AIMS Mathematics, 2017, 2(2): 230-243. doi: 10.3934/Math.2017.2.230.

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Monotonicity of eigenvalues of Witten-Laplace operator along the Ricci-Bourguignon flow

Department of Mathematics, Faculty of Sciences, Imam Khomeini International University, Qazvin, Iran.

In this article we will investigate monotonicity for the first eigenvalue problem of the Witten-Laplace operator acting on the space of functions along the Ricci-Bourguignon flow on closed manifolds. We find the first variation formula for the eigenvalues of Witten-Laplacian on a closed manifold evolving by the Ricci-Bourguignoni flow and construct various monotonic quantities. At the end we find some applications in 2-dimensional and 3-dimensional manifolds and give an example.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Eigenvalue; Laplace; Ricci-Bourguignon flow; Riemannian manifold; Eigenvector

Citation: Shahroud Azami. Monotonicity of eigenvalues of Witten-Laplace operator along the Ricci-Bourguignon flow. AIMS Mathematics, 2017, 2(2): 230-243. doi: 10.3934/Math.2017.2.230

References

  • 1. D. Bakry and M. Emery, Diffusion hypercontractives, Sém. Prob. XIX, Lect. Notes in Math. 1123 (1985), 177-206.
  • 2. J. P. Bourguignon, Ricci curvature and Einstein metrics, Global differential geometry and global analysis, Lecture nots in Math., 838 (1981), 42-63.
  • 3. X. D. Cao, First eigenvalues of geometric operators under the Ricci flow, Proc. Amer. Math. Soc., 136 (2008), 4075-4078.
  • 4. G. Catino, L. Cremaschi, Z. Djadli, C. Mantegazza and L. Mazzieri, The Ricci-Bourguignon flow, Pacific J. Math., 2015.
  • 5. L. F. D. Cerbo, Eigenvalues of the Laplacian under the Ricci flow, Rendiconti di Mathematica, Serie VII, 27 (2007), 183-195.
  • 6. S. Y. Cheng, Eigenfunctions and eigenvalues of Laplacian, Proc. Symp. Pure Math., 27 (1975), 185-193.
  • 7. Q. -M. Cheng and H. C. Yang, Estimates on eigenvalues of Laplacian, Math. Ann., 331 (2005), 445-460.
  • 8. S. Fang and F. Yang, First eigenvalues of geometric operators under the Yamabe flow, Bull. Korean Math. Soc., 53 (2016), 1113-1122.
  • 9. E. M. Harrell II and P. L. Michel, Commutator bounds for eigenvalues with applications to spectral geometry, Comm. Partial Di erential Equations, 19 (1994), 2037-2055.
  • 10. P. F. Leung, On the consecutive eigenvalues of the Laplacian of a compact minimal submanifold in a sphere, J. Aust. Math. Soc. 50 (1991), 409-426.
  • 11. J. F. Li, Eigenvalues and energy functionals with monotonicity formula under Ricci flow, Math. Ann., 338 (2007), 927-946.
  • 12. G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv preprint math, 0211159, 2002.
  • 13. F. S. Wen, X. H. Feng, Z. Peng, Evolution and monotonicity of eigenvalues under the Ricci flow, Sci. China Math., 58 (2015), 1737-1744.
  • 14. J. Y. Wu, First eigenvalue monotonicity for the p-Laplace operator under the Ricci flow, Acta Mathematica Sinica, 27 (2011), 1591-1598.
  • 15. F. Zeng, Q. He, B. Chen, Monotonicity of eigenvalues of geometric operators along the Ricci-Bourguignon flow, Arxiv, 152.08158v1, 2016.

 

Reader Comments

your name: *   your email: *  

Copyright Info: © 2017, Shahroud Azami, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved