integer $ n \geq 2 $, if $ \mathcal{R} $ is a non-commutative $ n! $-torsion free prime ring admitting a permuting generalized $ n $-derivation $ \mathcal{G} $ with associated $ n $-derivation $ \mathcal{D} $ such that the trace $ \omega $ of $ \mathcal{G} $ is commuting on $ \mathcal{R} $, then $ \mathcal{G} $ is a left $ n $-multiplier on $ \mathcal{R} $. Many authors have studied various identities involving traces of bi-derivations and $ n $-derivations and have obtained several interesting results (viz., [3,4,6,11,16,17,18] and references therein).

    The primary aim of this paper is to prove analogous results related to permuting $ n $-derivations in the setting of prime and semiprime rings. In fact, we investigate the structure of (semi)prime rings and describe the forms of maps (traces of $ n $-derivations) satisfying certain functional identities. More precisely, we prove that: let $ n \geq 2 $ be a fixed integer, $ \mathcal{R} $ be an $ n! $-torsion free semiprime ring and $ \mathcal{W} $ be a nonzero ideal of $ \mathcal{R}. $ If $ \mathcal{R} $ admits two nonzero symmetric $ n $-derivations $ \mathfrak{D}:\mathcal{R}^n \rightarrow \mathcal{R} $ with trace $ \mathcal{d} : \mathcal{R} \rightarrow \mathcal{R} $ and $ \mathcal{G}:\mathcal{R}^n \rightarrow \mathcal{R} $ with trace $ \mathcal{g} : \mathcal{R} \rightarrow \mathcal{R} $ satisfying $ \mathcal{d}(\vartheta)\ell \pm \vartheta\mathcal{g}(\ell) \in \mathcal{Z}(\mathcal{R}) \; \forall \; \vartheta, \ell \in \mathcal{W} $, then $ \mathcal{R} $ has a nonzero central ideal (Theorem 2.5). Further, in the last section, we establish that if $ \mathcal{R} $ is an $ n! $-torsion free prime ring admitting two symmetric $ n $-derivations $ \mathfrak{D} : \mathcal{R}^n \rightarrow \mathcal{R} $ and $ \mathcal{G} : \mathcal{R}^n \rightarrow \mathcal{R} $ with traces $ \mathcal{f} $ and $ \mathcal{g} $, respectively, satisfying $ \mathcal{f}(\vartheta)\vartheta +\vartheta \mathcal{g}(\vartheta) = 0 \; \forall \; \vartheta \in \mathcal{W} $, a left ideal of $ \mathcal{R} $, then either $ \mathcal{R} $ is commutative or $ \mathcal{G} $ acts as a left $ n $-multiplier on $ \mathcal{W} $ (Theorem 3.2). Moreover, we also characterize the traces of $ q $-iterations of $ n $-derivations in prime rings and prove that for a fixed integer $ n \geq 2 $, if $ \mathcal{R} $ is an $ n! $-torsion free prime ring and $ q \geq 1 $, a fixed integer admitting $ q $-iterations of $ n $-derivations $ \mathfrak{D}_1, \mathfrak{D}_2, \ldots, \mathfrak{D}_q : \mathcal{R}^n \rightarrow \mathcal{R} $ such that the product of the traces of $ \mathfrak{D}_1, \mathfrak{D}_2, \ldots, \mathfrak{D}_q $, respectively, is zero on a nonzero ideal of $ \mathcal{R} $, then either $ \mathfrak{D}_1 = 0 $ or the rest of $ \mathfrak{D}_i's $ act as $ n $-multipliers on $ \mathcal{R} $ (Theorem 3.6).

    In the present section, we state and prove the main results of this article. In order to establish the proofs of our main theorems, we first state a number of well-known results.

    Lemma 2.1. [14] Let $ n $ be a fixed positive integer and $ \mathcal{R} $ an $ n! $-torsion free ring. Suppose that $ a_1, a_2, \ldots, a_n \in \mathcal{R} $ satisfy $ \lambda a_1 +\lambda^2 a_2+ \cdots +\lambda^n a_n = 0\; (or \in \mathcal{Z}(\mathcal{R})) $ for $ \lambda = 1, 2, \ldots, n $. Then, $ a_t = 0\; (or \in \mathcal{Z}(\mathcal{R})) $ for $ t = 1, 2, \ldots, n. $

    Lemma 2.2. [10] If $ \mathcal{R} $ is a semiprime ring, then the center of a nonzero ideal of $ \mathcal{R} $ is contained in the center of $ \mathcal{R} $.

    Lemma 2.3. [16] Let $ \mathcal{R} $ be a 2-torsion free semiprime ring and $ \mathcal{W} $ be a nonzero ideal of $ \mathcal{R} $. If $ [\mathcal{W}, \mathcal{W} ] \subseteq \mathcal{Z}(\mathcal{R}) $, then $ \mathcal{R} $ contains a nonzero central ideal.

    Lemma 2.4. [16] Let $ \mathcal{R} $ be a 2-torsion free semiprime ring and $ \mathcal{W} $ be a nonzero ideal of $ \mathcal{R} $. If $ \mathcal{W} \circ \mathcal{W} \subseteq \mathcal{Z}(\mathcal{R}) $, then $ \mathcal{R} $ contains a nonzero central ideal.

    The first main result of this paper is the following theorem:

    Theorem 2.5. Let $ n \geq 2 $ be a fixed integer, $ \mathcal{R} $ be an $ n! $-torsion free semiprime ring and $ \mathcal{W} $ be a nonzero ideal of $ \mathcal{R}. $ If $ \mathcal{R} $ admits two nonzero symmetric $ n $-derivations $ \mathfrak{D}:\mathcal{R}^n \rightarrow \mathcal{R} $ with trace $ \mathcal{d} : \mathcal{R} \rightarrow \mathcal{R} $ and $ \mathcal{G}:\mathcal{R}^n \rightarrow \mathcal{R} $ with trace $ \mathcal{g} : \mathcal{R} \rightarrow \mathcal{R} $ satisfying $ \mathcal{d}(\vartheta)\ell \pm \vartheta\mathcal{g}(\ell) \in \mathcal{Z}(\mathcal{R}) \; \forall \; \vartheta, \ell \in \mathcal{W} $, then $ \mathcal{R} $ has a nonzero central ideal.

    Proof. It is given that

    $ \begin{equation} \mathcal{d}(\vartheta )\ell \pm \vartheta\mathcal{g}(\ell ) \in \mathcal{Z}(\mathcal{R})\; \forall \; \vartheta,\ell \in \mathcal{W}. \end{equation} $ (2.1)

    Replacing $ \ell $ by $ \ell +m \mathcal{k} $ for $ \mathcal{k} \in \mathcal{W} $ and $ 1 \leq m \leq n-1 $, we obtain

    $ \begin{equation*} \mathcal{d}(\vartheta)(\ell +m\mathcal{k} ) \pm \vartheta\mathcal{g}(\ell +m\mathcal{k} ) \in \mathcal{Z}(\mathcal{R})\; \forall\; \vartheta,\ell ,\mathcal{k} \in \mathcal{W}. \end{equation*} $

    Solving further, we get

    $ \begin{equation*} \mathcal{d}(\vartheta)\ell +\mathcal{d}(\vartheta)m\mathcal{k} \pm \vartheta\mathcal{g}(\ell ) \pm \vartheta\mathcal{g}(m\mathcal{k} )\pm \vartheta\sum\limits_{t = 1}^{n-1} {}^{n}C_{t} \mathcal{G}(\underbrace{\ell ,\ldots,\ell }_{(n-t)-\text{times}},\underbrace{m\mathcal{k} ,\ldots,m\mathcal{k} }_{t-\text{times}}) \in \mathcal{Z}(\mathcal{R}) \end{equation*} $

    $ \forall \; \vartheta, \ell, \mathcal{k} \in \mathcal{W} $. Taking account of the given condition, we find that

    $ \begin{align*} \vartheta\sum\limits_{t = 1}^{n-1} {}^{n}C_{t} \mathcal{G}(\underbrace{\ell ,\ldots,\ell }_{(n-t)-\text{times}},\underbrace{m\mathcal{k} ,\ldots,m\mathcal{k} }_{t-\text{times}}) \in \mathcal{Z}(\mathcal{R})\; \forall\; \vartheta,\ell ,\mathcal{k} \in \mathcal{W}, \end{align*} $

    which implies that

    $ \begin{align*} m\binom{n}{1}\vartheta h_1(\ell ;\mathcal{k} )+m^2\binom{n}{2}\vartheta h_2(\ell ;\mathcal{k} )+\cdots+m^{n-1}\binom{n}{n-1}\vartheta h_{n-1}(\ell ;\mathcal{k} ) \in \mathcal{Z}(\mathcal{R}), \end{align*} $

    where $ h_t(\ell; \mathcal{k}) $ represents the term in which $ \mathcal{k} $ appears $ t $- times.

    The application of Lemma 2.1 yields

    $ \begin{equation*} n\vartheta \mathcal{G}(\ell , \ldots, \ell ,\mathcal{k} ) \in \mathcal{Z}(\mathcal{R}) \; \forall \; \vartheta ,\ell ,\mathcal{k} \in \mathcal{W}. \end{equation*} $

    Since $ \mathcal{R} $ is $ n! $-torsion free, we get

    $ \vartheta \mathcal{G}(\ell , \ldots, \ell ,\mathcal{k} ) \in \mathcal{Z}(\mathcal{R}) \; \forall \; \vartheta ,\ell ,\mathcal{k} \in \mathcal{W}. $

    Replacing $ \mathcal{k} $ by $ \ell $, we find that

    $ \vartheta\mathcal{g}(\ell ) \in \mathcal{Z}(\mathcal{R})\; \forall \; \vartheta,\ell \in \mathcal{W}. $

    Hence, by the hypothesis, we see that

    $ \mathcal{d}(\vartheta)\ell \in \mathcal{Z}(\mathcal{R}) \; \forall \; \vartheta,\ell \in \mathcal{W}. $

    Now, on commuting with $ r $ where $ r\in \mathcal{R} $, we get

    $ [\mathcal{d}(\vartheta)\ell ,r] = 0 \; \forall \; \vartheta,\ell \in \mathcal{W},\; r\in \mathcal{R}, $
    $ \begin{equation} \text{or} \; \; \; \mathcal{d}(\vartheta)[\ell ,r]+[\mathcal{d}(\vartheta),r]\ell = 0 \; \forall \; \vartheta,\ell \in \mathcal{W},\; r\in \mathcal{R}. \end{equation} $ (2.2)

    Replacing $ \ell $ by $ \ell \mathcal{k} $ where $ \mathcal{k} \in \mathcal{W} $ in (2.2) and using (2.2), we get

    $ \mathcal{d}(\vartheta)\ell [\mathcal{k} ,r] = 0\; \forall \; \vartheta,\ell ,\mathcal{k} \in \mathcal{W},\; r\in \mathcal{R}. $

    Now, replacing $ r $ by $ \mathcal{d}(\vartheta) $ in the above equation, we obtain

    $ \begin{equation} \mathcal{d}(\vartheta)\ell [\mathcal{k} ,\mathcal{d}(\vartheta)] = 0\; \forall \; \vartheta,\ell ,\mathcal{k} \in \mathcal{W}. \end{equation} $ (2.3)

    Multiplying by $ \mathcal{k} $ from left, we get

    $ \begin{align} \mathcal{k} \mathcal{d}(\vartheta)\ell [\mathcal{k} ,\mathcal{d}(\vartheta)] = 0\; \forall \; \vartheta,\ell ,\mathcal{k} \in \mathcal{W}. \end{align} $ (2.4)

    Taking $ \mathcal{k} \ell $ in place of $ \ell $ in (2.3), we see that

    $ \begin{equation} \mathcal{d}(\vartheta)\mathcal{k} \ell [\mathcal{k} ,\mathcal{d}(\vartheta)] = 0\; \forall\; \vartheta,\ell ,\mathcal{k} \in \mathcal{W}. \end{equation} $ (2.5)

    Subtracting (2.5) from (2.4), we get

    $ [\mathcal{k} ,\mathcal{d}(\vartheta)]\ell [\mathcal{k} ,\mathcal{d}(\vartheta)] = 0\; \forall \; \vartheta,\ell ,\mathcal{k} \in \mathcal{W}, $

    i.e.,

    $ [\mathcal{k} ,\mathcal{d}(\vartheta)]\ell r[\mathcal{k} ,\mathcal{d}(\vartheta)] = 0\; \forall \; \vartheta,\ell ,\mathcal{k} \in \mathcal{W},\; r \in \mathcal{R}, $

    i.e.,

    $ [\mathcal{k} ,\mathcal{d}(\vartheta)]\ell \mathcal{R}[\mathcal{k} ,\mathcal{d}(\vartheta)]\ell = (0)\; \forall \; \vartheta,\ell ,\mathcal{k} \in \mathcal{W}. $

    Since $ \mathcal{R} $ is a semiprime ring, the last expression gives

    $ [\mathcal{k} ,\mathcal{d}(\vartheta)]\ell = 0\; \forall \; \vartheta,\ell ,\mathcal{k} \in \mathcal{W}. $

    Replacing $ \ell $ by $ r[\mathcal{k}, \mathcal{d}(\vartheta)] $, we get

    $ [\mathcal{k} ,\mathcal{d}(\vartheta)]r[\mathcal{k} ,\mathcal{d}(\vartheta)] = 0\; \forall \; \vartheta,\mathcal{k} \in \mathcal{W},\; r\in \mathcal{R}. $

    From the semiprimeness of $ \mathcal{R} $, we see that

    $ \begin{equation} [\mathcal{k} ,\mathcal{d}(\vartheta)] = 0\; \forall \; \vartheta,\mathcal{k} \in \mathcal{W}. \end{equation} $ (2.6)

    Invoking Lemma 2.2, we have

    $ \begin{align} \mathcal{d}(\vartheta) \in \mathcal{Z}(\mathcal{R}) \; \forall \; \vartheta \in \mathcal{W}. \end{align} $ (2.7)

    Now, again replacing $ \vartheta $ by $ \vartheta+mw_1 $ for $ w_1 \in \mathcal{W} $ and $ 1 \leq m \leq n-1 $ in (2.7) and using (2.7), we obtain

    $ \sum\limits_{t = 1}^{n-1} {}^{n}C_{t} \mathfrak{D}(\underbrace{\vartheta,\ldots,\vartheta}_{(n-t)-\text{times}},\underbrace{mw_1,\ldots,mw_1}_{t-\text{times}}) \in \mathcal{Z}(\mathcal{R})\; \forall \; \vartheta,w_1 \in \mathcal{W}, $

    which implies that

    $ \begin{align*} m\binom{n}{1}h_1(\vartheta;w_1)+m^2\binom{n}{2}h_2(\vartheta;w_1)+\cdots+m^{n-1}\binom{n}{n-1}h_{n-1}(\vartheta;w_1) \in \mathcal{Z}(\mathcal{R}) \end{align*} $

    $ \forall \; \vartheta, w_1 \in \mathcal{W} $. Invoking Lemma 2.1 and using the fact that $ \mathcal{R} $ is $ n! $-torsion free, we get

    $ \begin{align} \mathfrak{D}(w_1, \vartheta, \ldots,\vartheta) \in \mathcal{Z}(\mathcal{R})\; \forall\; \vartheta,w_1\in \mathcal{W}. \end{align} $ (2.8)

    Replace $ \vartheta $ by $ \vartheta+mw_2 $ for $ w_2 \in \mathcal{W} $ and $ 1 \leq m \leq n-1 $ in the above equation to get

    $ \begin{align*} \mathfrak{D}(w_1, \vartheta+mw_2, \ldots,\vartheta+mw_2) \in \mathcal{Z}(\mathcal{R})\; \forall\; \vartheta,w_1, w_2\in \mathcal{W}, \end{align*} $

    and on further solving and using torsion restriction, we get

    $ \begin{align*} \mathfrak{D}(w_1, w_2, \vartheta, \ldots,\vartheta) \in \mathcal{Z}(\mathcal{R})\; \forall\; w_1, w_2, \vartheta \in \mathcal{W}. \end{align*} $

    Continuing in the same manner, we get

    $ \begin{align} \mathfrak{D}(w_1, w_2, w_3, \ldots,w_n) \in \mathcal{Z}(\mathcal{R})\; \forall\; w_1, w_2, \ldots, w_n \in \mathcal{W}. \end{align} $ (2.9)

    On commuting with $ r $, we get

    $ [\mathfrak{D}(w_1, w_2, w_3, \ldots,w_n),r] = 0\; \forall\; w_1, w_2, \ldots, w_n \in \mathcal{W}, r \in \mathcal{R}. $

    After replacing $ w_1 $ by $ w_1w_1' $ in the above equation and using torsion restriction of $ \mathcal{R} $, we arrive at

    $ [w_1,r]\mathfrak{D}(w_1, w_2, \ldots, w_n) = 0\; \forall\; w_1, w_2, \ldots, w_n \in \mathcal{W}, r \in \mathcal{R}. $

    Now taking $ r $ to be $ rr' $ where $ r' \in \mathcal{R} $, we get

    $ \begin{align*} [w_1,r]r'\mathfrak{D}(w_1, w_2, \ldots, w_n) = 0\; \forall \; r,r' \in \mathcal{R}, \end{align*} $

    i.e.,

    $ \begin{align} [w_1,r]\mathcal{R}\mathfrak{D}(w_1, w_2, \ldots, w_n) = \{0\}\; \forall \; w_1, w_2, \ldots, w_n \in \mathcal{W}, r \in \mathcal{R}. \end{align} $ (2.10)

    Since $ \mathcal{R} $ is a semiprime ring, it must contain a family of prime ideals of $ \mathcal{R} $ whose intersection is zero. Let $ \mathfrak{P} = \{P_j \; |\; j \in \Lambda \} $ be the family of all prime ideals such that $ \bigcap P_j = \{0\} $. Let $ P $ be a typical member of $ \mathfrak{P}. $ From (2.10), we conclude that for a fixed $ w_1 \in \mathcal{W} $,

    $ \text{either}\; [w_1,r] \in P\; or \; \mathfrak{D}(w_1, w_2, \ldots, w_n)\in P \; \; \forall\; w_1, w_2, \ldots, w_n \in \mathcal{W}, r\in \mathcal{R}. $

    Let us set $ \mathcal{U} = \{w_1 \in \mathcal{W} \; \; |\; [w_1, \mathcal{R}] \subseteq P\} $ and $ \mathcal{V} = \{w_1 \in \mathcal{W} \; |\; \mathfrak{D}(w_1, w_2, \ldots, w_n) \in P\; \forall\; w_2, \ldots, w_n \in \mathcal{W}\} $. Both $ \mathcal{U} $ and $ \mathcal{V} $ are additive subgroups of $ \mathcal{W} $ such that $ \mathcal{W} = \mathcal{U} \cup \mathcal{V} $, but a group cannot be the union of two of its proper subgroups. Hence, either $ \mathcal{W} = \mathcal{U} $ or $ \mathcal{W} = \mathcal{V} $. Let us suppose that $ \mathcal{W} \neq \mathcal{U} $. Then, we have $ \mathcal{W} = \mathcal{V} $, i.e., $ \mathfrak{D}(w_1, w_2, \ldots, w_n) \in P \; \forall \; w_1, w_2, \ldots, w_n \in \mathcal{W} $. Replace $ w_1 $ by $ w_1r_1 $, i.e., $ \mathfrak{D}(w_1r_1, w_2, \ldots, w_n) \in P $ for any $ r_1 \in \mathcal{R} $. On solving, we get $ w_1\mathfrak{D}(r_1, w_2, \ldots, w_n) \in P $. Using primeness of $ P $, we get either $ w_1 \in P $ or $ \mathfrak{D}(r_1, w_2, \ldots, w_n) \in P $ for all $ w_1, w_2, \ldots, w_n \in \mathcal{W}, \; r_1 \in \mathcal{R} $. However, $ w_1 \in P $ implies that $ [w_1, \mathcal{R}] \subseteq P $, which leads to a contradiction. Thus, we have $ \mathfrak{D}(r_1, w_2, \ldots, w_n) \in P $ for all $ w_2, \ldots, w_n \in \mathcal{W}, \; r_1 \in \mathcal{R} $. Again replace $ w_2 $ by $ w_2r_2 $, and using the same procedure, we get $ \mathfrak{D}(r_1, r_2, w_3, \ldots, w_n) \in P $ for all $ w_3, \ldots, w_n \in \mathcal{W}, \; r_1, r_2 \in \mathcal{R} $. Continuing in a similar manner, we arrive at

    $ \mathfrak{D}(\mathcal{R}, \mathcal{R}, \ldots, \mathcal{R}) \subseteq P \; \text{for any}\; P \in \mathfrak{P}. $

    Since $ P $ was an arbitrary element of $ \mathfrak{P} $,

    $ \mathfrak{D}(\mathcal{R}, \mathcal{R}, \ldots, \mathcal{R}) \subseteq \bigcap P_j = \{0\}, $

    which implies that $ \mathfrak{D}(\mathcal{R}, \mathcal{R}, \ldots, \mathcal{R}) = \{0\} $. Hence, we arrive at a contradiction. Therefore, $ \mathcal{W} = \mathcal{U} $, i.e., $ [w_1, \mathcal{R}] \subseteq P $ for all $ w_1 \in \mathcal{W} $ or $ [\mathcal{W}, \mathcal{R}] \subseteq \bigcap P_j = \{0\} $. That is, $ [\mathcal{W}, \mathcal{R}] = \{0\} $. Therefore, $ \mathcal{W} $ is a nonzero central ideal of $ \mathcal{R} $. Hence, $ \mathcal{R} $ has a nonzero central ideal.

    Theorem 2.6. For a fixed integer $ n \geq 2 $, let $ \mathcal{R} $ be an $ n! $-torsion free semiprime ring and $ \mathcal{W} $ be a nonzero ideal of $ \mathcal{R} $. Suppose that $ \mathcal{R} $ admits two nonzero symmetric $ n $-derivations $ \mathfrak{D}:\mathcal{R}^n \rightarrow \mathcal{R} $ with trace $ \mathcal{d}:\mathcal{R} \rightarrow \mathcal{R} $ and $ \mathcal{G}:\mathcal{R}^n \rightarrow \mathcal{R} $ with trace $ \mathcal{g}:\mathcal{R} \rightarrow \mathcal{R} $ satisfying any one of the following conditions:

    (1) $ [\mathcal{d}(\vartheta), \ell] = \pm\; \vartheta \circ \mathcal{g}(\ell) \; \forall \; \vartheta, \ell \in \mathcal{W}, $

    (2) $ \mathcal{d}([\vartheta, \ell]) = [\mathcal{d}(\vartheta), \ell]+[\mathcal{d}(\ell), \vartheta] \; \forall \; \vartheta, \ell \in \mathcal{W}, $

    (3) $ \mathcal{d}(\vartheta) \circ \ell = \pm\; \vartheta \circ \mathcal{g}(\ell) \; \forall \; \vartheta, \ell \in \mathcal{W}. $

    Then, $ \mathcal{R} $ contains a nonzero central ideal.

    Proof. $ {(i)} $ It is given that

    $ \begin{equation*} [\mathcal{d}(\vartheta),\ell] = \pm\; \vartheta \circ \mathcal{g}(\ell) \; \forall\; \vartheta,\ell \in \mathcal{W}. \end{equation*} $

    Now, replace $ \ell $ by $ \ell+m\mathcal{k} $ for $ \mathcal{k} \in \mathcal{W} $ and $ 1 \leq m \leq n-1 $, and we get

    $ \begin{equation*} [\mathcal{d}(\vartheta),\ell]+[\mathcal{d}(\vartheta),m\mathcal{k} ] = \pm\; \vartheta \circ \mathcal{g}(\ell) \; \pm\; \vartheta \circ \mathcal{g}(m\mathcal{k} ) \; \pm\; \vartheta \circ \sum\limits_{t = 1}^{n-1} {}^{n}C_{t} \mathcal{G}(\underbrace{\ell,\ldots,\ell}_{(n-t)-\text{times}},\underbrace{m\mathcal{k} ,\ldots,m\mathcal{k} }_{t-\text{times}}) \end{equation*} $

    $ \forall \; \vartheta, \ell, \mathcal{k} \in \mathcal{W} $. By using the hypothesis, we get

    $ \begin{equation*} \vartheta \circ \sum\limits_{t = 1}^{n-1} {}^{n}C_{t} \mathcal{G}(\underbrace{\ell,\ldots,\ell}_{(n-t)-\text{times}},\underbrace{m\mathcal{k} ,\ldots,m\mathcal{k} }_{t-\text{times}}) = 0\; \forall\; \vartheta,\ell,\mathcal{k} \in \mathcal{W}, \end{equation*} $

    which implies that

    $ \begin{align*} mP_1(\vartheta,\ell,\mathcal{k} )+m^2P_2(\vartheta,\ell,\mathcal{k} ) + \cdots +m^{n-1}P_{n-1}(\vartheta,\ell,\mathcal{k} ) = 0 \; \forall\; \vartheta,\ell,\mathcal{k} \in \mathcal{W}, \end{align*} $

    where

    $ P_t(\vartheta,\ell,\mathcal{k} ) = \vartheta \circ {}^{n}C_{t} \mathcal{G}(\underbrace{\ell,\ldots,\ell}_{(n-t)-\text{times}},\underbrace{\mathcal{k} ,\ldots,\mathcal{k} }_{t-\text{times}}) $

    denotes the sum of terms in which $ \mathcal{k} $ appears $ t $-times. The application of Lemma 2.1 yields that

    $ \begin{equation*} n\{\vartheta \circ \mathcal{G}(\ell, \ldots, \ell,\mathcal{k} )\} = 0 \; \forall \; \vartheta,\ell,\mathcal{k} \in \mathcal{W}. \end{equation*} $

    Using the torsion free restriction in $ \mathcal{R} $, we find that

    $ \begin{equation*} \vartheta \circ \mathcal{G}(\ell, \ldots, \ell,\mathcal{k} ) = 0 \; \forall \; \vartheta,\ell,\mathcal{k} \in \mathcal{W}. \end{equation*} $

    After replacing $ \mathcal{k} $ by $ \ell $, we get

    $ \begin{equation*} \vartheta \circ \mathcal{g}(\ell) = 0 \; \forall \; \vartheta,\ell\in \mathcal{W}. \end{equation*} $

    Again using the hypothesis, we get

    $ \begin{equation*} [\mathcal{d}(\vartheta),\ell] = 0 \; \forall \; \vartheta,\ell\in \mathcal{W} \end{equation*} $

    which is the same as (2.6). Hence, proceeding in the same pattern as we have done so far, we conclude that $ \mathcal{R} $ contains a nonzero central ideal.

    $ {(ii)} $ It is given that

    $ \begin{equation*} \mathcal{d}([\vartheta,\ell]) = [\mathcal{d}(\vartheta),\ell]+[\mathcal{d}(\ell),\vartheta] \; \forall\; \vartheta,\ell \in \mathcal{W}. \end{equation*} $

    On replacing $ \ell $ by $ \ell+m\mathcal{k} $ for $ \mathcal{k} \in \mathcal{W} $ and $ 1 \leq m \leq n-1 $, we get

    $ \begin{align*} \mathcal{d}([\vartheta,\ell]+[\vartheta,m\mathcal{k} ]) = [\mathcal{d}(\vartheta),\ell]+[\mathcal{d}(\vartheta),m\mathcal{k} ]+[\mathcal{d}(\ell)+\mathcal{d}(m\mathcal{k} )+ \sum\limits_{t = 1}^{n-1} {}^{n}C_{t} \mathfrak{D}(\underbrace{\ell,\ldots,\ell}_{(n-t)-\text{times}},\underbrace{m\mathcal{k} ,\ldots,m\mathcal{k} }_{t-\text{times}}),\vartheta] \end{align*} $

    $ \forall \; \vartheta, \ell, \mathcal{k} \in \mathcal{W}. $ On simplifying, we get

    $ \begin{eqnarray} \mathcal{d}([\vartheta,\ell])+\mathcal{d}([\vartheta,m\mathcal{k} ])+\sum\limits_{t = 1}^{n-1} {}^{n}C_{t} \mathfrak{D}(\underbrace{[\vartheta,\ell],\ldots,[\vartheta,\ell]}_{(n-t)-\text{times}},\underbrace{[\vartheta,m\mathcal{k} ],\ldots,[\vartheta,m\mathcal{k} ]}_{t-\text{times}})\\ = [\mathcal{d}(\vartheta),\ell]+[\mathcal{d}(\vartheta),m\mathcal{k} ]+[\mathcal{d}(\ell),\vartheta]+[\mathcal{d}(m\mathcal{k} ),\vartheta]+\big[\sum\limits_{t = 1}^{n-1} {}^{n}C_{t} \mathfrak{D}(\underbrace{\ell,\ldots,\ell}_{(n-t)-\text{times}},\underbrace{m\mathcal{k} ,\ldots,m\mathcal{k} }_{t-\text{times}}),\vartheta\big] \end{eqnarray} $

    $ \; \forall\; \vartheta, \ell, \mathcal{k} \in \mathcal{W} $. Using the hypothesis, we get

    $ \begin{equation*} \sum\limits_{t = 1}^{n-1} {}^{n}C_{t} \mathfrak{D}(\underbrace{[\vartheta,\ell],\ldots,[\vartheta,\ell]}_{(n-t)-\text{times}},\underbrace{[\vartheta,m\mathcal{k} ],\ldots,[\vartheta,m\mathcal{k} ]}_{t-\text{times}}) = \big[\sum\limits_{t = 1}^{n-1} {}^{n}C_{t} \mathfrak{D}(\underbrace{\ell,\ldots,\ell}_{(n-t)-\text{times}},\underbrace{m\mathcal{k} ,\ldots,m\mathcal{k} }_{t-\text{times}}),\vartheta \big] \end{equation*} $

    $ \forall\; \vartheta, \ell, \mathcal{k} \in \mathcal{W} $. This leads us to the following:

    $ \begin{align*} mP_1(\vartheta,\ell,\mathcal{k} )+m^2P_2(\vartheta,\ell,\mathcal{k} ) + \cdots +m^{n-1}P_{n-1}(\vartheta,\ell,\mathcal{k} ) = 0 \; \forall\; \vartheta,\ell,\mathcal{k} \in \mathcal{W} \end{align*} $

    where

    $ P_t(\vartheta,\ell,\mathcal{k} ) = {}^{n}C_{t} \mathfrak{D}(\underbrace{[\vartheta,\ell],\ldots,[\vartheta,\ell]}_{(n-t)-\text{times}},\underbrace{[\vartheta,\mathcal{k} ],\ldots,[\vartheta,\mathcal{k} ]}_{t-\text{times}})-\big[{}^{n}C_{t} \mathfrak{D}(\underbrace{\ell,\ldots,\ell}_{(n-t)-\text{times}},\underbrace{\mathcal{k} ,\ldots,\mathcal{k} }_{t-\text{times}}),\vartheta \big] $

    denotes the sum of terms in which $ \mathcal{k} $ appears $ t $- times.

    Taking account of Lemma 2.1 and the torsion free restriction in $ \mathcal{R} $, we get

    $ \begin{align*} \mathfrak{D}([\vartheta,\ell], \ldots, [\vartheta,\ell],[\vartheta,\mathcal{k} ]) = [\mathfrak{D}(\ell, \ldots, \ell,\mathcal{k} ),\vartheta]\; \forall\; \vartheta,\ell,\mathcal{k} \in \mathcal{W}. \end{align*} $

    Replacing $ \mathcal{k} $ by $ \ell $, we get

    $ \begin{align*} \mathcal{d}([\vartheta,\ell]) = [\mathcal{d}(\ell),\vartheta]\; \forall\; \vartheta,\ell \in \mathcal{W}. \end{align*} $

    Using the hypothesis once again, we obtain

    $ \begin{align*} [\mathcal{d}(\vartheta),\ell] = 0\; \forall\; \vartheta,\ell \in \mathcal{W}, \end{align*} $

    which is the same as (2.6). Hence, the result follows by using the same argument as discussed in Theorem 2.5.

    $ {(iii)} $ It is given that

    $ \begin{align*} \mathcal{d}(\vartheta) \circ \ell = \pm \; \vartheta \circ \mathcal{g}(\ell) \; \; \forall \; \vartheta,\ell \in \mathcal{W}. \end{align*} $

    On replacing $ \ell $ by $ \ell+m\mathcal{k} $ for $ \mathcal{k} \in \mathcal{W} $ and $ 1 \leq m \leq n-1 $, we get

    $ \begin{align*} \mathcal{d}(\vartheta) \circ (\ell+m\mathcal{k} ) = \pm\; \vartheta \circ \mathcal{g}(\ell+m\mathcal{k} ) \; \forall\; \vartheta,\ell,\mathcal{k} \in \mathcal{W}. \end{align*} $

    On simplifying, we get

    $ \begin{align*} \mathcal{d}(\vartheta) \circ \ell+ \mathcal{d}(\vartheta) \circ m\mathcal{k} = \pm \vartheta \circ \mathcal{g}(\ell) \pm \vartheta \circ \mathcal{g}(m\mathcal{k} ) \pm \vartheta \circ \sum\limits_{t = 1}^{n-1} {}^{n}C_{t} \mathcal{G}(\underbrace{\ell,\ldots,\ell}_{(n-t)-\text{times}},\underbrace{m\mathcal{k} ,\ldots,m\mathcal{k} }_{t-\text{times}}) \end{align*} $

    $ \forall\; \vartheta, \ell, \mathcal{k} \in \mathcal{W} $. On using the given condition, we find that

    $ \begin{align*} \vartheta \circ \sum\limits_{t = 1}^{n-1} {}^{n}C_{t} \mathcal{G}(\underbrace{\ell,\ldots,\ell}_{(n-t)-\text{times}},\underbrace{m\mathcal{k} ,\ldots,m\mathcal{k} }_{t-\text{times}}) = 0 \; \forall\; \vartheta,\ell,\mathcal{k} \in \mathcal{W}. \end{align*} $

    Application of Lemma 2.1 gives

    $ \begin{align*} n(\vartheta \circ \mathcal{G}(\ell, \ldots,\ell,\mathcal{k} )) = 0\; \forall\; \vartheta,\ell,\mathcal{k} \in \mathcal{W}. \end{align*} $

    Since $ \mathcal{R} $ is $ n! $-torsion free, we have

    $ \begin{align*} \vartheta \circ \mathcal{G}(\ell, \ldots,\ell,\mathcal{k} ) = 0\; \forall\; \vartheta,\ell,\mathcal{k} \in \mathcal{W}. \end{align*} $

    On replacing $ \mathcal{k} $ by $ \ell $, we get

    $ \begin{align*} \vartheta \circ \mathcal{g}(\ell) = 0\; \forall\; \vartheta,\ell \in \mathcal{W}. \end{align*} $

    Using the hypothesis one more time, we see that

    $ \begin{align*} \mathcal{d}(\vartheta) \circ \ell = 0 \; \forall\; \vartheta,\ell \in \mathcal{W}. \end{align*} $

    Replacing $ \ell $ by $ \ell \mathcal{k} $ where $ \mathcal{k} \in \mathcal{W} $, we find that

    $ \begin{align*} \ell[\mathcal{k} ,\mathcal{d}(\vartheta)] = 0\; \forall\; \vartheta,\ell,\mathcal{k} \in \mathcal{W}. \end{align*} $

    Replacing $ \ell $ by $ [\mathcal{k}, \mathcal{d}(\vartheta)]r $ in the above equation, we have

    $ \begin{align*} [\mathcal{k} ,\mathcal{d}(\vartheta)]r[\mathcal{k} ,\mathcal{d}(\vartheta)] = 0 \; \forall\; \vartheta,\ell,\mathcal{k} \in \mathcal{W}. \end{align*} $

    Since $ \mathcal{R} $ is a semiprime ring, we get

    $ [\mathcal{k} ,\mathcal{d}(\vartheta)] = 0 \; \forall\; \vartheta,\mathcal{k} \in \mathcal{W}, $

    which is the same as (2.6). Hence, proceeding in the same way, we conclude that $ \mathcal{R} $ contains a nonzero central ideal.

    In [7], Ashraf et al. proved that $ \mathcal{R} $ is commutative if it satisfies any one of the following conditions: (i) $ F(\vartheta \ell) \pm \vartheta \ell \in \mathcal{Z}(\mathcal{R}) $, (ii) $ F(\vartheta \ell) \pm \ell \vartheta \in \mathcal{Z}(\mathcal{R}) $, and (iii) $ F(\vartheta)F(\ell)-\vartheta \ell \in \mathcal{Z}(\mathcal{R}) \; \forall \; \vartheta, \ell \in \mathcal{R} $, where $ F $ is a generalized derivation on $ \mathcal{R} $. In our next result, we extend Theorems 2.1 and 2.3 of [7] for the traces of permuting $ n $-derivations on semiprime rings.

    Theorem 2.7. Let $ n \geq 2 $ be a fixed integer and let $ \mathcal{R} $ be an $ n! $-torsion free semiprime ring and $ \mathcal{W} $ be an nonzero ideal of $ \mathcal{R} $. Suppose that $ \mathcal{R} $ admits a symmetric $ n $-derivation $ \mathfrak{D} : \mathcal{R}^n \rightarrow \mathcal{R} $ with trace $ \mathcal{d}: \mathcal{R} \rightarrow \mathcal{R} $ such that any one of the following conditions hold:

    (1) $ \mathcal{d}(\vartheta \ell) \pm \vartheta \ell \in \mathcal{Z}(\mathcal{R}) \; \forall\; \vartheta, \ell \in \mathcal{W}, $

    (2) $ \mathcal{d}(\vartheta \ell) \pm \ell \vartheta \in \mathcal{Z}(\mathcal{R}) \; \forall\; \vartheta, \ell \in \mathcal{W}, $

    (3) $ \mathcal{d}(\vartheta \ell) \pm [\vartheta, \ell ] \in \mathcal{Z}(\mathcal{R}) \; \forall\; \vartheta, \ell \in \mathcal{W}, $

    (4) $ \mathcal{d}(\vartheta \ell) \pm \vartheta \circ \ell \in \mathcal{Z}(\mathcal{R}) \; \forall\; \vartheta, \ell \in \mathcal{W}. $

    Then, $ \mathcal{R} $ contains a nonzero central ideal.

    Proof. $ {(i)} $ It is given that

    $ \begin{align*} \mathcal{d}(\vartheta\ell ) \pm \vartheta \ell \in \mathcal{Z}(\mathcal{R}) \; \forall\; \vartheta ,\ell \in \mathcal{W}. \end{align*} $

    Replace $ \ell $ by $ \ell +m\mathcal{k} $ for $ \mathcal{k} \in \mathcal{W} $ and $ 1 \leq m \leq n-1 $, and we get

    $ \begin{align*} \mathcal{d}(\vartheta (\ell +m\mathcal{k} )) \pm \vartheta (\ell +m\mathcal{k} ) \in \mathcal{Z}(\mathcal{R})\; \forall\; \vartheta ,\ell ,\mathcal{k} \in \mathcal{W}. \end{align*} $

    That is,

    $ \begin{align*} \mathcal{d}(\vartheta \ell ) + \mathcal{d}(\vartheta m\mathcal{k} ) +\sum\limits_{t = 1}^{n-1} {}^{n}C_{t} \mathfrak{D}(\underbrace{\vartheta \ell ,\ldots,\vartheta \ell }_{(n-t)-\text{times}},\underbrace{\vartheta m\mathcal{k} ,\ldots,\vartheta m\mathcal{k} }_{t-\text{times}}) \pm \vartheta \ell \pm \vartheta m\mathcal{k} \in \mathcal{Z}(\mathcal{R}) \end{align*} $

    $ \forall\; \vartheta, \ell, \mathcal{k} \in \mathcal{W} $. On using the given condition, we see that

    $ \begin{align*} \sum\limits_{t = 1}^{n-1} {}^{n}C_{t} \mathfrak{D}(\underbrace{\vartheta \ell ,\ldots,\vartheta \ell }_{(n-t)-\text{times}},\underbrace{m\vartheta \mathcal{k} ,\ldots,m\vartheta \mathcal{k} }_{t-\text{times}}) \in \mathcal{Z}(\mathcal{R})\; \forall\; \vartheta ,\ell ,\mathcal{k} \in \mathcal{W}. \end{align*} $

    Now, use Lemma 2.1 and the fact that $ \mathcal{R} $ is $ n! $- torsion free to get

    $ \begin{align*} \mathfrak{D}(\vartheta \ell , \ldots, \vartheta \ell ,\vartheta \mathcal{k} ) \in \mathcal{Z}(\mathcal{R})\; \forall\; \vartheta ,\ell ,\mathcal{k} \in \mathcal{W}. \end{align*} $

    Replace $ \mathcal{k} $ by $ \ell $ to get

    $ \mathcal{d}(\vartheta \ell ) \in \mathcal{Z}(\mathcal{R}) \; \forall\; \vartheta ,\ell \in \mathcal{W}. $

    Again using the hypothesis, we get

    $ \begin{align} \vartheta \ell \in \mathcal{Z}(\mathcal{R}) \; \forall\; \vartheta ,\ell \in \mathcal{W}. \end{align} $ (2.11)

    Commuting with $ r\in \mathcal{R} $, we obtain

    $ [\vartheta \ell ,r] = 0 \; \forall\; \vartheta ,\ell \in \mathcal{W}, r \in \mathcal{R}, $

    and so

    $ \begin{align} \vartheta [\ell ,r]+[\vartheta ,r]\ell = 0\; \forall\; \vartheta ,\ell \in \mathcal{W}, r \in \mathcal{R}. \end{align} $ (2.12)

    Replacing $ \ell $ by $ \ell \mathcal{k} $ in (2.12) and using (2.12), we see that

    $ \vartheta \ell [\mathcal{k} ,r] = 0\; \forall\; \vartheta ,\ell ,\mathcal{k} \in \mathcal{W}, r \in \mathcal{R}. $

    On replacing $ \vartheta $ by $ [\mathcal{k}, r] $, we get

    $ [\mathcal{k} ,r]\ell [\mathcal{k} ,r] = 0 \; \forall\; \ell ,\mathcal{k} \in \mathcal{W}, r \in \mathcal{R}. $

    That is,

    $ [\mathcal{k} ,r]\ell \mathcal{R}[\mathcal{k} ,r]\ell = (0)\; \forall\; \ell ,\mathcal{k} \in \mathcal{W}. $

    Since $ \mathcal{R} $ is a semiprime ring, we have

    $ [\mathcal{k} ,r]\ell = 0 \; \forall\; \ell ,\mathcal{k} \in \mathcal{W}, r \in \mathcal{R}. $

    Taking $ \ell $ to be $ t[\mathcal{k}, r] $, $ t \in \mathcal{R} $, we see that

    $ [\mathcal{k} ,r]t[\mathcal{k} ,r] = 0. $

    By the semiprimeness of $ \mathcal{R} $, we get $ \mathcal{W} \subseteq \mathcal{Z}(\mathcal{R}) $. Thus, $ \mathcal{R} $ contains a nonzero central ideal.

    $ {(ii)} $ Use similar arguments as used in $ \it{(i)} $ to get the required result.

    $ {(iii)} $ It is given that

    $ \begin{align*} \mathcal{d}(\vartheta \ell ) \pm [\vartheta ,\ell ] \in \mathcal{Z}(\mathcal{R})\; \forall\; \vartheta ,\ell \in \mathcal{W}. \end{align*} $

    Replace $ \ell $ by $ \ell +m\mathcal{k} $ for $ \mathcal{k} \in \mathcal{W} $ and $ 1 \leq m \leq n-1 $, and we get

    $ \mathcal{d}(\vartheta (\ell +m\mathcal{k} ))\; \pm\; [\vartheta ,\ell +m\mathcal{k} ] \in \mathcal{Z}(\mathcal{R}) \; \forall\; \vartheta ,\ell ,\mathcal{k} \in \mathcal{W}. $

    That is,

    $ \begin{equation*} \mathcal{d}(\vartheta \ell ) + \mathcal{d}(\vartheta m\mathcal{k} ) +\sum\limits_{t = 1}^{n-1} {}^{n}C_{t} \mathfrak{D}(\underbrace{\vartheta \ell ,\ldots,\vartheta \ell }_{(n-t)-\text{times}},\underbrace{\vartheta m\mathcal{k} ,\ldots,\vartheta m\mathcal{k} }_{t-\text{times}}) \; \pm\; [\vartheta ,\ell ] \; \pm\; [\vartheta ,m\mathcal{k} ] \in \mathcal{Z}(\mathcal{R}) \end{equation*} $

    $ \forall\; \vartheta, \ell, \mathcal{k} \in \mathcal{W} $. Using the hypothesis, we see that

    $ \sum\limits_{t = 1}^{n-1} {}^{n}C_{t} \mathfrak{D}(\underbrace{\vartheta \ell ,\ldots,\vartheta \ell }_{(n-t)-\text{times}},\underbrace{m\vartheta \mathcal{k} ,\ldots,m\vartheta \mathcal{k} }_{t-\text{times}}) \in \mathcal{Z}(\mathcal{R})\; \forall\; \vartheta ,\ell ,\mathcal{k} \in \mathcal{W}. $

    Invoking Lemma 2.1 and using the torsion free restriction of $ \mathcal{R} $, we get

    $ \mathfrak{D}(\vartheta \ell , \ldots, \vartheta \ell ,\vartheta \mathcal{k} ) \in \mathcal{Z}(\mathcal{R})\; \forall\; \vartheta ,\ell ,\mathcal{k} \in \mathcal{W}. $

    Replace $ \mathcal{k} $ by $ \ell $, and we obtain

    $ \mathcal{d}(\vartheta \ell ) \in \mathcal{Z}(\mathcal{R})\; \forall\; \vartheta ,\ell \in \mathcal{W}. $

    On using the hypothesis, we see that

    $ [\vartheta ,\ell ] \in \mathcal{Z}(\mathcal{R}) \; \forall\; \vartheta ,\ell \in \mathcal{W}. $

    That is, $ [\mathcal{W}, \mathcal{W}] \subset \mathcal{Z}(\mathcal{R}) $. Hence, by Lemma 2.3, $ \mathcal{R} $ contains a nonzero central ideal.

    $ {(iv)} $ It is given that

    $ \mathcal{d}(\vartheta \ell ) \pm \vartheta \circ \ell \in \mathcal{Z}(\mathcal{R}) \; \forall\; \vartheta ,\ell \in \mathcal{W}. $

    Taking $ \ell +m\mathcal{k} $ in the place of $ \ell $ for $ \mathcal{k} \in \mathcal{W} $ and $ 1 \leq m \leq n-1 $, we get

    $ \mathcal{d}(\vartheta (\ell +m\mathcal{k} )) \pm \vartheta \circ (\ell +m\mathcal{k} ) \in \mathcal{Z}(\mathcal{R})\; \forall\; \vartheta ,\ell ,\mathcal{k} \in \mathcal{W}. $

    That is,

    $ \begin{equation*} \mathcal{d}(\vartheta \ell )+\mathcal{d}(\vartheta m\mathcal{k} ) + \sum\limits_{t = 1}^{n-1} {}^{n}C_{t} \mathfrak{D}(\underbrace{\vartheta \ell ,\ldots,\vartheta \ell }_{(n-t)-\text{times}},\underbrace{\vartheta m\mathcal{k} ,\ldots,\vartheta m\mathcal{k} }_{t-\text{times}}) \; \pm\; \vartheta \circ \ell \; \pm\; \vartheta \circ m\mathcal{k} \in \mathcal{Z}(\mathcal{R}) \end{equation*} $

    for all $ \vartheta, \ell, \mathcal{k} \in \mathcal{W} $. With the help of the given condition, we see that

    $ \sum\limits_{t = 1}^{n-1} {}^{n}C_{t} \mathfrak{D}(\underbrace{\vartheta \ell ,\ldots,\vartheta \ell }_{(n-t)-\text{times}},\underbrace{m\vartheta \mathcal{k} ,\ldots,m\vartheta \mathcal{k} }_{t-\text{times}}) \in \mathcal{Z}(\mathcal{R})\; \forall\; \vartheta ,\ell ,\mathcal{k} \in \mathcal{W}. $

    Now, using Lemma 2.1 and the fact that $ \mathcal{R} $ is $ n! $-torsion free, we obtain

    $ \mathfrak{D}(\vartheta \ell , \ldots, \vartheta \ell ,\vartheta \mathcal{k} ) \in \mathcal{Z}(\mathcal{R})\; \forall\; \vartheta ,\ell ,\mathcal{k} \in \mathcal{W}. $

    Replace $ \mathcal{k} $ by $ \ell $, and we get

    $ \mathcal{d}(\vartheta \ell ) \in \mathcal{Z}(\mathcal{R})\; \forall\; \vartheta ,\ell \in \mathcal{W}. $

    Making use of the hypothesis, we see that

    $ \vartheta \circ \ell \in \mathcal{Z}(\mathcal{R}) \; \forall\; \vartheta ,\ell \in \mathcal{W}. $

    That is, $ \mathcal{W} \circ \mathcal{W} \in \mathcal{Z}(\mathcal{R}) $. Hence, by using Lemma 2.4, $ \mathcal{R} $ contains a nonzero central ideal. The proof is complete.

    Based on the preceding findings, we obtain the following known result:

    Corollary 2.8. [8] For any fixed integer $ n \geq 2 $, let $ \mathcal{R} $ be an $ n! $-torsion free semiprime ring. If $ \mathcal{R} $ admits a nonzero permuting $ n $-derivation $ \Delta : \mathcal{R}^n \rightarrow \mathcal{R} $ with trace $ \mathcal{d} : \mathcal{R} \rightarrow \mathcal{R} $ satisfying any one of the conditions

    (1) $ \mathcal{d}(\vartheta \ell) \pm \vartheta \ell \in \mathcal{Z}(\mathcal{R}) \; \forall\; \vartheta, \ell \in \mathcal{R}, $

    (2) $ \mathcal{d}(\vartheta \ell) \pm \ell \vartheta \in \mathcal{Z}(\mathcal{R}) \; \forall\; \vartheta, \ell \in \mathcal{R}, $

    then $ \mathcal{R} $ is commutative.

    Theorem 2.9. For a fixed integer $ n \geq 2 $, let $ \mathcal{R} $ be an $ n! $-torsion free semiprime ring and $ \mathcal{W} $ be a nonzero ideal of $ \mathcal{R} $. Suppose that $ \mathcal{R} $ admits two nonzero symmetric $ n $-derivations $ \mathfrak{D} : \mathcal{R}^n \rightarrow \mathcal{R} $ and $ \mathcal{G} : \mathcal{R}^n \rightarrow \mathcal{R} $ with $ \mathcal{d}:\mathcal{R} \rightarrow \mathcal{R} $ and $ \mathcal{g}: \mathcal{R} \rightarrow \mathcal{R} $ as traces of $ \mathfrak{D} $ and $ \mathcal{G} $ satisfying any one of the following conditions:

    (1) $ \mathcal{g}(\vartheta \ell)+\mathcal{d}(\vartheta)\mathcal{d}(\ell) \pm \vartheta \ell \in \mathcal{Z}(\mathcal{R}) \; \forall\; \vartheta, \ell \in \mathcal{W}, $

    (2) $ \mathcal{g}(\vartheta \ell)+\mathcal{d}(\vartheta)\mathcal{d}(\ell) \pm \ell \vartheta \in \mathcal{Z}(\mathcal{R}) \; \forall\; \vartheta, \ell \in \mathcal{W}, $

    (3) $ \mathcal{g}([\vartheta, \ell ])+[\mathcal{d}(\vartheta), \mathcal{d}(\ell)] \pm [\vartheta, \ell ] \in \mathcal{Z}(\mathcal{R}) \; \forall\; \vartheta, \ell \in \mathcal{W}, $

    (4) $ \mathcal{g}(\vartheta \circ \ell)+\mathcal{d}(\vartheta) \circ \mathcal{d}(\ell) \pm \vartheta \circ \ell \in \mathcal{Z}(\mathcal{R}) \; \forall\; \vartheta, \ell \in \mathcal{W}. $

    Then, $ \mathcal{R} $ contains a nonzero central ideal.

    Proof. $ {(i)} $ It is given that

    $ \mathcal{g}(\vartheta \ell )+\mathcal{d}(\vartheta )\mathcal{d}(\ell ) \pm \vartheta \ell \in \mathcal{Z}(\mathcal{R}) \; \forall\; \vartheta ,\ell \in \mathcal{W}. $

    Replacing $ \ell $ by $ \ell +m\mathcal{k} $ for $ \mathcal{k} \in \mathcal{W} $ and $ 1 \leq m \leq n-1 $, we arrive at

    $ \begin{eqnarray} \mathcal{g}(\vartheta \ell )+\mathcal{g}(\vartheta m\mathcal{k} )+\sum\limits_{t = 1}^{n-1} {}^{n}C_{t} \mathcal{G}(\underbrace{\vartheta \ell ,\ldots,\vartheta \ell }_{(n-t)-\text{times}},\underbrace{\vartheta m\mathcal{k} ,\ldots,\vartheta m\mathcal{k} }_{t-\text{times}})+\\d(\vartheta )\bigg(\mathcal{d}(\ell )+\mathcal{d}(m\mathcal{k} )+\sum\limits_{t = 1}^{n-1} {}^{n}C_{t} \mathfrak{D}(\underbrace{\ell ,\ldots,\ell }_{(n-t)-\text{times}},\underbrace{m\mathcal{k} ,\ldots,m\mathcal{k} }_{t-\text{times}})\bigg)\\ \; \pm\; \vartheta \ell \; \pm\; \vartheta m\mathcal{k} \in \mathcal{Z}(\mathcal{R})\; \forall\; \vartheta ,\ell ,\mathcal{k} \in \mathcal{W}. \end{eqnarray} $

    Using the given condition, we get

    $ \begin{equation*} \sum\limits_{t = 1}^{n-1} {}^{n}C_{t} \mathcal{G}(\underbrace{\vartheta \ell ,\ldots,\vartheta \ell }_{(n-t)-\text{times}},\underbrace{\vartheta m\mathcal{k} ,\ldots,\vartheta m\mathcal{k} }_{t-\text{times}})+\mathcal{d}(\vartheta ) \sum\limits_{t = 1}^{n-1} {}^{n}C_{t} \mathfrak{D}(\underbrace{\ell ,\ldots,\ell }_{(n-t)-\text{times}}, \underbrace{m\mathcal{k} ,\ldots,m\mathcal{k} }_{t-\text{times}}) \in \mathcal{Z}(\mathcal{R}) \end{equation*} $

    $ \forall \; \vartheta, \ell, \mathcal{k} \in \mathcal{W} $. Using Lemma 2.1, we see that

    $ n\mathcal{G}(\vartheta \ell ,\ldots,\vartheta \ell ,\vartheta \mathcal{k} )+n\mathcal{d}(\vartheta )\mathfrak{D}(\ell , \ldots,\ell ,\mathcal{k} ) \in \mathcal{Z}(\mathcal{R}) \; \forall\; \vartheta ,\ell ,\mathcal{k} \in \mathcal{W}. $

    Since $ \mathcal{R} $ is $ n! $-torsion free, we get

    $ \mathcal{G}(\vartheta \ell ,\ldots,\vartheta \ell ,\vartheta \mathcal{k} )+\mathcal{d}(\vartheta )\mathfrak{D}(\ell , \ldots,\ell ,\mathcal{k} ) \in \mathcal{Z}(\mathcal{R}) \; \forall\; \vartheta ,\ell ,\mathcal{k} \in \mathcal{W}. $

    Writing $ \ell $ in place of $ \mathcal{k} $, we get

    $ \mathcal{g}(\vartheta \ell )+\mathcal{d}(\vartheta )\mathcal{d}(\ell ) \in \mathcal{Z}(\mathcal{R}) \; \forall\; \vartheta ,\ell \in \mathcal{W}. $

    Using the hypothesis, we obtain that

    $ \vartheta \ell \in \mathcal{Z}(\mathcal{R}) \; \forall\; \vartheta ,\ell \in \mathcal{W}. $

    On using the same arguments as after (2.11), we get the required result.

    $ {(ii)} $ Following the same steps as in $ (i) $, we discover that $ \mathcal{R} $ contains a nonzero central ideal.

    $ {(iii)} $ It is given that

    $ \mathcal{g}([\vartheta ,\ell ])+[\mathcal{d}(\vartheta ),\mathcal{d}(\ell )] \pm [\vartheta ,\ell ] \in \mathcal{Z}(\mathcal{R}) \; \forall\; \vartheta ,\ell \in \mathcal{W}. $

    Replacing $ \ell $ by $ \ell +m\mathcal{k} $ for $ \mathcal{k} \in \mathcal{W} $ and $ 1 \leq m \leq n-1 $, we conclude that

    $ \begin{eqnarray} \mathcal{g}([\vartheta ,\ell ])+\mathcal{g}([\vartheta ,m\mathcal{k} ])+\sum\limits_{t = 1}^{n-1} {}^{n}C_{t} \mathcal{G}(\underbrace{[\vartheta ,\ell ],\ldots,[\vartheta ,\ell ]}_{(n-t)-\text{times}},\underbrace{[\vartheta ,m\mathcal{k} ],\ldots,[\vartheta ,m\mathcal{k} ]}_{t-\text{times}})+\\ [\mathcal{d}(\vartheta ),\mathcal{d}(\ell )]+[\mathcal{d}(\vartheta ),\mathcal{d}(m\mathcal{k} )]+[\mathcal{d}(\vartheta ),\sum\limits_{t = 1}^{n-1}{}^{n}C_{t} \mathfrak{D}(\underbrace{\ell ,\ldots,\ell }_{(n-t)-\text{times}},\underbrace{m\mathcal{k} ,\ldots,m\mathcal{k} }_{t-\text{times}})] \\ \pm [\vartheta ,\ell ] \pm [\vartheta ,m\mathcal{k} ] \in \mathcal{Z}(\mathcal{R}) \; \forall\; \vartheta ,\ell ,\mathcal{k} \in \mathcal{W}. \end{eqnarray} $

    On using the hypothesis, we get

    $ \begin{eqnarray} \sum\limits_{t = 1}^{n-1} {}^{n}C_{t} \mathcal{G}(\underbrace{[\vartheta ,\ell ],\ldots,[\vartheta ,\ell ]}_{(n-t)-\text{times}},\underbrace{[\vartheta ,m\mathcal{k} ],\ldots,[\vartheta ,m\mathcal{k} ]}_{t-\text{times}})+ \big[\mathcal{d}(\vartheta ), \sum\limits_{t = 1}^{n-1}{}^{n}C_{t} \mathfrak{D}(\underbrace{\ell ,\ldots,\ell }_{(n-t)-\text{times}},\underbrace{m\mathcal{k} ,\ldots,m\mathcal{k} }_{t-\text{times}})\big] \in \mathcal{Z}(\mathcal{R}) \end{eqnarray} $

    $ \forall \; \vartheta, \ell, \mathcal{k} \in \mathcal{W} $. Using Lemma 2.1 and the fact that $ \mathcal{R} $ is $ n!- $torsion free, we have

    $ \begin{equation*} \mathcal{G}([\vartheta ,\ell ],\ldots,[\vartheta ,\ell ],[\vartheta ,\mathcal{k} ])+[d(\vartheta ),\mathfrak{D}(\ell , \ldots,\ell ,\mathcal{k} )] \in \mathcal{Z}(\mathcal{R}) \; \forall\; \vartheta ,\ell ,\mathcal{k} \in \mathcal{W}. \end{equation*} $

    Writing $ \ell $ in place of $ \mathcal{k} $, we obtain

    $ \mathcal{g}([\vartheta ,\ell ])+[\mathcal{d}(\vartheta ),\mathcal{d}(\ell )] \in \mathcal{Z}(\mathcal{R}) \; \forall\; \vartheta ,\ell \in \mathcal{W}. $

    Using the hypothesis, we obtain that

    $ [\vartheta ,\ell ] \in \mathcal{Z}(\mathcal{R}) \; \forall\; \vartheta ,\ell \in \mathcal{W}. $

    By Lemma 2.3, we conclude that $ \mathcal{R} $ contains a nonzero central ideal.

    $ {(iv)} $ It is given that

    $ \mathcal{g}(\vartheta \circ \ell )+\mathcal{d}(\vartheta ) \circ \mathcal{d}(\ell ) \pm \vartheta \circ \ell \in \mathcal{Z}(\mathcal{R}) \; \forall\; \vartheta ,\ell \in \mathcal{W}. $

    Replacing $ \ell $ by $ \ell +m\mathcal{k} $ for $ \mathcal{k} \in \mathcal{W} $ and $ 1 \leq m \leq n-1 $, we arrive at

    $ \begin{eqnarray} \mathcal{g}(\vartheta \circ \ell )+\mathcal{g}(\vartheta \circ m\mathcal{k} )+\sum\limits_{t = 1}^{n-1} {}^{n}C_{t} \mathcal{G}(\underbrace{\vartheta \circ \ell ,\ldots,\vartheta \circ \ell }_{(n-t)-\text{times}},\underbrace{\vartheta \circ m\mathcal{k} ,\ldots,\vartheta \circ m\mathcal{k} }_{t-\text{times}})+\\ \mathcal{d}(\vartheta ) \circ \mathcal{d}(\ell )+\mathcal{d}(\vartheta ) \circ \mathcal{d}(m\mathcal{k} )+\mathcal{d}(\vartheta ) \circ \sum\limits_{t = 1}^{n-1} {}^{n}C_{t}\mathfrak{D}(\underbrace{\ell ,\ldots,\ell }_{(n-t)-\text{times}},\underbrace{m\mathcal{k} ,\ldots,m\mathcal{k} }_{t-\text{times}}) \\ \pm \vartheta \circ \ell \pm \vartheta \circ m\mathcal{k} \in \mathcal{Z}(\mathcal{R}) \; \forall\; \vartheta ,\ell ,\mathcal{k} \in \mathcal{W}. \end{eqnarray} $

    On using the hypothesis, we get

    $ \begin{eqnarray} \sum\limits_{t = 1}^{n-1} {}^{n}C_{t} \mathcal{G}(\underbrace{\vartheta \circ \ell ,\ldots,\vartheta \circ \ell }_{(n-t)-\text{times}},\underbrace{\vartheta \circ m\mathcal{k} ,\ldots,\vartheta \circ m\mathcal{k} }_{t-\text{times}})+\mathcal{d}(\vartheta ) \circ \sum\limits_{t = 1}^{n-1}{}^{n}C_{t} \mathfrak{D}(\underbrace {\ell ,\ldots,\ell }_{(n-t)-\text{times}},\underbrace{m\mathcal{k} ,\ldots,m\mathcal{k} }_{t-\text{times}}) \in \mathcal{Z}(\mathcal{R}) \end{eqnarray} $

    $ \forall \; \vartheta, \ell, \mathcal{k} \in \mathcal{W} $. Using Lemma 2.1 and using the fact that $ \mathcal{R} $ is $ n!- $torsion free, we get

    $ \mathcal{G}(\vartheta \circ \ell ,\ldots,\vartheta \circ \ell ,\vartheta \circ \mathcal{k} )+\mathcal{d}(\vartheta ) \circ \mathfrak{D}(\ell , \ldots,\ell ,\mathcal{k} ) \in \mathcal{Z}(\mathcal{R}) \; \forall\; \vartheta ,\ell ,\mathcal{k} \in \mathcal{W}. $

    Write $ \ell $ in place of $ \mathcal{k} $ to get

    $ \mathcal{g}(\vartheta \circ \ell )+\mathcal{d}(\vartheta ) \circ \mathcal{d}(\ell ) \in \mathcal{Z}(\mathcal{R}) \; \forall\; \vartheta ,\ell \in \mathcal{W}. $

    Using the hypothesis, we obtain that

    $ \begin{align*} \vartheta \circ \ell \in \mathcal{Z}(\mathcal{R}) \; \forall\; \vartheta ,\ell \in \mathcal{W}. \end{align*} $

    We conclude by Lemma 2.4 that $ \mathcal{R} $ contains a nonzero central ideal. The proof is complete.

    This section deals with the study of permuting $ n $-multipliers. The idea of a permuting $ n $-multiplier was initially suggested by Ashraf et al. in [4], and they proved some interesting results. In the present section, we examine the action of symmetric $ n $-derivations satisfying the functional identity $ \mathcal{f}(i)i +i g(i) = 0 \; \forall \; i \in \mathcal{W} $, a nonzero left ideal of $ \mathcal{R} $ where $ \mathcal{f} $ and $ g $ are the traces of symmetric $ n $-derivations $ \mathfrak{D} $ and $ \mathcal{G} $, respectively. We begin with the following:

    Definition 3.1. A permuting $ n $-additive map $ \Lambda: \mathcal{R}^n \rightarrow \mathcal{R} $ is called a permuting left $ n $-multiplier (resp., permuting right $ n $-multiplier) if

    $ \Lambda(i_1,i_2, \ldots,i_ti'_t, \ldots, i_n) = \Lambda(i_1,i_2, \ldots,i_t, \ldots, i_n)i'_t $
    $ (\text{resp.,} \; \Lambda(i_1,i_2, \ldots,i_ti'_t, \ldots, i_n) = i_t\Lambda(i_1,i_2, \ldots,i'_t, \ldots, i_n)) $

    holds $ \forall \; i_t, i'_t \in \mathcal{R}, \; t = 1, 2, \ldots, n $. If $ \Lambda $ is both a permuting left $ n $-multiplier and a permuting right $ n $-multiplier, it is referred to as a permuting $ n $-multiplier. For related results, see [4,5].

    According to Bre$ \breve{s} $ar's proof in [9, Theorem 4.1], if $ \mathcal{R} $ is a prime ring, $ \mathcal{W} $ is a nonzero left ideal of $ \mathcal{R} $, and $ \mathcal{d} $ and $ \mathcal{g} $ are nonzero derivations of $ \mathcal{R} $ satisfying $ \mathcal{d}(i)i -i \mathcal{g}(i) \in \mathcal{Z}(\mathcal{R}) \; \forall \; i \in \mathcal{W} $, then $ \mathcal{R} $ is commutative. We expand the previous result by demonstrating the following theorem for the trace of $ n $-derivation of $ \mathcal{R} $.

    Theorem 3.2. Let $ \mathcal{R} $ be an $ n! $-torsion free prime ring and $ \mathcal{W} $ be a nonzero left ideal of $ \mathcal{R} $. Suppose that $ \mathcal{R} $ admits two symmetric $ n $-derivations $ \mathfrak{D} : \mathcal{R}^n \rightarrow \mathcal{R} $ and $ \mathcal{G} : \mathcal{R}^n \rightarrow \mathcal{R} $ with $ \mathcal{f} $ and $ \mathcal{g} $ as traces of $ \mathfrak{D} $ and $ \mathcal{G} $, respectively. If $ \mathcal{f}(i)i +i \mathcal{g}(i) = 0 \; \forall \; i \in \mathcal{W} $, then either $ \mathcal{R} $ is commutative or $ \mathcal{G} $ acts as a left n-multiplier on $ \mathcal{W} $. Furthermore, in the last case, either $ \mathfrak{D} = 0 $ or $ \mathcal{W}[\mathcal{W}, \mathcal{W}] = 0 $.

    Proof. By hypothesis, we have

    $ \mathcal{f}(i )i + i \mathcal{g}(i ) = 0 \; \forall\; i \in \mathcal{W}. $

    Replacing $ i $ by $ i +m\ell $ for $ \ell \in \mathcal{W} $ and $ 1 \leq m \leq n-1 $, we get

    $ \begin{equation*} \mathcal{f}(i +m\ell )(i +m\ell )+(i +m\ell )\mathcal{g}(i +m\ell ) = 0\; \forall\; i ,\ell \in \mathcal{W}. \end{equation*} $

    On using the definition of $ \mathcal{f} $ and $ \mathcal{g} $, we see that

    $ \begin{eqnarray} \bigg(\mathcal{f}(i )+\mathcal{f}(m\ell ) + \sum\limits_{t = 1}^{n-1} {}^{n}C_{t} \mathfrak{D}(\underbrace{i ,\ldots,i }_{(n-t)-\text{times}},\underbrace{m\ell ,\ldots,m\ell }_{t-\text{times}})\bigg)(i +m\ell )+\\ (i +m\ell )\bigg(g(i )+\mathcal{g}(m\ell )+\sum\limits_{t = 1}^{n-1} {}^{n}C_{t} \mathcal{G}(\underbrace{i ,\ldots,i }_{(n-t)-\text{times}},\underbrace{m\ell ,\ldots,m\ell }_{t-\text{times}})\bigg) = 0\; \forall\; i ,\ell \in \mathcal{W}. \end{eqnarray} $

    On using the given condition, we get

    $ \begin{eqnarray} \mathcal{f}(i )m\ell +\mathcal{f}(m\ell )i +i \mathcal{g}(m\ell )+m\ell \mathcal{g}(i )+ \big(\sum\limits_{t = 1}^{n-1} {}^{n}C_{t} \mathfrak{D}(\underbrace{i ,\ldots,i }_{(n-t)-\text{times}},\underbrace{m\ell ,\ldots,m\ell }_{t-\text{times}})\big)(i +m\ell )+\\(i +m\ell )\big(\sum\limits_{t = 1}^{n-1} {}^{n}C_{t} \mathcal{G}(\underbrace{i ,\ldots,i }_{(n-t)-\text{times}},\underbrace{m\ell ,\ldots,m\ell }_{t-\text{times}})\big) = 0 \end{eqnarray} $

    $ \forall \; i, \ell \in \mathcal{W} $. On using Lemma 2.1, we get

    $ \begin{equation} \mathcal{f}(\ell )i +n\mathfrak{D}(i ,\ell ,\ldots, \ell )\ell +i \mathcal{g}(\ell )+n\ell \mathcal{G}(i ,\ell ,\ldots, \ell ) = 0 \end{equation} $ (3.1)

    $ \forall \; i, \ell \in \mathcal{W} $. Replace $ i $ by $ i \mathcal{k} $ to obtain

    $ \begin{align} \mathcal{f}(\ell )i \mathcal{k} +ni \mathfrak{D}(\mathcal{k} ,\ell ,\ldots, \ell )\ell +n\mathfrak{D}(i ,\ell ,\ldots, \ell )\mathcal{k} \ell +i \mathcal{k} \mathcal{g}(\ell )+ \\ n\ell i \mathcal{G}(\mathcal{k} ,\ell ,\ldots, \ell )+n\ell \mathcal{G}(i ,\ell , \ldots,\ell )\mathcal{k} = 0 \; \forall \; i ,\ell ,\mathcal{k} \in \mathcal{W}. \end{align} $ (3.2)

    On comparing (3.1) and (3.2), we get

    $ \begin{align*} -i \mathcal{g}(\ell )\mathcal{k} -n\mathfrak{D}(i ,\ell \ldots, \ell )\ell \mathcal{k} +ni \mathfrak{D}(\mathcal{k} ,\ell , \ldots,\ell )\ell +n\mathfrak{D}(i ,\ell , \ldots,\ell )\mathcal{k} \ell +\\i \mathcal{k} \mathcal{g}(\ell )+n\ell i \mathcal{G}(\mathcal{k} ,\ell , \ldots, \ell ) = 0 \; \forall\; i ,\ell ,\mathcal{k} \in \mathcal{W}. \end{align*} $

    This implies that

    $ \begin{equation} i [\mathcal{k} ,\mathcal{g}(\ell )]+n\mathfrak{D}(i ,\ell , \ldots, \ell )[\mathcal{k} ,\ell ]+ni \mathfrak{D}(\mathcal{k} ,\ell , \ldots,\ell )\ell +n\ell i \mathcal{G}(\mathcal{k} ,\ell , \ldots, \ell ) = 0 \end{equation} $ (3.3)

    $ \forall \; i, \ell, \mathcal{k} \in \mathcal{W} $. Substitute $ ri $ for $ i $ in (3.3) to get

    $ \begin{eqnarray} ri [\mathcal{k} ,\mathcal{g}(\ell )]+nr\mathfrak{D}(i ,\ell , \ldots,\ell )[\mathcal{k} ,\ell ]+n\mathfrak{D}(r,\ell ,\ldots,\ell )i [\mathcal{k} ,\ell ]+\\ nri \mathfrak{D}(\mathcal{k} ,\ell ,\ldots,\ell )\ell +n\ell ri \mathcal{G}(\mathcal{k} ,\ell ,\ldots,\ell ) = 0 \end{eqnarray} $ (3.4)

    $ \forall \; i, \ell, \mathcal{k} \in \mathcal{W}, r \in \mathcal{R} $. Compare (3.4) and (3.3).

