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Abstract: It is well-known that under suitable conditions there exists a unique solution of a d-
dimensional linear stochastic differential equation. The explicit expression of the solution, however, is
not given in general. Hence, numerical methods to obtain approximate solutions are useful for such
stochastic differential equations. In this paper, we consider stochastic difference equations correspond-
ing to linear stochastic differential equations. The difference equations are constructed by weakly
dependent random variables, and this formulation is raised by the view points of time series. We show
a convergence theorem on the stochastic difference equations.
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1. Introduction

Stochastic differential equations have been used to describe stochastic models in many areas. Under
suitable conditions, a stochastic differential equation has a unique solution, and the representation of
the solution is given by a stochastic integral. To express the explicit solutions of stochastic differential
equations, numerical methods on stochastic differential equations have been well established. For
example, we refer [1] and [3].

In the theory of mathematical finance, Black-Scholes type stochastic differential equation is an
important example. Let {W(t)} be a standard one-dimensional Wiener process. For fixed constants
µ ∈ R and σ > 0, Black-Scholes model is given by the following stochastic differential equation:

dX(t) = X(t)(νdt + σdW(t)), 0 ≤ t ≤ T, (1.1)
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where T is a maturity. Fixing n ∈ N, we observe the stochastic differential equation at times {tk =

kT/n, k = 1, 2, . . . , n}. To simplify the problem, we consider the case where ν = 0. By the Euler-
Maruyama scheme, we can consider an approximation of the solution of (1.1) such that

X(tk) − X(tk−1) ' σX(tk−1){W(tk) −W(tk−1)}, k = 1, 2, . . . , n,

where ' means nearly equal to. We rewrite the approximation above such that

σ{W(tk) −W(tk−1)} '
X(tk) − X(tk−1)

X(tk−1)
.

In mathematical finance, we regard the difference W(tk) −W(tk−1) as a rate of returns. For the Black-
Scholes model, the difference is given by a sequence of independent and identically distributed random
variables. If we consider a stochastic difference equation corresponding to the stochastic differential
equation (1.1), then time series analysis for the difference can be investigated. From the view of
time series analysis, it is natural to consider the model based on dependent data. For the model, the
difference should be given by a sequence of dependent random variables.

In [7], Yoshihara studied a stochastic differential equation such that

X(tk) − X(tk−1) = (ν + σξk−1)X(tk−1),

where {ξk} is a strictly stationary stochastic sequence. This difference equation corresponds to a Black-
Scholes type stochastic differential equation. Under suitable conditions on {ξk}, Yoshihara showed an
almost sure convergence theorem for the solution of the difference equation above by using results
related to strong Wiener approximations of partial sums of some dependent random variables. Yoshi-
hara’s result was extended to multi-dimensional cases in [4], and application to finance models were
also considered in [5] and [6]. Following the previous studies, we consider strong approximation of
linear stochastic differential equations by weakly dependent random variables in this paper.

Let {ξk} = {(ξk,1, . . . , ξk,d)} be a strictly stationary sequence of d-dimensional centered random vec-
tors defined on a complete probability space (Ω,F , P) and satisfies the strong mixing condition

α(n) = sup
A∈M0

−∞B∈M∞n

|P(AB) − P(A)P(B)| → 0 (n→ ∞), (1.2)

where Mb
a(a < b) denotes the σ-algebra generated by {ξa, . . . , ξb}. Under some conditions on {ξk},

which shall be mentioned below, there exists a d × d matrix Γ = (γq,q′)q,q′=1,...,d such that
γq,q = Eξ2

1,q + 2
∞∑

i=2

Eξ1,qξi,q,

γq,q′ = Eξ1,qξ1,q′ +

∞∑
i=2

(Eξ1,qξi,q′ + ξ1,q′ξi,q).
(1.3)

We write

R = (rq,q′)q,q′=1,...,d = (Eξ1,qξ1,q′)q,q′=1,...,d. (1.4)
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We remark that if {ξk} is a sequence of independent and identically distributed Rd-valued random
variables, then Γ equals to R. In the paper, we always assume that d × d matrix Γ and R are always
positive definite. Let {W(t), t ≥ 0} = {(W1(t), . . . ,Wd(t)), t ≥ 0} be a d-dimensional Wiener process
with covariance matrix Γ, i.e.,

EW(t)W(t)T = tΓ for all t ≥ 0,

where WT is the transpose of the matrix W and set {Ft, t ≥ 0} as a filtration generated by the Wiener
process.

For a stationary sequence {ξk}, the following strong invariance principle was shown by Liu and Lin
[2]. We remark that their result holds under more general conditions:

Proposition 1.1. Let {ξk} be a stationary strong mixing sequence of centered d-dimensional random
vectors. Assume that

(i) E[ξk] = 0,
(ii) ξk has the third moment,

(iii) for some τ > 0 there exists positive constant c such that α(n) ≤ cn−3(1+τ).

Then, on a richer probability space we can redefine the sequence {ξk} together with a d-dimensional
Brownian motion {W(t)} whose covariance matrix is Γ such that∣∣∣∣∣∣∣∑k≤t

ξk −W(t)

∣∣∣∣∣∣∣ = O(t1/4) (1.5)

almost surely, where O(t) is the Landau notation, that is, O(t) is any R-valued sequence for which
lim supt→∞(O(t)/t) < ∞.

Afterward, for the strong approximation (1.5) of Proposition 1.1 we use a notation such that∑
k≤t

ξk ⇒W(t) a.s.

We denote by An → A a.s. the almost surely convergence of random variables.

2. Setting and result

Let A(t), B1(t), . . . , Bd(t) be p× p-matrix functions and a(t), b1(t), . . . , bd(t) be p-dimensional vector
functions. We assume that all components of the above matrix and vector functions have continuous
bounded derivatives on [0,∞). On (Ω,F , P), we denote a d-dimensional Wiener process with covari-
ance matrix Γ by {W̃(t), t ≥ 0} = {(W̃1(t), . . . , W̃d(t)), t ≥ 0}. It is known that the d-dimensional linear
stochastic differential equation

dX(t) = {A(t)X(t) + a(t)}dt +

d∑
q=1

{Bq(t)X(t) + bq(t)}dW̃q(t),

X(0) = x ∈ Rp

(2.1)
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has a unique solution X(t), which is given by

Φ(t)

x +

∫ t

0
Φ(s)−1

a(s) −
d∑

q=1

Bq(s)bq(s)

 ds +

d∑
q=1

∫ t

o
Φ(s)−1bq(s)dW̃q(s)

 , (2.2)

where Φ(t) denotes the solution of the matrix stochastic differential equation such that

dΦ(t) = A(t)Φ(t)dt +

d∑
q=1

Bq(t)Φ(t)dW̃q(t),

Φ(0) = I,
(2.3)

where I denote the identity matrix.
We remark that unlike the scalar homogeneous linear equation, we cannot solve (2.3) explicitly for

its fundamental solution Φ(t), even when all of the matrices are constant. If A, B1, . . . , Bd are constant
matrices and commutative, then we obtain the following explicit expression for the fundamental matrix
solution:

Φ̃(t) = exp


A −

1
2

R
d∑

q=1

B2
q

 t −
d∑

q=1

BqW̃q(t)

 .
See Section 2.2 in [1] for more detail. Hence, approximation of solution of stochastic differential
equation is a critical tool.

We fix T > 0 arbitrarily. For an arbitrary positive integer n, let m = [n1/6] and l = [n/m], where [x]
is a floor function. Using them, we define time point for a sufficiently large n such that si, j =

( i
l

+
j

lm

)
T , i = 0, . . . , l − 1, j = 1, . . .m,

s0,0 = 0.
(2.4)

We identify sk,0 with sk−1,m for k = 1, . . . , l.
Corresponding to (2.1), we consider the following difference equation:

∆X(n)(si, j) = X(n)(si, j) − X(n)(si, j−1)

:=
{
A(si, j−1)X(n)(si, j−1) + a(si, j−1)

} T
lm

+

d∑
q=1

{
Bq(si, j−1)X(n)(si, j−1) + bq(si, j−1)

}
ξim+ j,q

√
T
lm
,

X(n)(0) = x ∈ Rp.

