
Citation: Hiroshi Takahashi, Ken-ichi Yoshihara. Approximation of solutions of multi-dimensional linear stochastic differential equations defined by weakly dependent random variables[J]. AIMS Mathematics, 2017, 2(3): 377-384. doi: 10.3934/Math.2017.3.377
[1] | Annabelle Collin, Hadrien Bruhier, Jelena Kolosnjaj, Muriel Golzio, Marie-Pierre Rols, Clair Poignard . Spatial mechanistic modeling for prediction of 3D multicellular spheroids behavior upon exposure to high intensity pulsed electric fields. AIMS Bioengineering, 2022, 9(2): 102-122. doi: 10.3934/bioeng.2022009 |
[2] | Noorehan Yaacob, Sharidan Shafie, Takashi Suzuki, Mohd Ariff Admon . Signal transduction from ligand-receptor binding associated with the formation of invadopodia in an invasive cancer cell. AIMS Bioengineering, 2022, 9(3): 252-265. doi: 10.3934/bioeng.2022017 |
[3] | Daniel N. Riahi, Saulo Orizaga . Modeling and computation for unsteady blood flow and solute concentration in a constricted porous artery. AIMS Bioengineering, 2023, 10(1): 67-88. doi: 10.3934/bioeng.2023007 |
[4] | Sunil Gautam, Sangeeta Kanakraj, Azriel Henry . Computational approach using machine learning modelling for optimization of transesterification process for linseed biodiesel production. AIMS Bioengineering, 2022, 9(4): 319-336. doi: 10.3934/bioeng.2022023 |
[5] | Sébastien Bernacchi, Simon Rittmann, Arne H. Seifert, Alexander Krajete, Christoph Herwig . Experimental methods for screening parameters influencing the growth to product yield (Y(x/CH4)) of a biological methane production (BMP) process performed with Methanothermobacter marburgensis. AIMS Bioengineering, 2014, 1(2): 72-87. doi: 10.3934/bioeng.2014.2.72 |
[6] | Sébastien Bernacchi, Michaela Weissgram, Walter Wukovits, Christoph Herwig . Process efficiency simulation for key process parameters in biological methanogenesis. AIMS Bioengineering, 2014, 1(1): 53-71. doi: 10.3934/bioeng.2014.1.53 |
[7] | Urooj Ainuddin, Maria Waqas . Finite state machine and Markovian equivalents of the lac Operon in E. coli bacterium. AIMS Bioengineering, 2022, 9(4): 400-419. doi: 10.3934/bioeng.2022029 |
[8] | Maria Waqas, Urooj Ainuddin, Umar Iftikhar . An analog electronic circuit model for cAMP-dependent pathway—towards creation of Silicon life. AIMS Bioengineering, 2022, 9(2): 145-162. doi: 10.3934/bioeng.2022011 |
[9] | Sarbaz H. A. Khoshnaw, Kawther Y. Abdulrahman, Arkan N. Mustafa . Identifying key critical model parameters in spreading of COVID-19 pandemic. AIMS Bioengineering, 2022, 9(2): 163-177. doi: 10.3934/bioeng.2022012 |
[10] | Ayub Ahmed, Bashdar Salam, Mahmud Mohammad, Ali Akgül, Sarbaz H. A. Khoshnaw . Analysis coronavirus disease (COVID-19) model using numerical approaches and logistic model. AIMS Bioengineering, 2020, 7(3): 130-146. doi: 10.3934/bioeng.2020013 |
The foundation of fixed point theory is the idea of metric spaces and the Banach contraction principle. An enormous number of academics are motivated to the axiomatic interpretation of metric space because of its spaciousness. The metric space has experienced numerous generalizations until
now. This demonstrates the attraction, enchantment, and development of the idea of metric spaces.
After being given the notion of fuzzy sets (FSs) by Zadeh [1], researchers provided various generalizations for classical structures [2,3,4,5]. In this continuation, Kramosil and Michalek [6] originated the approach of fuzzy metric spaces, while George and Veeramani [7] introduced the concept of fuzzy metric spaces. Garbiec [8] gave the fuzzy interpretation of Banach contraction principle in fuzzy metric spaces.
The idea of fuzzy extended b-metric spaces was first established by Mehmood [9]. Metric-like spaces (MLSs), which is generalization of the idea of metric spaces, were introduced by Harandi [10]. The notions controlled metric type spaces and controlled metric-like spaces were first introduced by Mlaiki [11,12]. Recently, Sezen [13] generalized the concept of controlled type metric spaces and introduced the concept of Controlled fuzzy metric spaces (CFMS). Shukla and Abbas [14] reformulated the definition of MLSs and introduced the concept of fuzzy metric like spaces (FMLSs). Later, Javed et al. [15] obtained fixed point results in the context of fuzzy b-metric-like spaces. The approach of intuitionistic fuzzy metric spaces was tossed by Park [16] that deals with membership and non-membership functions.
Smarandache [17] established the concept of neutrosophic logic and the concept of neutrosophic set in 1998. The concept of neutrosophic sets have three functions, which are membership function, non-membership function and naturalness respectively. Thus, neutrosophic sets are the more general form of fuzzy sets [1] and intuitionistic fuzzy sets [18]. Hence, researchers in [19,20,21,22] have made studies on the concept of neutrosophic sets. Recently, Aslan et al. [23] obtained decision making applications for neutrosophic modeling of Talcott Parsons's Action and Kargın et al. [24] introduced decision making applications for law based on generalized set valued neutrosophic quadruple numbers. Şahin et al. [25] studied adequacy of online education using Hausdorff Measures based on neutrosophic quadruple sets. Also, Researchers in [26,27] studied types of metric space based on neutrosophic theory. Recently, Şahin and Kargın [28] obtained neutrosophic triplet metric spaces and neutrosophic triplet normed spaces. Kirişci and Simsek [29] established the concept of neutrosophic metric spaces (NMSs) that deals with membership, non-membership and naturalness functions. Şahin and Kargın [30] studied neutrosophic triplet v-generalized metric spaces and Şahin et al. [31] introduced the concept of neutrosophic triplet bipolar metric spaces. Simsek and Kirişci [32] derived various fixed point theorems for neutrosophic metric space. Şahin and Kargın [33] introduced the concept of neutrosophic triplet b–metric space. Şahin and Kargın [32] established neutrosophic triplet b-metric space and Sowndrarajan et al. [34] studied contradiction mapping results for neutrosophic metric space. Saleem et al. [35,36,37] proved various fixed point results for contraction mappings. Khater [38] did nice work on diverse solitary and Jacobian solutions in a continually laminated fluid with respect to shear flows through the Ostrovsky equation and Khater [39] worked on numerical simulations of Zakharov's (ZK) non-dimensional equation arising in Langmuir and ion-acoustic waves.
In this manuscript, we introduce the notion of controlled neutrosophic metric-like spaces as a generalization of a NMSs introduced in [29]. We replaced the following conditions of NMS
P(ϖ,ν,τ)=1 for all τ>0, if and only if ϖ=ν, |
Q(ϖ,ν,τ)=1 for all τ>0, if and only if ϖ=ν, |
S(ϖ,ν,τ)=1 for all τ>0, if and only if ϖ=ν, |
with
P(ϖ,ν,τ)=1 implies ϖ=ν, |
Q(ϖ,ν,τ)=1 implies ϖ=ν, |
S(ϖ,ν,τ)=1 implies ϖ=ν. |
Also, we used a controlled function ϕ:Ξ×Ξ→[1,∞) in the triangle inequalities of NMS. These both things generalized the defined notions existing in the literature. We also, derived several fixed-point results for contraction mappings in the context of new introduced space with non-trivial examples and graphical structure. At the end, we established an application to integral equation to show the validity of our main result.
In Section 2, we give basic definitions and basic properties for fuzzy metric spaces and neutrosophic metric spaces from [4,10,12,13,14,15,16,29]. In Section 3, we define controlled neutrosophic metric-like spaces and definitions of open ball, G-convergent sequence, G-Cauchy sequence, G-complete space and some examples for controlled neutrosophic metric-like spaces. Also, we give some fixed point (FP) results and illustrative examples. In Section 4, we give conclusions.
The following definitions are useful in the sequel.
Definition 2.1. [15] A binary operation ∗ : [0, 1]× [0, 1] → [0, 1] is called a continuous triangle norm (briefly CTN), if it meets the below assertions:
1) 𝛶∗ϱ=ϱ∗𝛶,(∀)𝛶,ϱ∈[0,1];
2) ∗ is continuous;
3) 𝛶∗1=𝛶,(∀)𝛶∈[0,1];
4) (𝛶∗ϱ)∗ϰ=𝛶∗(ϱ∗ϰ),(∀)𝛶,ϱ,ϰ∈[0,1];
5) If 𝛶≤ϰ and ϱ≤d, with 𝛶,ϱ,ϰ,d∈[0,1], then 𝛶∗ϱ≤ϰ∗d.
Example 2.1. [4,15] Some fundamental examples of t-norms are: 𝛶∗ϱ=𝛶⋅ϱ,𝛶∗ϱ=min{𝛶,ϱ} and 𝛶∗ϱ=max{𝛶+ϱ−1,0}.
Definition 2.2. [15] A binary operation ○ : [0, 1]× [0, 1] → [0, 1] is called a continuous triangle conorm (briefly CTCN) if it meets the below assertions:
1) 𝛶○ϱ=ϱ○𝛶, for all 𝛶,ϱ∈[0,1];
2) ○ is continuous;
3) 𝛶○0=0, for all 𝛶∈[0,1];
4) (𝛶○ϱ)○ϰ=𝛶○(ϱ○ϰ), for all 𝛶,ϱ,ϰ∈[0,1];
5) If 𝛶≤ϰ and ϱ≤d, with 𝛶,ϱ,ϰ,d∈[0,1], then 𝛶○ϱ≤ϰ○d.
Example 2.2. [15] 𝛶○ϱ=max{𝛶,ϱ} and 𝛶○ϱ=min{𝛶+ϱ,1} are examples of CTCNs.
Definition 2.3. [10] Suppose Ξ≠∅ be a set. A mapping Θ:Ξ×Ξ→[1,∞) is known as a metric-like, if it satisfying the following conditions:
1) Θ(ϖ,ν)=0impliesϖ=ν;
2) Θ(ϖ,ν)=Θ(ν,ϖ);
3) Θ(ϖ,ν)≤Θ(ϖ,λ)+Θ(λ,ν);
for all ϖ,ν,λ∈Ξ.
Also, (Ξ,Θ) is called a metric-like space.
Definition 2.4. [12] Let Ξ≠∅, ψ:Ξ×Ξ→[1,∞) be a function and Θ:Ξ×Ξ→R+. If the following properties are satisfied:
1) Θ(ϖ,ν)=0impliesϖ=ν;
2) Θ(ϖ,ν)=Θ(ν,ϖ);
3) Θ(ϖ,ν)≤ψ((ϖ,λ)Θ(ϖ,λ)+ψ(λ,ϖ)Θ(λ,ν);
for all ϖ,ν,λ∈Ξ, then Θ is said to be a controlled metric-like and (Ξ,Θ) is known as a controlled metric-like space.
Definition 2.5. [13] Suppose Ξ≠∅, h:Ξ×Ξ→[1,∞) be a mapping, ∗ is a CTN and Δh is a FS on Ξ×Ξ×(0,∞). Four-tuple (Ξ,Δh,∗,h) is called CFMS if it meets the below assertions for all ϖ,ν,λ∈Ξ and τ,ς>0:
h1) Δh(ϖ,ν,0)=0;
h2) Δh(ϖ,ν,τ)=1⟺ϖ=ν;
h3) Δh(ϖ,ν,τ)=Δh(ν,ϖ,τ);
h4) Δh(ϖ,λ,(τ+ς))≥Δh(ϖ,ν,τh(ϖ,ν))∗Δh(ν,λ,ςh(ν,λ));
h5) Δh(ϖ,ν,⋅):(0,∞)→[0,1] is continuous.
Definition 2.6. [16] Let Ξ≠∅, * be a CTN, P be a FSs on Ξ×Ξ×(0,∞). If triplet (Ξ,Θ,*) verifies the following for all ϖ,ν,λ∈Ξ and ς,τ>0:
1) Θ(ϖ,ν,τ)>0;
2) Θ(ϖ,ν,τ)=1⟺ϖ=ν;
3) Θ(ϖ,ν,τ)=Θ(ν,ϖ,τ);
4) Θ(ϖ,λ,b(τ+ς))≥Θ(ϖ,ν,τ)*Θ(ν,λ,τ);
5) Θ(ϖ,ν,⋅): (0,∞) → [0, 1] is a continuous mapping.
then (Ξ,Θ,*) is called an FMLS.
Definition 2.7. [14] Let Ξ be a universal set. For ∀ϖ∈E,0−≤TA(ϖ)+IA(ϖ)+FA(ϖ)≤3+, by the help of the functions TA:E→]– 0, 1+ [, IA:E→]– 0, 1+ [and FA:E→]– 0, 1+[a neutrosophic set A on Ξ is defined by
A={⟨ϖ,TA(ϖ),IA(ϖ),FA(ϖ)⟩:ϖ∈Ξ} |
Here, TA(ϖ),IA(ϖ) and FA(ϖ) are the degrees of trueness, indeterminacy and falsity of ϖ∈Ξ respectively.
Definition 2.8. [29] Let Ξ≠∅, ∗ is a CTN, ○ be a CTCN and
A={⟨ϖ,Θ(ϖ),Q(ϖ),S(ϖ)⟩:ϖ∈Ξ} |
be a neutrosophic set such that A: Ξ×Ξ×(0,∞)→ [0, 1]. If for all ϖ,ν,λ∈Ξ, the below circumstances are satisfying:
1) 0 ≤P(ϖ,ν,τ) ≤ 1, 0 ≤Q(ϖ,ν,τ) ≤ 1 and 0 ≤S(ϖ,ν,τ) ≤ 1,
2) P(ϖ,ν,τ)+Q(ϖ,ν,τ)+S(ϖ,ν,τ)≤3;
3) P(ϖ,ν,τ)>0;
4) P(ϖ,ν,τ)=1 for all τ>0, if and only if ϖ=ν;
5) P(ϖ,ν,τ)=P(ν,ϖ,τ);
6) P(ϖ,λ,τ+ς)≥P(ϖ,ν,τ)∗P(ν,λ,ς);
7) P(ϖ,ν,⋅):(0,∞)→[0,1] is continuous and limτ→∞P(ϖ,ν,τ)=1;
8) Q(ϖ,ν,τ)<1;
9) Q(ϖ,ν,τ)=0 for all τ>0, if and only if ϖ=ν;
10) Q(ϖ,ν,τ)=Q(ν,ϖ,τ);
11) Q(ϖ,λ,τ+ς)≤Q(ϖ,ν,τ)○Q(ν,λ,ς);
12) Q(ϖ,ν,⋅):(0,∞)→[0,1] is continuous and limτ→∞Q(ϖ,ν,τ)=0;
13) S(ϖ,ν,τ)<1;
14) S(ϖ,ν,τ)=0 for all τ>0, if and only if ϖ=ν;
15) S(ϖ,ν,τ)=S(ν,ϖ,τ);
16) S(ϖ,λ,τ+ς)≤S(ϖ,ν,τ)○S(ν,λ,ς);
17) S(ϖ,ν,⋅):(0,∞)→[0,1] is continuous and limτ→∞S(ϖ,ν,τ)=0;
18) If τ≤0, then P(ϖ,ν,τ)=0,Q(ϖ,ν,τ)=1 and S(ϖ,ν,τ)=1.
then four-tuple (Ξ,A,∗,○) is called an NMS.
Where; P(ϖ,ν,τ) is degree of nearness, Q(ϖ,ν,τ) is degree of neutralness and S(ϖ,ν,τ) is degree of non-nearness.
In this section, we introduce the notion of a CNMLS and prove some related FP results.
Definition 3.1. Suppose Ξ≠∅, assume a six tuple (Ξ,Pϕ,Qϕ,Rϕ, *, ○) where * is a CTN, ○ is a CTCN, ϕ:Ξ×Ξ→[1,∞) be a function and Pϕ,Qϕ,Rϕ are neutrosophic sets (NSs) on Ξ×Ξ×(0,∞). If (Ξ,Pϕ,Qϕ,,Rϕ, *, ○) meet the below circumstances for all ϖ,ν,λ∈Ξ and ς,τ>0:
1) Pϕ(ϖ,ν,τ)+Qϕ(ϖ,ν,τ)+Rϕ(ϖ,ν,τ)≤3,
2) Pϕ(ϖ,ν,τ)>0,
3) Pϕ(ϖ,ν,τ)=1impliesϖ=ν,
4) Pϕ(ϖ,ν,τ)=Pϕ(ν,ϖ,τ),
5) Pϕ(ϖ,λ,(τ+ς))≥Pϕ(ϖ,ν,τϕ(ϖ,ν))*Pϕ(ν,λ,ςϕ(ν,λ)),
6) Pϕ(ϖ,ν,⋅) is ND function of R+ and limτ→∞Pϕ(ϖ,ν,τ)=1,
7) Qϕ(ϖ,ν,τ)<1,
8) Qϕ(ϖ,ν,τ)=0 impliesϖ=ν,
9) Qϕ(ϖ,ν,τ)=Qϕ(ν,ϖ,τ),
10) Qϕ(ϖ,λ,(τ+ς))≤Qϕ(ϖ,ν,τϕ(ϖ,ν))○Qϕ(ν,λ,ςϕ(ν,λ)),
11) Qϕ(ϖ,ν,⋅) is NI function of R+ and limτ→∞Qϕ(ϖ,ν,τ)=0,
12) Rϕ(ϖ,ν,τ)<1,
13) Rϕ(ϖ,ν,τ)=0 impliesϖ=ν,
14) Rϕ(ϖ,ν,τ)=Rϕ(ν,ϖ,τ),
15) Rϕ(ϖ,λ,(τ+ς))≤Rϕ(ϖ,ν,τϕ(ϖ,ν))○Rϕ(ν,λ,ςϕ(ν,λ)),
16) Rϕ(ϖ,ν,⋅) is NI function of R+ and limτ→∞Rϕ(ϖ,ν,τ)=0,
17) If τ≤0, then Pϕ(ϖ,ν,τ)=0,Qϕ(ϖ,ν,τ)=1 and Rϕ(ϖ,ν,τ)=1.