    $ \begin{align*} n\mathfrak{D}(r,\ell ,\ldots,\ell )i [\mathcal{k} ,\ell ]+n\ell ri \mathcal{G}(\mathcal{k} ,\ell ,\ldots,\ell )-nr\ell i \mathcal{G}(\mathcal{k} ,\ell ,\ldots,\ell ) = 0 \\\; \forall\; i ,\ell ,\mathcal{k} , \in \mathcal{W}, r \in \mathcal{R}. \end{align*} $

    Since $ \mathcal{R} $ is $ n!- $torsion free, we obtain

    $ \begin{align} \mathfrak{D}(r,\ell ,\ldots,\ell )i [\mathcal{k} ,\ell ]+[\ell ,r]i \mathcal{G}(\mathcal{k} ,\ell ,\ldots,\ell ) = 0 \end{align} $ (3.5)

    $ \forall \; i, \ell, \mathcal{k} \in \mathcal{W}, r \in \mathcal{R} $. Replacing $ \ell $ by $ \mathcal{k} $ in (3.5), we see that

    $ [\mathcal{k} ,r]i \mathcal{g}(\mathcal{k} ) = 0\; \forall\; i ,\mathcal{k} \in \mathcal{W}, r\in \mathcal{R}. $

    Substituting $ ri $ for $ i $, we get

    $ [\mathcal{k} ,r]ri \mathcal{g}(\mathcal{k} ) = 0\; \forall\; i ,\mathcal{k} \in \mathcal{W}. $

    Since $ \mathcal{R} $ is a prime ring, it yields that either $ [\mathcal{k}, r] = 0 $ or $ i \mathcal{g}(\mathcal{k}) = 0 $. If $ [\mathcal{k}, r] = 0 \; \forall\; \mathcal{k} \in \mathcal{W} \; \text{and}\; r \in \mathcal{R}, $ then replacing $ \mathcal{k} $ by $ s\mathcal{k} $, we get $ [s, r]\mathcal{k} = 0\; \forall \; \mathcal{k} \in \mathcal{W}, r, s \in \mathcal{R} $. Again, replace $ \mathcal{k} $ by $ r\mathcal{k} $ such that $ [s, r]r\mathcal{k} = 0 \; \forall \; \mathcal{k} \in \mathcal{W}, r, s \in \mathcal{R} $. Since $ \mathcal{R} $ is a prime ring, we conclude that $ \mathcal{R} $ is commutative. Next, if $ i \mathcal{g}(\mathcal{k}) = 0 \; \forall\; i, \mathcal{k} \in \mathcal{W} $, then replacing $ \mathcal{k} $ by $ \mathcal{k} +m\ell $, we get

    $ i \mathcal{g}(\mathcal{k} +m\ell ) = 0 \; \forall\; i ,\ell ,\mathcal{k} \in \mathcal{W}. $

    That is,

    $ i \mathcal{g}(\mathcal{k} )+i \mathcal{g}(m\ell )+i \sum\limits_{t = 1}^{n-1} {}^{n}C_{t} \mathcal{G}(\underbrace{\mathcal{k} ,\ldots,\mathcal{k} }_{(n-t)-\text{times}},\underbrace{m\ell ,\ldots,m\ell }_{t-\text{times}}) = 0\; \forall\; i ,\ell ,\mathcal{k} \in \mathcal{W}. $

    By using Lemma 2.1 and the fact that $ \mathcal{R} $ is $ n!- $torsion free, we get

    $ i \mathcal{G}(\mathcal{k} ,\ell \ldots,\ell ) = 0 \; \forall\; i ,\ell ,\mathcal{k} \in \mathcal{W}. $

    This implies that

    $ \mathcal{G}(i \mathcal{k} ,\ell ,\ldots,\ell ) = \mathcal{G}(i ,\ell , \ldots, \ell )\mathcal{k} . $

    Hence, $ \mathcal{G} $ acts as a left $ n $-multiplier. Since $ i \mathcal{G}(\mathcal{k}, \ell \ldots, \ell) = 0 \; \forall\; i, \ell, \mathcal{k} \in \mathcal{W}, $ using (3.5), we arrive at

    $ \mathfrak{D}(r,\ell , \ldots,\ell )i [\mathcal{k} ,\ell ] = 0\; \forall\; i ,\ell ,\mathcal{k} , \in \mathcal{W}, r \in \mathcal{R}. $

    Replace $ r $ by $ sr $ to get

    $ \mathfrak{D}(s,\ell ,\ldots,\ell )\mathcal{R}i [\mathcal{k} ,\ell ] = 0\; \forall\; i ,\ell ,\mathcal{k} \in \mathcal{W}. $

    Primeness of $ \mathcal{R} $ yields that either $ \mathfrak{D}(s, \ell, \ldots, \ell) = 0 $ or $ i [\mathcal{k}, \ell ] = 0 \; \forall\; i, \ell, \mathcal{k} \in \mathcal{W}, s \in \mathcal{R} $. If $ \mathfrak{D} \neq 0 $, the latter results in $ \mathcal{W}[\mathcal{W}, \mathcal{W}] = 0 $.

    Following the same vein, we can also demonstrate the following:

    Theorem 3.3. Let $ \mathcal{R} $ be an $ n!- $ torsion free prime ring and $ \mathcal{W} $ be a nonzero right ideal of $ \mathcal{R} $. Assume that $ \mathfrak{D} $ and $ \mathcal{G} $ are two symmetric $ n $-derivations of $ \mathcal{R} $ with trace $ \mathcal{f} $ and $ \mathcal{g} $, respectively. If $ \mathcal{f}(i)i +i \mathcal{g}(i) = 0 \; \forall \; i \in \mathcal{W} $, then either $ \mathcal{R} $ is commutative or $ \mathfrak{D} $ acts as a left n-multiplier on $ \mathcal{W} $. Furthermore, in the last case, either $ \mathcal{G} = 0 $ or $ \mathcal{W}[\mathcal{W}, \mathcal{W}] = 0 $.

    In view of the above result, we obtain the following known results:

    Corollary 3.4. [1] Let $ \mathcal{R} $ be a prime ring of characteristic not two, $ \mathcal{W} $ be a nonzero left ideal of $ \mathcal{R} $ and $ \Delta_1 $, $ \Delta_2 $ be symmetric bi-derivations of $ \mathcal{R} $ with traces $ \mathcal{d}_1 $ and $ \mathcal{d}_2 $, respectively. If $ \Delta_1(i, i)i +i \Delta_2(i, i) = 0 \; \forall \; i \in \mathcal{W} $, then either $ \mathcal{R} $ is commutative or $ \Delta_2 $ acts as a left bi-multiplier on $ \mathcal{W} $. Moreover, in the last case either $ \Delta_1 = 0 $ or $ \mathcal{W}[\mathcal{W}, \mathcal{W}] = 0 $.

    Corollary 3.5. [1] Let $ \mathcal{R} $ be a prime ring of characteristic not two, $ \mathcal{W} $ be a nonzero right ideal of $ \mathcal{R} $ and $ \Delta_1 $, $ \Delta_2 $ be symmetric bi-derivations of $ \mathcal{R} $ with traces $ \mathcal{d}_1 $ and $ \mathcal{d}_2 $, respectively. If $ \Delta_1(i, i)i +i \Delta_2(i, i) = 0 \; \forall \; i \in \mathcal{W} $, then either $ \mathcal{R} $ is commutative or $ \Delta_1 $ acts as a left bi-multiplier on $ \mathcal{W} $. Moreover, in the last case either $ \Delta_2 = 0 $ or $ \mathcal{W}[\mathcal{W}, \mathcal{W}] = 0 $.

    The next result is the generalization of Vukman's result [18]. Indeed, Vukman showed that if $ \mathcal{R} $ is a prime ring of characteristic different from two and three, and there exist symmetric bi-derivations $ \mathfrak{D}_1:\mathcal{R} \times \mathcal{R} \rightarrow \mathcal{R} $ and $ \mathfrak{D}_2:\mathcal{R} \times \mathcal{R} \rightarrow \mathcal{R} $, such that $ \mathcal{\mathcal{f}_1}(a)\mathcal{\mathcal{f}_2}(a) = 0, \; \forall \; a \in \mathcal{R} $ holds, where $ \mathcal{\mathcal{f}_1} $ and $ \mathcal{\mathcal{f}_2} $ are the traces of $ \mathfrak{D}_1 $ and $ \mathfrak{D}_2 $ respectively, then either $ \mathfrak{D}_1 = 0 $ or $ \mathfrak{D}_2 = 0 $. We extend this theorem for $ q $-iterations of $ n $-derivations.

    Theorem 3.6. Let $ \mathcal{R} $ be an $ n $!-torsion free prime ring, $ \mathcal{W} $ be a nonzero ideal of $ \mathcal{R} $ and $ q \geq 1 $, be a fixed integer. Consider $ \mathfrak{D}_1, \mathfrak{D}_2, \ldots, \mathfrak{D}_q : \mathcal{R}^n \rightarrow \mathcal{R} $ to be $ n $-derivations on $ \mathcal{R} $ such that $ \mathcal{d}_1(i _1)\mathcal{d}_2(i _2)\cdots \mathcal{d}_q(i_q) = 0 \; \forall \; i_1, i_2, \ldots, i_q \in \mathcal{W} $ where $ \mathcal{d}_i's $, are traces of $ \mathfrak{D}_i's $, respectively. Then, one of the following holds:

    (1) $ \mathcal{d}_1(i _1) = 0 \; \forall \; i_1 \in \mathcal{W} $;

    (2) All $ \mathfrak{D}_p $ act as left $ n $-multipliers on $ \mathcal{R} $ for $ p = 2, 3, \ldots, q $.