(2.5)

In addition, corresponding to (2.3), we also consider the following difference equation:

∆Φ(n)(si, j) = Φ(n)(si, j) − Φ(n)(si, j−1)

:=

A(si, j−1)
T
lm

+

d∑
q=1

Bq(si, j−1)ξim+ j,q

√
T
lm

 Φ(n)(si, j−1),

Φ(n)(0) = I.

(2.6)

For the stochastic difference equation (2.6), we obtain a convergence result by using (i) of Theorem 1
and Theorem 2 in [4].
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Proposition 2.1. We assume that a strictly stationary strong mixing sequence {ξ} satisfies that (i)
E[|ξi|

6+δ1] < ∞ with δ1 > 0 and (ii) α(n) ≤ cn−3(1+τ) with some τ(δ) = τ > 0. Then, we have the
following:

(1) The solution of (2.6) (we denote by Φ(n)(T )) is given by

l−1∏
i=0

m∏
j=1

exp

I + A(si, j−1)
T
lm

+

d∑
q=1

Bq(si, j−1)ξim+ j,q

√
T
lm

 .
(2) On a richer probability space we can redefine the sequence {ξk} together with a d-dimensional

Brownian motion {W(t)} whose covariance matrix is Γ such that Φ(n)(T ) converges almost surely to a
matrix Φ(T ) which corresponds to the solution of the stochastic differential equation (2.3).

Using the solutions Φ(n)(T ) and Φ(T ), we obtain the solution of the stochastic difference (2.5) as
follows:

Theorem 2.1. Under the same assumptions as those in Proposition 2.1, we obtain the following:
(1) The solution of (2.5) (we denote by X(n)(T )) is given by

Φ(n)(T )
[
x +

l−1∑
i=0

m∑
j=1

Φ(n)(si, j)−1

a(si, j) +

d∑
q,q′=1

Bq(si, j−1)bq′ (si, j−1)ξim+ j,qξim+ j,q′

 T
lm

+

l−1∑
i=0

m∑
j=1

d∑
q=1

Φ(n)(si, j−1)−1bq(si, j−1)ξim+ j,q

√
T
lm

 .
(2) On a richer probability space we can redefine the sequence {ξk} together with a p-dimensional

Brownian motion {W(t)} whose covariance matrix is Γ such that X(n)(T ) converges almost surely to a
matrix X(T ) which corresponds to the solution of the stochastic differential equation (2.2).

3. Proof

Assertion (1) is shown by constructing X(n) in assertion (2). We consider the following difference
equation:

∆Z(n)(si, j) = Z(n)(si, j) − Z(n)(si, j−1)

:= Φ(n)(si, j−1)−1

a(si, j−1) −
d∑

q,q′=1

Bq(si, j−1)bq′(si, j−1)ξim+ j,qξim+ j,q′

 T
lm

+Φ(n)(si, j−1)−1
d∑

q=1

bq(si, j−1)ξim+ j,q

√
T
lm
,

Z(0) = x.

Then for each (si, j)0≤i≤l−1,1≤ j≤m we have that

∆(Φ(n)Z(n)) = ∆Φ(n) Z(n) + Φ(n) ∆Z(n) + ∆Φ(n) ∆Z(n)

=: U (n)
1 + U (n)

2 + U (n)
3 . (3.1)
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Firstly, we put that X(t) := Φ(t)Z(t). Then, Theorem 1 in [4] implies that

l−1∑
i=0

m∑
j=1

U (n)
1 =

l−1∑
i=0

m∑
j=1

A(si, j−1)
T
lm

+

d∑
q=1

Bq(si, j−1)ξim+ j,q

√
T
lm

 Φ(n)(si, j−1)Z(n)(si, j−1)

⇒

∫ T

0
A(s)X(s)ds +

d∑
q=1

∫ T

0
Bq(s)X(s)dWq(s) a.s. (3.2)

Secondly, we consider that

l−1∑
i=0

m∑
j=1

U (n)
2 =

l−1∑
i=0

m∑
j=1

a(si, j)
T
lm
−

l−1∑
i=0

m∑
j=1

d∑
q,q′=1

Bq(si, j−1)bq′(si, j−1)ξim+ j,qξim+ j,q′
T
lm

+

l−1∑
i=0

m∑
j=1

d∑
q=1

bq(si, j−1)ξim+ j,q

√
T
lm

=: V (n)
1 − V (n)

2 + V (n)
3 . (3.3)

Since a(t) has continuous bounded derivatives on [0,∞), it is obvious that

V (n)
1 →

∫ T

0
a(s)ds. (3.4)

For V (n)
2 , we use the law of large numbers for {ξk}. Then, we obtain that

V (n)
2 →

d∑
q,q′=1

rq,q′

∫ T

0
Bq(s)bq′(s)ds a.s. (3.5)

Further, using Theorem 1 in [4] again, we have that

V (n)
3 ⇒

d∑
q=1

∫ T

0
bq(s)dWq(s) a.s. (3.6)

Finally, we consider that

l−1∑
i=0

m∑
j=1

U (n)
3 =

l−1∑
i=0

m∑
j=1

A(si, j−1)
T
lm

+

d∑
q=1

Bq(si, j−1)ξim+ j,q

√
T
lm


a(si, j−1) −

d∑
q,q′=1

Bq(si, j−1)bq′(si, j−1)ξim+ j,qξim+ j,q′

 T
lm

+

d∑
q=1

bq(si, j−1)ξim+ j,q

√
T
lm

 .
(3.7)

Since under the condition of the theorem on {ξk}, there exists a covariant matrix Γ. We thus obtain that
the right hand side of (3.7) equals almost surely to

T
lm

l−1∑
i=0

m∑
j=1

d∑
q,q′=1

Bq(si, j−1)bq′(si, j−1)ξm(i−1)+ j,qξm(i−1)+ j,q′ + O((lm)−3/2). (3.8)
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To estimate the first term of the right hand side of (3.8), we consider the term of random variables.
Then we obtain that

1
lm

l−1∑
i=0

m∑
j=1

ξm(i−1)+ j,qξm(i−1)+ j,q′ → rq,q′ a.s. (3.9)

In addition, all components of Bq and bq(1 ≤ q ≤ p) have continuous bounded derivatives. Thus, there
exists some c > 0 such that for any 1 ≤ j ≤ m

‖Bq(si, j−1)bq′(si, j−1) − Bq(si,0)bq′(si,0)‖

≤

j−1∑
k=1

‖Bq(si,k)bq′(si,k) − Bq(si,0)bq′(si,0)‖

≤
c( j − 1)

lm
≤

c
l
,

which implies that

T
lm

l−1∑
i=0

m∑
j=1

Bq(si, j−1)bq′(si, j−1)ξm(i−1)+ j,qξm(i−1)+ j,q′ → rq,q′

∫ T

0
Bq(s)bq′(s)ds a.s. (3.10)

Hence, by (3.9) and (3.10) we obtain that

l−1∑
i=0

m∑
j=1

∆Φ(n)(si, j)∆Z(n)(si, j)→
p∑

q,q′=1

rq,q′

∫ T

0
Bq(s)bq′(s)ds a.s. (3.11)

Combining (3.1), (3.2), (3.3)-(3.6), (3.7) and (3.11), we obtain that

l−1∑
i=0

m∑
j=1

∆(Φ(n)(si, j)Z(n)(si, j))

⇒

∫ T

0
A(s)X(s)ds +

p∑
q=1

Bq(s)X(s)dWq(s) +

∫ T

0
a(s)ds +

p∑
q=1

∫ T

0
bq(s)dWq(s) a.s.

=

∫ T

0
(A(s)X(s) + a(s))ds +

p∑
q=1

∫ T

0
(Bq(s)X(s) + bq(s))dWq(s) a.s.

On the other hand, the solution X(n)(T ) of the difference equation

∆X(n)(si, j) = X(n)(si, j) − X(n)(si, j−1)
:= ∆(Φ(n)(si, j)Z(n)(si, j)),

X(n)(0) = x

satisfies that

X(n)(T ) = x +

l−1∑
i=0

m∑
j=1

∆X(n)(si, j).
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Thus, we obtain that

X(n)(T )⇒ x +

∫ T

0
(A(s)X(s) + a(s))ds +

p∑
q=1

∫ T

0
(Bq(s)X(s) + bq)dWq(s) a.s,

which shows assertion (2) of Theorem 2.1. �
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