Then five-tuple (Ξ,Aϕ,ϕ,∗,○) is called a CNMLS.
Where; Pϕ(ϖ,ν,τ) is degree of nearness, Qϕ(ϖ,ν,τ) is degree of neutralness and Rϕ(ϖ,ν,τ) is degree of non-nearness.
Example 3.1. Let Ξ=(0,∞), define Pϕ,Qϕ,Rϕ:Ξ×Ξ×(0,∞)→[0,1] by
Pϕ(ϖ,ν,τ)=ττ+max{ϖ,ν}2,Qϕ(ϖ,ν,τ)=max{ϖ,ν}2τ+max{ϖ,ν}2,Rϕ(ϖ,ν,τ)=max{ϖ,ν}2τ |
for all ϖ,ν∈Ξ and τ>0, define CTN "\text{*"} by 𝛶*\varrho = 𝛶\cdot \varrho and CTCN "\text{○"} by 𝛶○\varrho = \mathrm{max}\left\{𝛶, \varrho \right\} and define "\phi " by
\phi \left(\varpi , \nu \right) = \left\{\begin{array}{l}1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\rm{if}}\ \varpi = \nu , \\ \frac{1+\mathrm{max}\left\{\varpi , \nu \right\}}{\mathrm{min}\left\{\varpi , \nu \right\}}\ {\rm{if}}\ \varpi \ne \nu .\end{array}\right. |
Then five-tuple \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {\mathcal{A}}_{\phi }, \phi, *, ○\right) is a CNMS.
Proof. \left(\mathrm{i}\right)-\left(\mathrm{i}\mathrm{v}\right), \left(\mathrm{v}\mathrm{i}\right)-\left(\mathrm{i}\mathrm{x}\right), \left(\mathrm{i}\mathrm{x}\right)-\left(\mathrm{x}\mathrm{i}\mathrm{v}\right), \left(\mathrm{x}\mathrm{v}\mathrm{i}\right)\ \mathrm{a}\mathrm{n}\mathrm{d}\ \left(\mathrm{x}\mathrm{v}\mathrm{i}\mathrm{i}\right) are trivial, here we examine \left(\mathrm{v}\right), \left(\mathrm{x}\right)\ \mathrm{a}\mathrm{n}\mathrm{d}\ \left(\mathrm{x}\mathrm{v}\right),
{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\le \phi \left(\varpi , \nu \right){\mathrm{max}\left\{\varpi , \nu \right\}}^{2}+\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right){\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2} |
Therefore,
{\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\le \phi \left(\varpi , \nu \right)\left({\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}+{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}^{2}\right){\mathrm{max}\left\{\varpi , \nu \right\}}^{2}+\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)\left({\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}+{{\mathit{\boldsymbol{\tau }}}}^{2}\right){\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2} , |
\Rightarrow {\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\le \phi \left(\varpi , \nu \right)\left({\mathit{\boldsymbol{\tau }}}+\varsigma \right)\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}+\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right){\mathit{\boldsymbol{\tau }}}{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2} , |
\Rightarrow {\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+{\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2} , |
\le {\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+\phi \left(\varpi , \nu \right)\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}+\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right){\mathit{\boldsymbol{\tau }}}{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2} |
That is,
{\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\left[\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\right]\le \left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\left[{\mathit{\boldsymbol{\tau }}}\varsigma +\phi \left(\varpi , \nu \right)\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}+\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right){\mathit{\boldsymbol{\tau }}}{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\right] , |
\Rightarrow {\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\left[\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+{\mathrm{max}\left\{\varpi , \lambda \right\}}^{2}\right] , |
\le \left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\left[{\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}+\phi \left(\varpi , \nu \right)\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}+\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right){\mathit{\boldsymbol{\tau }}}{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}+\\ \phi \left(\varpi , \nu \right)\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right){\mathrm{max}\left\{\varpi , \nu \right\}}^{2}{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\right] , |
\Rightarrow {\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\left[\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\right]\le \left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\left[{\mathit{\boldsymbol{\tau }}}+\phi \left(\varpi , \nu \right){\mathrm{max}\left\{\varpi , \nu \right\}}^{2}\left]\right[\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}+{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)\mathrm{max}\{\nu , \mathit{\boldsymbol{\lambda }}\}}^{2}\right] |
Then,
\frac{\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)}{\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}\ge \frac{{\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{\left[{\mathit{\boldsymbol{\tau }}}+\phi \left(\varpi , \nu \right){\mathrm{max}\left\{\varpi , \nu \right\}}^{2}\left]\right[\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}+{\phi \left(\nu , \lambda \right)\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\right]}, |
\Rightarrow \frac{\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)}{\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}\ge \frac{{\mathit{\boldsymbol{\tau }}}}{{\mathit{\boldsymbol{\tau }}}+\phi \left(\varpi , \nu \right){\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}.\frac{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}+{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}, |
\Rightarrow \frac{\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)}{\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}\ge \frac{\frac{{\mathit{\boldsymbol{\tau }}}}{\phi \left(\varpi , \nu \right)}}{\frac{{\mathit{\boldsymbol{\tau }}}}{\phi \left(\varpi , \nu \right)}\ \ +{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}.\frac{\frac{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)}}{\frac{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)}\ \ +{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}} |
Hence,
{{ P}}_{\phi }\left(\varpi , \mathit{\boldsymbol{\lambda }}, \left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\right)\ge {{ P}}_{\phi }\left(\varpi , \nu , \frac{{\mathit{\boldsymbol{\tau }}}}{\phi \left(\varpi , \nu \right)}\right)\text{*}{{ P}}_{\phi }\left(\nu , \mathit{\boldsymbol{\lambda }}, \frac{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)}\right) |
({\rm{v}}) is satisfied.
{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2} = {\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\mathrm{max}\left\{\mathrm{1, 1}\right\} |
Therefore,
{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2} = {\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\mathrm{max}\left\{\frac{{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}{{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}, \frac{{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}{{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}\right\} |
{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\le \left[\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\right]\mathrm{max}\left\{\frac{{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}{{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}, \frac{{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}{{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}\right\} |
{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\le \left[\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\right]\mathrm{max}\left\{\frac{\phi \left(\varpi , \nu \right){\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}{{\phi \left(\varpi , \nu \right)\mathrm{max}\{\varpi , \nu \}}^{2}}, \frac{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right){\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}{{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)\mathrm{max}\{\nu , \mathit{\boldsymbol{\lambda }}\}}^{2}}\right\} |
Then,
\frac{{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}{\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}\le \mathrm{max}\left\{\frac{\phi \left(\varpi , \nu \right){\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}{{\mathit{\boldsymbol{\tau }}}+\phi \left(\varpi , \nu \right){\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}, \frac{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right){\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}+\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right){\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}\right\} |
That is,
\frac{{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}{\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}\le \mathrm{max}\left\{\frac{{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}{\frac{{\mathit{\boldsymbol{\tau }}}}{\phi \left(\varpi , \nu \right)}\ \ +{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}, \frac{{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}{\frac{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)}\ \ +{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}\right\} |
Hence,
{Q}_{\phi }\left(\varpi , \mathit{\boldsymbol{\lambda }}, \left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\right)\le {Q}_{\phi }\left(\varpi , \nu , \frac{{\mathit{\boldsymbol{\tau }}}}{\phi \left(\varpi , \nu \right)}\right)\text{*}{Q}_{\phi }\left(\nu , \mathit{\boldsymbol{\lambda }}, \frac{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)}\right) |
({\rm{x}}) is satisfied.
It is easy to see that
\frac{{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}{{\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}\le \mathrm{max}\left\{\frac{{\phi \left(\varpi , \nu \right)\mathrm{max}\{\varpi , \nu \}}^{2}}{{\mathit{\boldsymbol{\tau }}}}, \frac{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right){\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}\right\} |
That is,
\frac{{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}{\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)}\le \mathrm{max}\left\{\frac{{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}{\frac{{\mathit{\boldsymbol{\tau }}}}{\phi \left(\varpi , \nu \right)}}, \frac{{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}{\frac{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)}}\right\} |
Hence,
{R}_{\phi }\left(\varpi , \mathit{\boldsymbol{\lambda }}, \left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\right)\le {R}_{\phi }\left(\varpi , \nu , \frac{{\mathit{\boldsymbol{\tau }}}}{\phi \left(\varpi , \nu \right)}\right)\text{*}{R}_{\phi }\left(\nu , \mathit{\boldsymbol{\lambda }}, \frac{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)}\right) |
({\rm{xv}}) is satisfied.
Remark 3.1. If we let, 𝛶*\varrho = \mathrm{min}\left\{𝛶, \varrho \right\} and 𝛶○\varrho = \mathrm{max}\left\{𝛶, \varrho \right\}, then above example is also a CNMLS.
Example 3.2. Suppose \mathrm{\Xi } = \left(0, \infty \right), \ \mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{e}\ {{ P}}_{\phi }, {Q}_{\phi }, {R}_{\phi }:{\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times \left(0, \infty \right)\to \left[\mathrm{0, 1}\right] by
{{ P}}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) = \frac{{\mathit{\boldsymbol{\tau }}}}{{\mathit{\boldsymbol{\tau }}}+\mathrm{max}\left\{\varpi , \nu \right\}} |
{Q}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) = \frac{\mathrm{max}\left\{\varpi , \nu \right\}}{{\mathit{\boldsymbol{\tau }}}+\mathrm{max}\left\{\varpi , \nu \right\}}, |
and
{R}_{\phi }\left(\varpi , \nu , \tau \right) = \frac{\mathrm{max}\left\{\varpi , \nu \right\}}{{\mathit{\boldsymbol{\tau }}}} |
for all \varpi, \nu \in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\ \mathrm{a}\mathrm{n}\mathrm{d}\ {\mathit{\boldsymbol{\tau }}} > 0, define CTN "\text{*"} by 𝛶*\varrho = 𝛶\cdot \varrho and CTCN "\text{○"} by 𝛶○\varrho = \mathrm{max}\left\{𝛶, \varrho \right\} and define "\phi " by
\phi \left(\varpi , \nu \right) = 1+\varpi +\nu |
Then \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {{ P}}_{\phi }, {Q}_{\phi }, {R}_{\phi }, *, ○\right) be a CNMLS.
Remark 3.2. The above Examples 3.1 and 3.2 are not neutrosophic metric spaces.
Definition 3.2. Let \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {{ P}}_{\phi }, {Q}_{\phi }, {R}_{\phi }, *, ○\right) is a CNMLS, then we define an open ball B\left(\varpi, r, {\mathit{\boldsymbol{\tau }}}\right) with centre \varpi, radius r, 0 < r < 1 and {\mathit{\boldsymbol{\tau }}} > 0 as follows:
B\left(\varpi , r, {\mathit{\boldsymbol{\tau }}}\right) = \left\{\nu \in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}:{ P}\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) > 1-r, Q\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) < r, R\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) < r\right\}. |
Definition 3.3. Let \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {{ P}}_{\phi }, {Q}_{\phi }, {R}_{\phi }, *, ○\right) be a CNMLS. Then
1) a sequence \left\{{\varpi }_{n}\right\} in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} is named to be G-Cauchy sequence (GCS) if and only if for all q > 0\ \mathrm{a}\mathrm{n}\mathrm{d}\ {\mathit{\boldsymbol{\tau }}} > 0,
\underset{n\to \infty }{\mathrm{lim}}{{ P}}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right), \underset{n\to \infty }{\mathrm{lim}}{Q}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right)\ \mathrm{a}\mathrm{n}\mathrm{d}\ \underset{n\to \infty }{\mathrm{lim}}{R}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right) \ {\rm{exists}}\ {\rm{and}}\ {\rm{finite}} |
2) a sequence \left\{{\varpi }_{n}\right\} in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} is named to be G-convergent (GC) to \varpi in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} , if and only if for all {\mathit{\boldsymbol{\tau }}} > 0,
\underset{n\to \infty }{\mathrm{lim}}{{ P}}_{\phi }\left({\varpi }_{n}, \varpi , {\mathit{\boldsymbol{\tau }}}\right) = {{ P}}_{\phi }\left(\varpi , \varpi , {\mathit{\boldsymbol{\tau }}}\right), \underset{n\to \infty }{\mathrm{lim}}{Q}_{\phi }\left({\varpi }_{n}, \varpi , {\mathit{\boldsymbol{\tau }}}\right) = {Q}_{\phi }\left(\varpi , \varpi , {\mathit{\boldsymbol{\tau }}}\right) |
\ \mathrm{a}\mathrm{n}\mathrm{d}\ \underset{n\to \infty }{\mathrm{lim}}{R}_{\phi }\left({\varpi }_{n}, \varpi , {\mathit{\boldsymbol{\tau }}}\right) = {R}_{\phi }\left(\varpi , \varpi , {\mathit{\boldsymbol{\tau }}}\right). |
3) a CNMLS is named to be complete if each GCS is convergent i.e.,
\underset{n\to \infty }{\mathrm{lim}}{{ P}}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right) = \underset{n\to \infty }{\mathrm{lim}}{{ P}}_{\phi }\left({\varpi }_{n}, \varpi , {\mathit{\boldsymbol{\tau }}}\right) = {{ P}}_{\phi }\left(\varpi , \varpi , {\mathit{\boldsymbol{\tau }}}\right), |
\underset{n\to \infty }{\mathrm{lim}}{Q}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right) = \underset{n\to \infty }{\mathrm{lim}}{Q}_{\phi }\left({\varpi }_{n}, \varpi , {\mathit{\boldsymbol{\tau }}}\right) = {Q}_{\phi }\left(\varpi , \varpi , {\mathit{\boldsymbol{\tau }}}\right), |
\underset{n\to \infty }{\mathrm{lim}}{R}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right) = \underset{n\to \infty }{\mathrm{lim}}{R}_{\phi }\left({\varpi }_{n}, \varpi , {\mathit{\boldsymbol{\tau }}}\right) = {R}_{\phi }\left(\varpi , \varpi , {\mathit{\boldsymbol{\tau }}}\right) |
Theorem 3.1. Suppose \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {{ P}}_{\phi }, {Q}_{\phi }, {R}_{\phi }, *, ○\right) be a G-complete CNMLS with \phi :{\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\to \left[1, \infty \right) and assume that
\underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{{ P}}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) = 1, \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{Q}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) = 0\ \mathrm{a}\mathrm{n}\mathrm{d}\ \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{R}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) = 0 | (1) |
for all \varpi, \nu \in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} and {\mathit{\boldsymbol{\tau }}} > 0 . Suppose \xi :{\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\to {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} be a mapping verifying
\begin{array}{*{20}{c}} {{{ P}}_{\phi }\left(\xi \varpi , \xi \nu , £ {\mathit{\boldsymbol{\tau }}}\right)\ge {{ P}}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right),}\\ {{Q}_{\phi }\left(\xi \varpi , \xi \nu , £ {\mathit{\boldsymbol{\tau }}}\right)\le {Q}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right)\ \mathrm{a}\mathrm{n}\mathrm{d}\ {R}_{\phi }\left(\xi \varpi , \xi \nu , £ {\mathit{\boldsymbol{\tau }}}\right)\le {R}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right)} \end{array} | (2) |
for all \varpi, \nu \in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} , 0 < £ < 1 and {\mathit{\boldsymbol{\tau }}} > 0. Also assume that for every \varpi \in { Z},
\underset{n\to \infty }{\mathrm{lim}}\phi \left({\varpi }_{n}, \nu \right) \ {\rm{and}} \ \underset{n\to \infty }{\mathrm{lim}}\phi \left(\nu , {\varpi }_{n}\right) | (3) |
exists and finite. Then \zeta has a unique fixed point in { Z}. Then \xi has a unique FP.
Proof. Let {\varpi }_{0} be an arbitrary point of {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} and define a sequence {\varpi }_{n} by {\varpi }_{n} = {\xi }^{n}{\varpi }_{0} = \xi {\varpi }_{n-1} , n\in \mathbb{N}. By utilizing \left(2\right) for all {\mathit{\boldsymbol{\tau }}} > 0, we get
{{ P}}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+1}, £ {\mathit{\boldsymbol{\tau }}}\right) = {{ P}}_{\phi }\left({\xi \varpi }_{n-1}, \xi {\varpi }_{n}, £ {\mathit{\boldsymbol{\tau }}}\right)\ge {{ P}}_{\phi }\left({\varpi }_{n-1}, {\varpi }_{n}, {\mathit{\boldsymbol{\tau }}}\right)\ge {{ P}}_{\phi }\left({\varpi }_{n-2}, {\varpi }_{n-1}, \frac{{\mathit{\boldsymbol{\tau }}}}{£ }\right) |
\ge {{ P}}_{\phi }\left({\varpi }_{n-3}, {\varpi }_{n-2}, \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{2}}\right)\ge \cdots \ge {{ P}}_{\phi }\left({\varpi }_{0}, {\varpi }_{1}, \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{n-1}}\right), |
{Q}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+1}, £ {\mathit{\boldsymbol{\tau }}}\right) = {Q}_{\phi }\left({\xi \varpi }_{n-1}, \xi {\varpi }_{n}, £ {\mathit{\boldsymbol{\tau }}}\right)\le {Q}_{\phi }\left({\varpi }_{n-1}, {\varpi }_{n}, {\mathit{\boldsymbol{\tau }}}\right)\le {Q}_{\phi }\left({\varpi }_{n-2}, {\varpi }_{n-1}, \frac{{\mathit{\boldsymbol{\tau }}}}{£ }\right) |
\le {Q}_{\phi }\left({\varpi }_{n-3}, {\varpi }_{n-2}, \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{2}}\right)\le \cdots \le {Q}_{\phi }\left({\varpi }_{0}, {\varpi }_{1}, \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{n-1}}\right) |
and
{R}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+1}, £ {\mathit{\boldsymbol{\tau }}}\right) = {R}_{\phi }\left({\xi \varpi }_{n-1}, \xi {\varpi }_{n}, £ {\mathit{\boldsymbol{\tau }}}\right)\le {R}_{\phi }\left({\varpi }_{n-1}, {\varpi }_{n}, {\mathit{\boldsymbol{\tau }}}\right)\le {R}_{\phi }\left({\varpi }_{n-2}, {\varpi }_{n-1}, \frac{{\mathit{\boldsymbol{\tau }}}}{£ }\right) |
\le {R}_{\phi }\left({\varpi }_{n-3}, {\varpi }_{n-2}, \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{2}}\right)\le \cdots \le {R}_{\phi }\left({\varpi }_{0}, {\varpi }_{1}, \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{n-1}}\right) |
We obtain
\begin{array}{*{20}{c}} { {{ P}}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+1}, £ {\mathit{\boldsymbol{\tau }}}\right)\ge {{ P}}_{\phi }\left({\varpi }_{0}, {\varpi }_{1}, \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{n-1}}\right), }\\ {{Q}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+1}, £ {\mathit{\boldsymbol{\tau }}}\right)\le {Q}_{\phi }\left({\varpi }_{0}, {\varpi }_{1}, \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{n-1}}\right)\ \mathrm{a}\mathrm{n}\mathrm{d}\ {R}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+1}, £ {\mathit{\boldsymbol{\tau }}}\right)\le {R}_{\phi }\left({\varpi }_{0}, {\varpi }_{1}, \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{n-1}}\right)} \end{array} | (4) |
for any q\in \mathbb{N}, \mathrm{u}\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}\left(\mathrm{v}\right), \left(\mathrm{x}\right)\ \mathrm{a}\mathrm{n}\mathrm{d}\ \left(\mathrm{x}\mathrm{v}\right) , we deduce
{{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\ge {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
\ge {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
*{{ P}}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
\ge {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
*{{ P}}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
*{{ P}}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
\ge {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
*{{ P}}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
*{{ P}}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{4}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*\ \ \cdots\ \ * |
{{ P}}_{\phi }\left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
*{{ P}}_{\phi }\left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)\ \ ,\ \ |
{Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
\le {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{Q}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
\le {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{Q}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{Q}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
\le {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{Q}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{Q}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{4}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○\ \ \cdots\ \ ○ |
{Q}_{\phi }\left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{Q}_{\phi }\left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
and
{R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
\le {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{R}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
\le {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{R}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{R}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
\le {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{R}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{R}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{4}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○\ \ \cdots\ \ ○ |
{R}_{\phi }\left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{R}_{\phi }\left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
Using (4) in the above inequalities, we deduce
\ge {{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2{\left(£ \ \ \ \ \right)}^{n-1}\ \ \left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}{\left(£ \ \ \ \ \right)}^{n}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
*{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}{\left(£ \ \ \ \ \right)}^{n+1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
*{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{4}{\left(£ \ \ \ \ \right)}^{n+2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
*\ \ \cdots\ \ * |
{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}{\left(£ \ \ \ \ \right)}^{n+q-2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
*{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}{\left(£ \ \ \ \ \right)}^{n+q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)\ \ ,\ \ |
\le {Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2{\left(£ \ \ \ \ \right)}^{n-1}\ \ \left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}{\left(£ \ \ \ \ \right)}^{n}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}{\left(£ \ \ \ \ \right)}^{n+1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{4}{\left(£ \ \ \ \ \right)}^{n+2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○\ \ \cdots\ \ ○ |
{Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}{\left(£ \ \ \ \ \right)}^{n+q-2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}{\left(£ \ \ \ \ \right)}^{n+q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
and
\le {R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2{\left(£ \ \ \ \ \right)}^{n-1}\ \ \left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}{\left(£ \ \ \ \ \right)}^{n}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}{\left(£ \ \ \ \ \right)}^{n+1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{4}{\left(£ \ \ \ \ \right)}^{n+2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○\ \ \cdots\ \ ○ |
{R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}{\left(£ \ \ \ \ \right)}^{n+q-2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}{\left(£ \ \ \ \ \right)}^{n+q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
Using (1), \ \mathrm{f}\mathrm{o}\mathrm{r}\ n\to \infty, we deduce
\underset{n\to \infty }{\mathrm{lim}}{{ P}}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right) = 1*1*\cdots *1 = 1, |
\underset{n\to \infty }{\mathrm{lim}}{Q}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right) = 0○0○\cdots ○0 = 0, |
\ \mathrm{a}\mathrm{n}\mathrm{d}\ |
\underset{n\to \infty }{\mathrm{lim}}{R}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right) = 0○0○\cdots ○0 = 0 |
i.e., \left\{{\varpi }_{n}\right\} is a GCS. Therefore, \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {{ P}}_{\phi }, {Q}_{\phi }, {R}_{\phi }, *, ○\right) be a G-complete CNMS, there exists \varpi \in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}.
Now investigate that \varpi is a FP of \xi , using \left(\mathrm{v}\right), \left(\mathrm{x}\right), \left(\mathrm{x}\mathrm{v}\right)\ \mathrm{a}\mathrm{n}\mathrm{d}\ \left(1\right), we obtain
{{ P}}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\ge {{ P}}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
{{ P}}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\ge {{ P}}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\xi \varpi }_{n}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
{{ P}}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\ge {{ P}}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2£ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)\to 1*1 = 1 |
\mathrm{a}\mathrm{s}\ n\to \infty \ \ ,\ \ |
{Q}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {Q}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
{Q}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {Q}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\xi \varpi }_{n}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
{Q}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {Q}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2£ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)\to 0○0 = 0 |
\mathrm{a}\mathrm{s}\ n\to \infty, and
{R}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {R}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
{R}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {R}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\xi \varpi }_{n}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
{R}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {R}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2£ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)\to 0○0 = 0 |
\mathrm{a}\mathrm{s}\ n\to \infty. This implies that \xi \varpi = \varpi, a FP. Now we show the uniqueness, suppose \xi c = c for some c\in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} , then
1\ge {{ P}}_{\phi }\left(c, \varpi , {\mathit{\boldsymbol{\tau }}}\right) = {{ P}}_{\phi }\left(\xi c, \xi \varpi , {\mathit{\boldsymbol{\tau }}}\right)\ge {{ P}}_{\phi }\left(c, \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{£ }\right) = {{ P}}_{\phi }\left(\xi c, \xi \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{£ }\right) |
\ge {{ P}}_{\phi }\left(c, \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{2}}\right)\ge \cdots \ge {{ P}}_{\phi }\left(c, \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{n}}\right)\to 1\ \mathrm{a}\mathrm{s}\ n\to \infty , |
0\le {Q}_{\phi }\left(c, \varpi , {\mathit{\boldsymbol{\tau }}}\right) = {Q}_{\phi }\left(\xi c, \xi \varpi , {\mathit{\boldsymbol{\tau }}}\right)\le {Q}_{\phi }\left(c, \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{£ }\right) = {Q}_{\phi }\left(\xi c, \xi \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{£ }\right) |
\le {Q}_{\phi }\left(c, \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{2}}\right)\le \cdots \le {Q}_{\phi }\left(c, \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{n}}\right)\to 0\ \mathrm{a}\mathrm{s}\ n\to \infty , |
and
0\le {R}_{\phi }\left(c, \varpi , {\mathit{\boldsymbol{\tau }}}\right) = {R}_{\phi }\left(\xi c, \xi \varpi , {\mathit{\boldsymbol{\tau }}}\right)\le {R}_{\phi }\left(c, \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{£ }\right) = {R}_{\phi }\left(\xi c, \xi \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{£ }\right) |
\le {R}_{\phi }\left(c, \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{2}}\right)\le \cdots \le {R}_{\phi }\left(c, \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{n}}\right)\to 0\ \mathrm{a}\mathrm{s}\ n\to \infty , |
by using \left(\mathrm{i}\mathrm{i}\mathrm{i}\right), \left(\mathrm{v}\mathrm{i}\mathrm{i}\mathrm{i}\right)\ \mathrm{a}\mathrm{n}\mathrm{d}\ \left(\mathrm{x}\mathrm{i}\mathrm{i}\right), \varpi = c.
Definition 3.4. Let \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {{ P}}_{\phi }, {Q}_{\phi }, {R}_{\phi }, *, ○\right) be a CNMLS. A map \xi :{\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\to {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} is CNL-contraction if there exists 0 < £ < 1 , such that
\frac{1}{{{ P}}_{\phi }\left(\xi \varpi \ \ ,\ \ \xi \nu \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\right)}-1\le £ \left[\frac{1}{{{ P}}_{\phi }\left(\varpi \ \ ,\ \ \nu \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\right)}-1\right] | (5) |
and
{Q}_{\phi }\left(\xi \varpi , \xi \nu , {\mathit{\boldsymbol{\tau }}}\right)\le £ {Q}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right), {R}_{\phi }\left(\xi \varpi , \xi \nu , {\mathit{\boldsymbol{\tau }}}\right)\le £ {R}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) | (6) |
for all \varpi, \nu \in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\ \mathrm{a}\mathrm{n}\mathrm{d}\ {\mathit{\boldsymbol{\tau }}} > 0.
Theorem 3.2. Let \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {{ P}}_{\phi }, {Q}_{\phi }, {R}_{\phi }, *, ○\right) be a G-complete CNMLS with \phi :{\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\to \left[1, \infty \right) and suppose that
\underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{{ P}}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) = 1, \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{Q}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) = 0\ \mathrm{a}\mathrm{n}\mathrm{d}\ \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{R}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) = 0 | (7) |
for all \varpi, \nu \in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} and {\mathit{\boldsymbol{\tau }}} > 0 . Let \xi :{\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\to {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} be a CN-contraction. Further, assume that for an arbitrary {\varpi }_{0}\in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, \ \mathrm{a}\mathrm{n}\mathrm{d}\ n, q\in \mathbb{N}, where {\varpi }_{n} = {\xi }^{n}{\varpi }_{0} = \xi {\varpi }_{n-1} also \underset{n\to \infty }{\mathrm{lim}}\phi \left({\varpi }_{n}, \nu \right) and \underset{n\to \infty }{\mathrm{lim}}\phi \left(\nu, {\varpi }_{n}\right) exists and finite. Then \xi has a unique FP.
Proof. Suppose {\varpi }_{0} be an arbitrary point of {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} and define a sequence {\varpi }_{n} by {\varpi }_{n} = {\xi }^{n}{\varpi }_{0} = \xi {\varpi }_{n-1} , n\in \mathbb{N}. By utilizing \left(5\right) and \left(6\right) for all {\mathit{\boldsymbol{\tau }}} > 0, n > q, we get
\frac{1}{{{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}-1 = \frac{1}{{{ P}}_{\phi }\left({\xi \varpi }_{n-1}\ \ ,\ \ {\varpi }_{n}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}-1 |
\le £ \left[\frac{1}{{{ P}}_{\phi }\left({\varpi }_{n-1}\ \ ,\ \ {\varpi }_{n}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}-1\right] = \frac{£ }{{{ P}}_{\phi }\left({\varpi }_{n-1}\ \ ,\ \ {\varpi }_{n}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}-£ |
\Rightarrow \frac{1}{{{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}\le \frac{£ }{{{ P}}_{\phi }\left({\varpi }_{n-1}\ \ ,\ \ {\varpi }_{n}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}+\left(1-£ \ \ \ \ \right) |
\le \frac{{£ }^{2}}{{{ P}}_{\phi }\left({\varpi }_{n-2}\ \ ,\ \ {\varpi }_{n-1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}+£ \left(1-£ \ \ \ \ \right)+\left(1-£ \ \ \ \ \right) |
Continuing in this way, we get
\frac{1}{{{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}\le \frac{{£ }^{n}}{{{ P}}_{\phi }\left({\varpi }_{\ 0}\ \ ,\ \ {\varpi }_{\ 1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}+{£ }^{n-1}\left(1-£ \right)+{£ }^{n-2}\left(1-£ \right)+\cdots +£ \left(1-£ \right)+\left(1-£\right) |
\le \frac{{£ }^{n}}{{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}+\left({£ }^{n-1}+{£ }^{n-2}+\cdots +1\right)\left(1-£ \ \ \ \ \right)\le \frac{{£ }^{n}}{{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}+\left(1-{£ }^{n}\right) |
We obtain
\frac{1}{\frac{{£ }^{n}}{{{ P}}_{\phi }\left({\varpi }_{\ 0}\ \ ,\ \ {\varpi }_{\ 1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}+\left(1-{£ }^{n}\ \ \ \ \right)}\le {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right) | (8) |
and
\begin{array}{*{20}{c}} {{Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right) = {Q}_{\phi }\left(\xi {\varpi }_{n-1}\ \ ,\ \ {\varpi }_{n}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le £ {Q}_{\phi }\left({\varpi }_{n-1}\ \ ,\ \ {\varpi }_{n}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right) = {Q}_{\phi }\left(\xi {\varpi }_{n-2}\ \ ,\ \ {\varpi }_{n-1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right) }\\ {\le {£ }^{2}{Q}_{\phi }\left({\varpi }_{n-2}\ \ ,\ \ {\varpi }_{n-1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le \cdots \le {£ }^{n}{Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)} \end{array} | (9) |
\begin{array}{*{20}{c}} { {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right) = {R}_{\phi }\left(\xi {\varpi }_{n-1}\ \ ,\ \ {\varpi }_{n}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le £ {R}_{\phi }\left({\varpi }_{n-1}\ \ ,\ \ {\varpi }_{n}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right) = {R}_{\phi }\left(\xi {\varpi }_{n-2}\ \ ,\ \ {\varpi }_{n-1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}\\ {\le {£ }^{2}{R}_{\phi }\left({\varpi }_{n-2}\ \ ,\ \ {\varpi }_{n-1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le \cdots \le {£ }^{n}{R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)} \end{array} | (10) |
for any q\in \mathbb{N}, \mathrm{u}\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}\left(\mathrm{v}\right), \left(\mathrm{x}\right)\ \mathrm{a}\mathrm{n}\mathrm{d}\ \left(\mathrm{x}\mathrm{v}\right) , we deduce
{{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\ge {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
\ge {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
*{{ P}}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
\ge {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
*{{ P}}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
*{{ P}}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
\ge {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
*{{ P}}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
*{{ P}}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{4}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*\ \ \cdots\ \ * |
{{ P}}_{\phi }\left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
*{{ P}}_{\phi }\left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
and
{Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
\le {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{Q}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
\le {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{Q}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{Q}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
\le {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{Q}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{Q}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{4}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○\ \ \cdots\ \ ○ |
{Q}_{\phi }\left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{Q}_{\phi }\left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)\ \ ,\ \ |
{R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
\le {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{R}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
\le {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{R}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{R}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
\le {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{R}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{R}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{4}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○\ \ \cdots\ \ ○ |
{R}_{\phi }\left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{R}_{\phi }\left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
{{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right) |
\ge \frac{1}{\frac{{£ }^{n}}{{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)}+\left(1-{£ }^{n}\ \ \ \ \right)} |
*\frac{1}{\frac{{£ }^{n+1}}{{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)}+\left(1-{£ }^{n+1}\ \ \ \ \right)} |
*\frac{1}{\frac{{£ }^{n+2}}{{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)}+\left(1-{£ }^{n+2}\ \ \ \ \right)}*\ \ \cdots\ \ * |
\frac{1}{\frac{{£ }^{n+q-2}}{{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \right)}\ \ \ \ +\left(1-{£ }^{n+q-2}\ \ \ \ \right)} |
*\frac{1}{\frac{{£ }^{n+q-1}}{{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \right)}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \right)}\ \ \ \ +\left(1-{£ }^{n+q-1}\ \ \ \ \right)} |
and
{Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right) |
\le {£ }^{n}{Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{£ }^{n+1}{Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{£ }^{n+2}{Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○\ \ \cdots\ \ ○ |
{£ }^{n+q-2}{Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{£ }^{n+q-1}{Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)\ \ ,\ \ |
{R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right) |
\le {£ }^{n}{R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{£ }^{n+1}{R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{£ }^{n+2}{R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○\ \ \cdots\ \ ○ |
{£ }^{n+q-2}{R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
○{£ }^{n+q-1}{R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right) |
Therefore,
\underset{n\to \infty }{\mathrm{lim}}{{ P}}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right) = 1*1*\cdots * = 1, |
\ \mathrm{a}\mathrm{n}\mathrm{d}\ |
\underset{n\to \infty }{\mathrm{lim}}{Q}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right) = 0○0○\cdots ○0 = 0, |
\underset{n\to \infty }{\mathrm{lim}}{R}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right) = 0○0○\cdots ○0 = 0, |
i.e., \left\{{\varpi }_{n}\right\} is a GCS. Therefore, \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {{ P}}_{\phi }, {Q}_{\phi }, {R}_{\phi }, *, ○\right) be a G-complete CNMS, there exists \varpi \in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}.
Now, we show that \varpi is a FP of \xi , utilizing \left(\mathrm{v}\right), \left(\mathrm{x}\right)\ \mathrm{a}\mathrm{n}\mathrm{d}\ \left(\mathrm{x}\mathrm{v}\right), we get
\frac{1}{{{ P}}_{\phi }\left({\xi \varpi }_{n}\ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\right)}-1\le £ \left[\frac{1}{{{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\right)}-1\right] = \frac{£ }{{{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\right)}-£ |
\Rightarrow \frac{1}{\frac{£ }{{{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\right)}\ \ \ +\left(1-£ \right)}\le {{ P}}_{\phi }\left({\xi \varpi }_{n}\ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\right) |
Using above inequality, we obtain
{{ P}}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\ge {{ P}}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)}\ \ \ \ \right) |
\ge {{ P}}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left(\xi {\varpi }_{n}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)}\ \ \ \ \right) |
\ge {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left(2\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*\frac{1}{\frac{£ }{{{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)}\ \ \ \ \right)+\left(1-£ \ \ \ \ \right)}}\to 1*1 = 1 |
\mathrm{a}\mathrm{s}\ n\to \infty , and
{Q}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {{ P}}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{\tau }{2\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)}\ \ \ \ \right) |
\le {Q}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\xi \varpi }_{n}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)}\ \ \ \ \right) |
\le {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)}\ \ \ \ \right)○£ {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)}\ \ \ \ \right)\to 0○0 = 0\ \mathrm{a}\mathrm{s}\ n\to \infty \ \ ,\ \ |
{R}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {R}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)}\ \ \ \ \right) |
\le {R}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\xi \varpi }_{n}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)}\ \ \ \ \right) |
\le {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)}\ \ \ \ \right)○£ {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)}\ \ \ \ \right)\to 0○0 = 0\ \mathrm{a}\mathrm{s}\ n\to \infty . |
Hence, \xi \varpi = \varpi, a FP.
Uniqueness: Assume \xi c = c for some c\in \Xi , then
\frac{1}{{{ P}}_{\phi }\left(\varpi \ \ ,\ \ c\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}-1 = \frac{1}{{{ P}}_{\phi }\left(\xi \varpi \ \ ,\ \ \xi c\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}-1 |
\le £ \left[\frac{1}{{{ P}}_{\phi }\left(\varpi \ \ ,\ \ c\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}-1\right] < \frac{1}{{{ P}}_{\phi }\left(\varpi \ \ ,\ \ c\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}-1 |
a contradiction, and
{Q}_{\phi }\left(\varpi , c, {\mathit{\boldsymbol{\tau }}}\right) = {Q}_{\phi }\left(\xi \varpi , \xi c, {\mathit{\boldsymbol{\tau }}}\right)\le £ {Q}_{\phi }\left(\varpi , c, {\mathit{\boldsymbol{\tau }}}\right) < {Q}_{\phi }\left(\varpi , c, {\mathit{\boldsymbol{\tau }}}\right), |
{R}_{\phi }\left(\varpi , c, {\mathit{\boldsymbol{\tau }}}\right) = {R}_{\phi }\left(\xi \varpi , \xi c, {\mathit{\boldsymbol{\tau }}}\right)\le £ {R}_{\phi }\left(\varpi , c, {\mathit{\boldsymbol{\tau }}}\right) < {R}_{\phi }\left(\varpi , c, {\mathit{\boldsymbol{\tau }}}\right), |
are contradictions.
Therefore, we must have {{ P}}_{\phi }\left(\varpi, c, {\mathit{\boldsymbol{\tau }}}\right) = 1, {Q}_{\phi }\left(\varpi, c, {\mathit{\boldsymbol{\tau }}}\right) = 0\ \mathrm{a}\mathrm{n}\mathrm{d}\ {R}_{\phi }\left(\varpi, c, {\mathit{\boldsymbol{\tau }}}\right) = 0 , that is \varpi = c.
Example 3.3. Suppose {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} = \left[\mathrm{0, 1}\right] . Define 𝜙 by
\phi \left(\varpi , \nu \right) = \left\{\begin{array}{c}\ \ \ 1\ \ \ \ \ {\rm{if}}\ \varpi = \nu , \\ \frac{1+\mathrm{max}\left\{\varpi , \nu \right\}}{\mathrm{min}\left\{\varpi , \nu \right\}}\ {\rm{if}}\ \varpi \ne \nu \ne 0.\end{array}\right. |
Also, define
{{ P}}_{\phi }\left(\varpi \ \ ,\ \ \nu \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\right) = \frac{{\mathit{\boldsymbol{\tau }}}}{{\mathit{\boldsymbol{\tau }}}+\mathrm{max}\left\{\varpi \ \ ,\ \ \nu \right\}} |
{Q}_{\phi }\left(\varpi \ \ ,\ \ \nu \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\right) = \frac{\mathrm{max}\left\{\varpi \ \ ,\ \ \nu \right\}}{{\mathit{\boldsymbol{\tau }}}+\mathrm{max}\left\{\varpi \ \ ,\ \ \nu \right\}}\ \ ,\ \ |
and
{R}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) = \frac{\mathrm{max}\left\{\varpi , \nu \right\}}{{\mathit{\boldsymbol{\tau }}}}, |
with 𝛶*\varrho = 𝛶.\varrho \ \mathrm{a}\mathrm{n}\mathrm{d}\ 𝛶○\varrho = \mathrm{max}\left\{𝛶, \varrho \right\}. Then \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {{ P}}_{\phi }, {Q}_{\phi }, {R}_{\phi }, *, ○\right) is a G-complete CNMLS. Observe that \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{{ P}}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 1, \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{Q}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 0\ \mathrm{a}\mathrm{n}\mathrm{d}\ \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{R}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 0, satisfied. Define \xi :{\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\to {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} by
\xi \left(\varpi \right) = \frac{\varpi }{9} |
Then,
{{ P}}_{\phi }\left(\xi \varpi , \xi \nu , £ {\mathit{\boldsymbol{\tau }}}\right)\ge {{ P}}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right), |
{Q}_{\phi }\left(\xi \varpi , \xi \nu , £ {\mathit{\boldsymbol{\tau }}}\right)\le {Q}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right)\ \mathrm{a}\mathrm{n}\mathrm{d}\ {R}_{\phi }\left(\xi \varpi , \xi \nu , £ {\mathit{\boldsymbol{\tau }}}\right)\le {R}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) |
are satisfied for £ \in \left[\frac{1}{2}, 1\right) , as we can see that Figure 1 shows that {{ P}}_{\phi }\left(\xi \varpi, \xi \nu, £ {\mathit{\boldsymbol{\tau }}}\right)\ge {{ P}}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right), Figure 2 shows that {Q}_{\phi }\left(\xi \varpi, \xi \nu, £ {\mathit{\boldsymbol{\tau }}}\right)\le {Q}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) and Figure 3 shows that {R}_{\phi }\left(\xi \varpi, \xi \nu, £ {\mathit{\boldsymbol{\tau }}}\right)\le {R}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right).
Also,
\begin{array}{*{20}{c}} {\frac{1}{{{ P}}_{\phi }\left(\xi \varpi, \xi \nu, {\mathit{\boldsymbol{\tau }}}\right)}-1\le £ \left[\frac{1}{{{ P}}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right)}-1\right] \ {\rm{and}}}\\ {{Q}_{\phi }\left(\xi \varpi , \xi \nu , {\mathit{\boldsymbol{\tau }}}\right)\le £ {Q}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right), \ \mathrm{a}\mathrm{n}\mathrm{d}\ {R}_{\phi }\left(\xi \varpi , \xi \nu , {\mathit{\boldsymbol{\tau }}}\right)\le £ {R}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right),} \end{array} |
are satisfied for £ \in \left[\frac{1}{2}, 1\right), as we can see that Figure 4 shows that \frac{1}{{{ P}}_{\phi }\left(\xi \varpi, \xi \nu, {\mathit{\boldsymbol{\tau }}}\right)}-1\le £ \left[\frac{1}{{{ P}}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right)}-1\right], Figure 5 shows that {Q}_{\phi }\left(\xi \varpi, \xi \nu, {\mathit{\boldsymbol{\tau }}}\right)\le £ {Q}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) and Figure 6 shows that {R}_{\phi }\left(\xi \varpi, \xi \nu, {\mathit{\boldsymbol{\tau }}}\right)\le £ {R}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right).
We can easily see that \underset{n\to \infty }{\mathrm{lim}}\phi \left({\varpi }_{n}, \nu \right) and \underset{n\to \infty }{\mathrm{lim}}\phi \left(\nu, {\varpi }_{n}\right) exists and finite. Observe that all circumstances of Theorems 3.1 and 3.2 are fulfilled, and 0 is a unique FP of \xi as we can see in the Figure 7.
Suppose \Xi = C(\left[{\rm{c}}, а\right], \mathbb{ }\mathbb{ }\mathbb{ }\mathbb{ }\mathbb{R}) be the set of real valued continuous functions defined on [\mathbb{{\rm{c}}}, \mathbb{ }\mathbb{а}] .
Suppose the integral equation:
\varpi \left(\tau \right) = \Lambda \left(\tau \right)+\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right)\varpi \left(\tau \right)d\upsilon \ {\rm{for}} \ \tau , \upsilon \in \left[{\rm{c}}, а\right] | (11) |
where \delta > 0, \Lambda \left(\upsilon \right) is a function of \upsilon :\upsilon \in \left[{\rm{c}}, а\right] and Л:C\left(\left[{\rm{c}}, а\right]\times \mathbb{ }\mathbb{ }\mathbb{ }\mathbb{ }\mathbb{ }\mathbb{ }\mathbb{R}\right)\to {\mathbb{R}}^{+}. Define P\ \mathrm{a}\mathrm{n}\mathrm{d}\ Q by
P\left(\varpi \left(\tau \right), \nu \left(\tau \right), ȓ\right) = \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{ȓ}{ȓ+{\left|\varpi \left(\tau \right)-\nu \left(\tau \right)\right|}^{2}} \ {\rm{for}} \ {\rm{all}} \ \varpi , \nu \in \mathfrak{C} \ {\rm{and}} \ \mathfrak{ȓ} > 0, |
Q\left(\varpi \left(\tau \right), \nu \left(\tau \right), ȓ\right) = 1-\underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{ȓ}{ȓ+{\left|\varpi \left(\tau \right)-\nu \left(\tau \right)\right|}^{2}}\ {\rm{for}}\ {\rm{all}} \ \varpi , \nu \in \mathfrak{C} \ {\rm{and}} \ \mathfrak{ȓ} > 0, |
and
R\left(\varpi \left(\tau \right), \nu \left(\tau \right), ȓ\right) = \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{{\left|\varpi \left(\tau \right)-\nu \left(\tau \right)\right|}^{2}}{ȓ} \ {\rm{for}} \ {\rm{all}} \ \varpi , \nu \in \mathfrak{C} \ {\rm{and}}\ \mathfrak{ȓ} > 0 , |
with continuous t-norm and continuous t-conorm define by ȇ*ā = ȇ.ā\ \mathrm{a}\mathrm{n}\mathrm{d}\ ȇ○ā = \mathrm{max}\left\{ȇ, ā\right\}. Define \xi, \mathfrak{Г}:\mathfrak{C}\times \mathfrak{C}\to \left[1, \infty \right) as
\xi \left(\varpi , \nu \right) = \left\{\begin{array}{c}\ \ \ 1\ \ \ \ \ \ {\rm{if}}\ \varpi = \nu \\ \frac{1+\mathrm{max}\left\{\varpi , \nu \right\}}{\mathrm{min}\left\{\varpi , \nu \right\}}\ {\rm{if}}\ \varpi \ne \nu \ne 0\end{array};\right. |
Then ({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, \mathit{\boldsymbol{P}}, \mathit{\boldsymbol{Q}}, \mathit{\boldsymbol{R}}, {*}, ○) be a complete controlled neutrosophic metric-like space.
Suppose that
\left|\mathrm{Л}\left(\tau, \upsilon \right)\varpi \left(\tau \right)-\mathrm{Л}\left(\tau, \upsilon \right)\nu \left(\tau \right)\right|\le \left|\varpi \left(\tau \right)-\nu \left(\tau \right)\right| for \varpi, \nu \in \mathfrak{C} , \theta \in (0, \ 1) and \forall \tau, \upsilon \in [\mathrm{{\rm{c}}}, \ \mathrm{а}] . Also, let {\mathrm{Л}\left(\tau, \upsilon \right)\left(\delta {\int }_{\mathrm{{\rm{c}}}}^{\mathrm{а}}d\upsilon \right)}^{2}\le \theta < 1. Then integral Eq (11) has a unique solution.
Proof. Define \xi :\mathfrak{C}\to \mathfrak{C} by
\xi \varpi \left(\tau \right) = \Lambda \left(\tau \right)+\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon \ {\rm{for}}\ {\rm{all}} \ \tau , \upsilon \in \left[{\rm{c}}, а\right] |
Now for all \varpi, \nu \in \mathfrak{C} , we deduce
P\left(\xi \varpi \left(\tau \right), \xi \nu \left(\tau \right), \theta ȓ\right) = \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{\theta ȓ}{\theta ȓ+{\left|\xi \varpi \left(\tau \right)-\xi \nu \left(\tau \right)\right|}^{2}} |
= \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{\theta ȓ}{\theta ȓ+{\left|\Lambda \left(\tau \right)+\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon -\Lambda \left(\tau \right)-\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon \right|}^{2}}\\ = \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{\theta ȓ}{\theta ȓ+{\left|\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon -\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon \right|}^{2}}\\ = \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{\theta ȓ}{\theta ȓ+{\left|Л\left(\tau , \upsilon \right)\varpi \left(\tau \right)-Л\left(\tau , \upsilon \right)\nu \left(\tau \right)\right|}^{2}{\left(\delta {\int }_{{\rm{c}}}^{а}d\upsilon \right)}^{2}}\\ \ge \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{ȓ}{ȓ+{\left|\varpi \left(\tau \right)-\nu \left(\tau \right)\right|}^{2}}\\ \ge P\left(\varpi \left(\tau \right), \nu \left(\tau \right), ȓ\right), |
Q\left(\xi \varpi \left(\tau \right), \xi \nu \left(\tau \right), \theta ȓ\right) = 1-\underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{\theta ȓ}{\theta ȓ+{\left|\xi \varpi \left(\tau \right)-\xi \nu \left(\tau \right)\right|}^{2}} |
= 1-\underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{\theta ȓ}{\theta ȓ+{\left|\Lambda \left(\tau \right)+\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon -\Lambda \left(\tau \right)-\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon \right|}^{2}} \\ = 1-\underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{\theta ȓ}{\theta ȓ+{\left|\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon -\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon \right|}^{2}}\\ = 1-\underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{\theta ȓ}{\theta ȓ+{\left|Л\left(\tau , \upsilon \right)\varpi \left(\tau \right)-Л\left(\tau , \upsilon \right)\nu \left(\tau \right)\right|}^{2}{\left(\delta {\int }_{{\rm{c}}}^{а}d\upsilon \right)}^{2}}\\ \le 1-\underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{ȓ}{ȓ+{\left|\varpi \left(\tau \right)-\nu \left(\tau \right)\right|}^{2}}\\ \le Q\left(\varpi \left(\tau \right), \nu \left(\tau \right), ȓ\right), |
and
R\left(\xi \varpi \left(\tau \right), \xi \nu \left(\tau \right), \theta ȓ\right) = \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{{\left|\xi \varpi \left(\tau \right)-\xi \nu \left(\tau \right)\right|}^{2}}{\theta ȓ} |
= \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{{\left|\Lambda \left(\tau \right)+\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon -\Lambda \left(\tau \right)-\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon \right|}^{2}}{\theta ȓ} \\ = \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{{\left|\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon -\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon \right|}^{2}}{\theta ȓ} \\ = \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{{\left|Л\left(\tau , \upsilon \right)\varpi \left(\tau \right)-Л\left(\tau , \upsilon \right)\nu \left(\tau \right)\right|}^{2}{\left(\delta {\int }_{{\rm{c}}}^{а}d\upsilon \right)}^{2}}{\theta ȓ}\\ \le \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{{\left|\varpi \left(\tau \right)-\nu \left(\tau \right)\right|}^{2}}{ȓ}\\ \le R\left(\varpi \left(\tau \right), \nu \left(\tau \right), ȓ\right). |
As a result, all of the conditions of Theorem 3.1 are satisfied and operator \xi has a unique fixed point. This indicates that an integral Eq (11) has a unique solution.
In this manuscript, we introduced the notion of controlled neutrosophic metric-like spaces as a generalization of a neutrosophic metric space and established some new type of fixed point theorems for contraction mappings in this new setting. Moreover, we provided the non-trivial examples with graphical analysis to demonstrate the viability of the proposed methods. Also, our structure is more general than the controlled fuzzy metric space and fuzzy metric like space and neutrosophic metric space. Also, our results and notions expand and generalize a number of previously published results.
The authors declare no conflict of interest.
[1] | P. E. Kloden and E. Platen, Numerical solution of stochastic differential equations, Springer-Verlag, Berlin Heidelberg, 1992. |
[2] | W. Liu and Z. Lin, Strong approximation for a class of stationary processes, Stoch. Proc. Appl., 119 (2009), 249-280. |
[3] | X. Mao, Stochastic differential equations and applications, second edition. Horwood Publishing Limited, Chichester, 2008. |
[4] | H.Takahashi, S. Kanagawa and K. Yoshihara, Asymptotic behavior of solutions of some difference equations defined by weakly dependent random vectors, Stoch. Anal. Appl., 33 (2015), 740-755. |
[5] | H. Takahashi, T. Saigo, S. Kanagawa and K. Yoshihara, Optimal portfolios based on weakly dependent data, Dyn. Syst. Differ. Equ. Appl. , AIMS Proceedings, (2015), 1041-1049. |
[6] | H.Takahashi, T. Saigo and K. Yoshihara, Approximation of optimal prices when basic data are weakly dependent, Dyn. Contin. Discrete Impuls. Syst. Ser. B, 23 (2016), 217-230. |
[7] | K. Yoshihara, Asymptotic behavior of solutions of Black-Scholes type equations based on weakly dependent random variables, Yokohama Math. J., 58 (2012), 1-15. |
1. | Egor V. Yakovlev, Ivan V. Simkin, Anastasiya A. Shirokova, Nataliya A. Kolotieva, Svetlana V. Novikova, Artur D. Nasyrov, Ilya R. Denisenko, Konstantin D. Gursky, Ivan N. Shishkov, Diana E. Narzaeva, Alla B. Salmina, Stanislav O. Yurchenko, Nikita P. Kryuchkov, Machine learning approach for recognition and morphological analysis of isolated astrocytes in phase contrast microscopy, 2024, 14, 2045-2322, 10.1038/s41598-024-59773-2 | |
2. | Veronika Kopylova, Stanislav Boronovskiy, Yaroslav Nartsissov, Approaches to vascular network, blood flow, and metabolite distribution modeling in brain tissue, 2023, 15, 1867-2450, 1335, 10.1007/s12551-023-01106-0 |