    Proof. We will prove it through induction. If we put $ q = 1 $ in our hypothesis, then it is obvious that $ \mathcal{d}_1(i_1) = 0 \; \forall \; i_1 \in \mathcal{W} $. Now, consider $ q = 2 $, and by the hypothesis, we have

    $ \begin{align} \mathcal{d}_1(i_1)\mathcal{d}_2(i_2) = 0\; \forall\; i_1, i_2 \in \mathcal{W}. \end{align} $ (3.6)

    Replacing $ i_2 $ by $ i_2 +m\ell_2 $ for $ \ell_2 \in \mathcal{W} $ and $ 1 \leq m \leq n-1 $, we get

    $ \begin{align*} \mathcal{d}_1(i_1)\mathcal{d}_2(i_2+m\ell_2) = 0 \; \forall\; i_1, i_2, \ell_2 \in \mathcal{W}. \end{align*} $

    On simplifying, we get

    $ \begin{align} \mathcal{d}_1(i_1)\mathcal{d}_2(i_2)+\mathcal{d}_1(i_1)\mathcal{d}_2(m\ell_2)+\mathcal{d}_1(i_1) \sum\limits_{t = 1}^{n-1} {}^{n}C_{t} {\mathfrak{D}_2}(\underbrace{i_2,\ldots,i_2}_{(n-t)-\text{times}},\underbrace{m\ell_2,\ldots,m\ell_2}_{t-\text{times}}) = 0 \end{align} $ (3.7)

    $ \forall \; i_1, i_2, \ell_2 \in \mathcal{W} $. Compare (3.6) and (3.7) and use Lemma 2.1 to get

    $ \begin{align*} n\mathcal{d}_1(i_1)\mathfrak{D}_2(i_2, \ldots, i_2,\ell_2) = 0 \; \forall\; i_1, i_2, \ell_2 \in \mathcal{W}. \end{align*} $

    Since $ \mathcal{R} $ is $ n! $-torsion free, we obtain

    $ \begin{align} \mathcal{d}_1(i_1)\mathfrak{D}_2(i_2, \ldots, i_2,\ell_2) = 0 \; \forall\; i_1, i_2, \ell_2 \in \mathcal{W}. \end{align} $ (3.8)

    Replacing $ \ell_2 $ by $ \ell_2r $ in (3.8), we obtain

    $ \begin{align*} \mathcal{d}_1(i_1)\ell_2\mathfrak{D}_2(i_2, \ldots, i_2,r) = 0\; \forall\; i_1, i_1, \ell_2 \in \mathcal{W}, r \in \mathcal{R}, \end{align*} $

    i.e.,

    $ \begin{align*} \mathcal{d}_1(i_1)\ell_2\mathcal{R}\mathfrak{D}_2(i_2, \ldots, i_2,r) = (0)\; \forall\; i_1, i_2, \ell_2 \in \mathcal{W}. \end{align*} $

    Since $ \mathcal{R} $ is a prime ring, we can find either $ \mathcal{d}_1(i_1)\ell_2 = 0 $ or $ \mathfrak{D}_2(i _2, \ldots, i _2, r) = 0 $. Consider the first case, $ \mathcal{d}_1(i _1)\ell_2 = 0 $. Again, $ \mathcal{R} $ is a prime ring, and we get $ \mathcal{d}_1(i _1) = 0 $. Now, consider the latter case, $ \mathfrak{D}_2(i _2, \ldots, i _2, r) = 0 \; \forall \; i _2 \in \mathcal{W} $, $ r \in \mathcal{R} $. A straightforward modification shows that $ \mathfrak{D}_2(i _2, \ldots, i _2, w_1r) = \mathfrak{D}_2(i _2, \ldots, i _2, w_1)r \; \forall \; w_1 \in \mathcal{W}, r \in \mathcal{R} $. Hence, $ \mathfrak{D}_2 $ acts as a left $ n $-multiplier as desired.

    Next, suppose that it is true for $ n = q-1 $, and we shall prove it for $ n = q $. Let us assume the hypothesis:

    $ \begin{align} \mathcal{d}_1(i _1)\mathcal{d}_2(i _2)\cdots \mathcal{d}_q(i _q) = 0\; \forall\; i _1, i _2,\ldots , i _q \in \mathcal{W}. \end{align} $ (3.9)

    Replacing $ i _q $ by $ i _q+m\ell _q $ for $ \ell_q \in \mathcal{W} $ and $ 1 \leq m \leq n-1 $ in (3.9) and taking account of Lemma 2.1, we get

    $ \begin{align*} n\mathcal{d}_1(i _1)\mathcal{d}_2(i _2)\cdots \mathcal{d}_{q-1}(i_{q-1})\mathfrak{D}_q(i _q, \ldots, i _q,\ell _q) = 0 \end{align*} $

    $ \forall \; i _1, i _2, \ldots, i _q, \ell _q\in \mathcal{W} $. Since $ \mathcal{R} $ is $ n! $-torsion free, we see that

    $ \begin{align} \mathcal{d}_1(i _1)\mathcal{d}_2(i _2)\cdots \mathcal{d}_{q-1}(i_{q-1})\mathfrak{D}_q(i _q, \ldots, i _q,\ell _q) = 0. \end{align} $ (3.10)

    Substituting $ \ell _qu $ for $ \ell _q $ in (3.10) and using (3.10), we arrive at

    $ \begin{align*} \mathcal{d}_1(i _1)\mathcal{d}_2(i _2)\cdots \mathcal{d}_{q-1}(i _{q-1})\ell_q\mathfrak{D}_q(i _q, \ldots, i _q,u) = 0, \end{align*} $

    i.e.,

    $ \begin{align*} \mathcal{d}_1(i _1)\mathcal{d}_2(i _2)\cdots \mathcal{d}_{q-1}(i _{q-1})\ell _q\mathcal{R}\mathfrak{D}_q(i _q, \ldots, i _q,u) = (0) \end{align*} $

    $ \forall \; i _1, i _2, \ldots, i _q, \ell _q\in \mathcal{W}, u\in \mathcal{R} $. Primeness of $ \mathcal{R} $ gives that either $ \mathcal{d}_1(i _1)\mathcal{d}_2(i _2)\cdots \mathcal{d}_{q-1}(i _{q-1}) = 0 $ or $ \mathfrak{D}_q(i _q, \ldots, i _q, u) = 0 \; \forall \; i _1, i _2, \ldots, i _q \in \mathcal{W}, \; u\in \mathcal{R} $. If $ \mathcal{d}_1(i _1)\mathcal{d}_2(i _2)\cdots \mathcal{d}_{q-1}(i _{q-1}) = 0 $, then we are done by the former case. If $ \mathfrak{D}_q(i _q, \ldots, i _q, u) = 0 \; \forall \; i _q \in \mathcal{W}, \; u \in \mathcal{R} $, then we can easily compute that $ \mathfrak{D}_q(i _q, \ldots, i _q, w_{q-1}u) = \mathfrak{D}_q(i _q, \ldots, i _q, w_{q-1})u \; \forall \; i _q, w_{q-1} \in \mathcal{W}, \; u \in \mathcal{R} $. Hence, $ \mathfrak{D}_q $ acts as a left $ n $-multiplier on $ \mathcal{R} $ as desired. The theorem's proof is completed with this conclusion.

    In this article, we discussed some results concerning the containment of a nonzero central ideal in a ring $ \mathcal{R} $ satisfying certain functional identities involving the traces $ \mathcal{d} $ and $ \mathcal{g} $ of symmetric $ n $-derivations $ \mathcal{D} $ and $ \mathcal{G} $, respectively. Besides proving some results concerning the traces of permuting $ n $-derivations, some results related to permuting $ n $-multipliers are also discussed in the last section. In fact, we characterized symmetric $ n $-derivations of prime rings in terms of left $ n $-multipliers. In future, it would be interesting to study these functional identities in the setting of generalized permuting $ n $-derivations and its related maps in rings with involution.

    The authors are very thankful to the anonymous referees for their valuable comments and suggestions which have improved the manuscript immensely. Moreover, the authors extend their appreciation to King Saud University, Deanship of Scientific Research, College of Science Research Center for funding this research.

    The authors declare that they have no conflicts of interest.



    [1] A. Ali, F. Shujat, S. Khan, On commuting traces of generalized biderivations of prime rings, Ital. J. Pure Appl. Math., 34 (2015), 123–132.
    [2] N. Argaç, On prime and semiprime rings with derivations, Algebra Colloq., 13 (2006), 371–380. https://doi.org/10.1142/S1005386706000320 doi: 10.1142/S1005386706000320
    [3] M. Ashraf, On symmetric bi-derivations in rings, Rend. Istit. Mat. Univ. Trieste, 31 (1999), 25–36.
    [4] M. Ashraf, A. Khan, M. R. Jamal, Traces of permuting generalized n-derivations of rings, Miskolc Math. Notes, 19 (2018), 731–740.
    [5] M. Ashraf, N. Parveen, On the traces of permuting $n$-derivations in rings, In: Algebra and analysis: theory and applications, New Delhi: Narosa Publishing House, 2015, 41–57.
    [6] M. Ashraf, M. R. Jamal, Traces of permuting n-additive maps and permuting n-derivations of rings, Mediterr. J. Math., 11 (2014), 287–297. https://doi.org/10.1007/s00009-013-0298-5 doi: 10.1007/s00009-013-0298-5
    [7] M. Ashraf, A. Ali, S. Ali, Some commutativity theorems for rings with generalized derivations, Southeast Asian Bull. Math., 31 (2007), 415–421.
    [8] M. Ashraf, N. Parveen, M. R. Jamal, Traces of permuting n-derivations and commutativity of rings, Southeast Asian Bull. Math., 38 (2014), 321–332.
    [9] M. Bre$\breve{s}$ar, Centralizing mappings and derivations in prime rings, J. Algebra, 156 (1993), 385–394.
    [10] M. N. Daif, H. E. Bell, Remarks on derivations on semiprime rings, Int. J. Math. Math. Sci., 15 (1992), 205–206. https://doi.org/10.1155/S0161171292000255 doi: 10.1155/S0161171292000255
    [11] G. Maksa, On the trace of symmetric biderivations, C. R. Math. Rep. Acad. Sci. Canada IX, 1987,303–308.
    [12] G. Maksa, A remark on symmetric bi-additive functions having nonnegative diagonalization, Glas. Math, 15 (1980), 279–282.
    [13] M. A. $\ddot{\text{O}}$zt$\ddot{\text{u}}$rk, Permuting tri-derivations in prime and semi-prime rings, East Asian Math. J., 15 (1999), 177–190.
    [14] K. H. Park, On prime and semi-prime rings with symmetric n-derivations, J. Chungcheong Math. Soc., 22 (2009), 451–458. https://doi.org/10.14403/jcms.2009.22.3.451 doi: 10.14403/jcms.2009.22.3.451
    [15] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093–1100.
    [16] E. Koç Sögütcü, S. Huang, Note on lie ideals with symmetric bi-derivations in semiprime rings, Indian J. Pure Appl. Math., 2022. https://doi.org/10.1007/s13226-022-00279-w
    [17] J. Vukman, Symmetric bi-derivations on prime and semiprime rings, Aeq. Math., 38 (1989), 245–254. https://doi.org/10.1007/BF01840009 doi: 10.1007/BF01840009
    [18] J. Vukman, Two results concerning symmetric bi-derivations on prime and semiprime rings, Aeq. Math., 40 (1990), 181–189. https://doi.org/10.1007/BF02112294 doi: 10.1007/BF02112294
    [19] H. Yazarli, M. A. $\ddot{\text{O}}$zt$\ddot{\text{u}}$rk, Y. B. Jun, Tri-additive maps and permuting tri-derivations, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., 54 (2005), 1–8. https://doi.org/10.1501/Commua1_0000000320 doi: 10.1501/Commua1_0000000320
  • This article has been cited by:

    1. Shakir Ali, Amal S. Alali, Sharifah K. Said Husain, Vaishali Varshney, Symmetric $ n $-derivations on prime ideals with applications, 2023, 8, 2473-6988, 27573, 10.3934/math.20231410
    2. Shakir Ali, Vaishali Varshney, Action of higher derivations on semiprime rings, 2024, 1072-947X, 10.1515/gmj-2024-2026
    3. Shakir Ali, Turki Alsuraiheed, Vaishali Varshney, Indah Emilia Wijayanti, On Symmetric Additive Mappings and Their Applications, 2023, 15, 2073-8994, 1874, 10.3390/sym15101874
    4. Shakir Ali, Ali Yahya Hummdi, Naira N. Rafiquee, Vaishali Varshney, Kok Bin Wong, Symmetric Reverse n-Derivations on Ideals of Semiprime Rings, 2024, 13, 2075-1680, 717, 10.3390/axioms13100717
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1697) PDF downloads(57) Cited by(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog