Review Topical Sections

Current status of lectin-based cancer diagnosis and therapy

  • Received: 10 August 2016 Accepted: 03 January 2017 Published: 17 January 2017
  • Lectins are carbohydrate recognizing proteins originating from diverse origins in nature, including animals, plants, viruses, bacteria and fungus. Due to their exceptional glycan recognition property, they have found many applications in analytical chemistry, biotechnology and surface chemistry. This manuscript explores the current use of lectins for cancer diagnosis and therapy. Moreover, novel drug delivery strategies aiming at improving lectin’s stability, reducing their undesired toxicity and controlling their non-specific binding interactions are discussed. We also explore the nanotechnology application of lectins for cancer targeting and imaging. Although many investigations are being conducted in the field of lectinology, there is still a limited clinical translation of the major findings reported due to lectins stability and toxicity concerns. Therefore, new investigations of safe and effective drug delivery system strategies for lectins are warranted in order to take full advantage of these proteins.

    Citation: Fohona S. Coulibaly, Bi-Botti C. Youan. Current status of lectin-based cancer diagnosis and therapy[J]. AIMS Molecular Science, 2017, 4(1): 1-27. doi: 10.3934/molsci.2017.1.1

    Related Papers:

  • Lectins are carbohydrate recognizing proteins originating from diverse origins in nature, including animals, plants, viruses, bacteria and fungus. Due to their exceptional glycan recognition property, they have found many applications in analytical chemistry, biotechnology and surface chemistry. This manuscript explores the current use of lectins for cancer diagnosis and therapy. Moreover, novel drug delivery strategies aiming at improving lectin’s stability, reducing their undesired toxicity and controlling their non-specific binding interactions are discussed. We also explore the nanotechnology application of lectins for cancer targeting and imaging. Although many investigations are being conducted in the field of lectinology, there is still a limited clinical translation of the major findings reported due to lectins stability and toxicity concerns. Therefore, new investigations of safe and effective drug delivery system strategies for lectins are warranted in order to take full advantage of these proteins.

    [1] Boyd WC, Shapleigh E (1954) Specific Precipitating Activity of Plant Agglutinins (Lectins). Science 119: 419.
    [2] Varrot A, Basheer SM, Imberty A (2013) Fungal lectins: structure, function and potential applications. Curr Opin Struct Biol 23: 678-685. doi: 10.1016/
    [3] Kobayashi Y, Kawagishi H (2014) Fungal lectins: a growing family. Methods Mol Biol 1200: 15-38. doi: 10.1007/978-1-4939-1292-6_2
    [4] Sharon N (1987) Bacterial lectins, cell-cell recognition and infectious disease. FEBS Lett 217: 145-157. doi: 10.1016/0014-5793(87)80654-3
    [5] Kilpatrick DC (2002) Animal lectins: a historical introduction and overview. Biochim Biophys Acta 1572: 187-197. doi: 10.1016/S0304-4165(02)00308-2
    [6] Rudiger H, Gabius HJ (2001) Plant lectins: occurrence, biochemistry, functions and applications. Glycoconj J 18: 589-613. doi: 10.1023/A:1020687518999
    [7] Varki A, Etzler ME, Cummings RD, et al. (2009) Discovery and Classification of Glycan-Binding Proteins, In: Varki A, Cummings RD, Esko JD, et al., Essentials of Glycobiology, 2 Eds., Cold Spring Harbor (New York).
    [8] Peumans WJ, Van Damme EJ, Barre A, et al. (2001) Classification of plant lectins in families of structurally and evolutionary related proteins. Adv Exp Med Biol 491: 27-54. doi: 10.1007/978-1-4615-1267-7_3
    [9] Fujimoto Z, Tateno H, Hirabayashi J (2014) Lectin structures: classification based on the 3-D structures. Methods Mol Biol 1200: 579-606. doi: 10.1007/978-1-4939-1292-6_46
    [10] Jayawardena HS, Wang X, Yan M (2013) Classification of lectins by pattern recognition using glyconanoparticles. Anal Chem 85: 10277-10281. doi: 10.1021/ac402069j
    [11] Kumar KK, Chandra KL, Sumanthi J, et al. (2012) Biological role of lectins: A review. J Orofac Sci 4: 20-25. doi: 10.4103/0975-8844.99883
    [12] Nathan Sharon HL (2007) Lectins: Functions. Springer Science & Business Media. 333-366.
    [13] Bies C, Lehr CM, Woodley JF (2004) Lectin-mediated drug targeting: history and applications. Adv Drug Deliv Rev 56: 425-435. doi: 10.1016/j.addr.2003.10.030
    [14] Ruiz-May E, Thannhauser TW, Zhang S, et al. (2012) Analytical technologies for identification and characterization of the plant N-glycoproteome. Front Plant Sci 3: 150.
    [15] Haab BB (2012) Using lectins in biomarker research: addressing the limitations of sensitivity and availability. Proteomics Clin Appl 6: 346-350. doi: 10.1002/prca.201200014
    [16] Haab BB (2010) Antibody-lectin sandwich arrays for biomarker and glycobiology studies. Expert Rev Proteomics 7: 9-11. doi: 10.1586/epr.09.102
    [17] Haab BB, Yue T (2011) High-throughput studies of protein glycoforms using antibody-lectin sandwich arrays. Methods Mol Biol 785: 223-236. doi: 10.1007/978-1-61779-286-1_15
    [18] Santos AFS, da Silva MDC, Napoleão TH, et al. (2014) Lectins: Function, structure, biological properties and potential applications. Curr Top Pept Protein Res 15: 41-62.
    [19] Trigueros V, Wang M, Pere D, et al. (2000) Modulation of a lectin insecticidal activity by carbohydrates. Arch Insect Biochem Physiol 45: 175-179. doi: 10.1002/1520-6327(200012)45:4<175::AID-ARCH5>3.0.CO;2-3
    [20] Macedo ML, Oliveira CF, Oliveira CT (2015) Insecticidal activity of plant lectins and potential application in crop protection. Molecules 20: 2014-2033. doi: 10.3390/molecules20022014
    [21] Khiyami MA, Almoammar H, Awad YM, et al. (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Biotechnol Equip 28: 775-785. doi: 10.1080/13102818.2014.960739
    [22] Wang W, Yang Y, Wang S, et al. (2012) Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells. Nat Chem 4: 846-853. doi: 10.1038/nchem.1434
    [23] Safina G, Duran Iu B, Alasel M, et al. (2011) Surface plasmon resonance for real-time study of lectin-carbohydrate interactions for the differentiation and identification of glycoproteins. Talanta 84: 1284-1290. doi: 10.1016/j.talanta.2011.01.030
    [24] Coulibaly FS, Youan B-BC (2014) Concanavalin A - Polysaccharides Binding Affinity Analysis Using A Quartz Crystal Microbalance. Biosens Bioelectron 59: 404-411. doi: 10.1016/j.bios.2014.03.040
    [25] De Mejia EG, Prisecaru VI (2005) Lectins as bioactive plant proteins: a potential in cancer treatment. Crit Rev Food Sci Nutr 45: 425-445. doi: 10.1080/10408390591034445
    [26] Abdullaev FI, de Mejia EG (1997) Antitumor effect of plant lectins. Nat Toxins 5: 157-163.
    [27] Vojdani A (2015) Lectins, agglutinins, and their roles in autoimmune reactivities. Altern Ther Health Med 21 Suppl 1: 46-51.
    [28] Vincent J, van Buul FJPHB (2014) Health effects of wheat lectins: A review. J Cereal Sci 59: 112–117. doi: 10.1016/j.jcs.2014.01.010
    [29] Stanley P (2011) Golgi Glycosylation. Cold Spring Harb Perspect Biol 3: a005199.
    [30] Prydz K (2015) Determinants of Glycosaminoglycan (GAG) Structure. Biomolecules 5: 2003-2022. doi: 10.3390/biom5032003
    [31] Mody R, Joshi S, Chaney W (1995) Use of lectins as diagnostic and therapeutic tools for cancer. J Pharmacol Toxicol Methods 33: 1-10. doi: 10.1016/1056-8719(94)00052-6
    [32] Tuccillo FM, de Laurentiis A, Palmieri C, et al. (2014) Aberrant glycosylation as biomarker for cancer: focus on CD43. Biomed Res Int 2014: 1-13.
    [33] Varki A, Kannagi R, Toole BP (2009) Glycosylation Changes in Cancer. In: Varki A, Cummings RD, Esko JD, et al., Essentials of Glycobiology, 2 Eds., Cold Spring Harbor (New York).
    [34] Kumamoto K, Goto Y, Sekikawa K, et al. (2001) Increased expression of UDP-galactose transporter messenger RNA in human colon cancer tissues and its implication in synthesis of Thomsen-Friedenreich antigen and sialyl Lewis A/X determinants. Cancer Res 61: 4620-4627.
    [35] Pinho SS, Reis CA (2015) Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 15: 540-555. doi: 10.1038/nrc3982
    [36] Couldrey C, Green JE (2000) Metastases: the glycan connection. Breast Cancer Res 2: 321-323. doi: 10.1186/bcr75
    [37] Miyoshi E, Moriwaki K, Terao N, et al. (2012) Fucosylation is a promising target for cancer diagnosis and therapy. Biomolecules 2: 34-45. doi: 10.3390/biom2010034
    [38] Chen CY, Jan YH, Juan YH, et al. (2013) Fucosyltransferase 8 as a functional regulator of nonsmall cell lung cancer. Proc Natl Acad Sci U S A 110: 630-635. doi: 10.1073/pnas.1220425110
    [39] Miyoshi E, Ito Y, Miyoshi Y (2010) Involvement of aberrant glycosylation in thyroid cancer. J Oncol 2010: 1-7.
    [40] Patel PS, Adhvaryu SG, Balar DB, et al. (1994) Clinical application of serum levels of sialic acid, fucose and seromucoid fraction as tumour markers in human leukemias. Anticancer Res 14: 747-751.
    [41] Kossowska B, Ferens-Sieczkowska M, Gancarz R, et al. (2005) Fucosylation of serum glycoproteins in lung cancer patients. Clin Chem Lab Med 43: 361-369.
    [42] Wiese TJ, Dunlap JA, Yorek MA (1994) L-fucose is accumulated via a specific transport system in eukaryotic cells. J Biol Chem 269: 22705-22711.
    [43] Shetty RK, Bhandary SK, Kali A (2013) Significance of Serum L-fucose Glycoprotein as Cancer Biomarker in Head and Neck Malignancies without Distant Metastasis. J Clin Diagn Res 7: 2818-2820.
    [44] Manjula S, Monteiro F, Rao Aroor A, et al. (2010) Assessment of serum L-fucose in brain tumor cases. Ann Indian Acad Neurol 13: 33-36. doi: 10.4103/0972-2327.61274
    [45] Noda K, Miyoshi E, Gu J, et al. (2003) Relationship between elevated FX expression and increased production of GDP-L-fucose, a common donor substrate for fucosylation in human hepatocellular carcinoma and hepatoma cell lines. Cancer Res 63: 6282-6289.
    [46] Kawamoto S, Moriwaki K, Nakagawa T, et al. (2011) Overexpression of alpha1,6-fucosyltransferase in hepatoma enhances expression of Golgi phosphoprotein 2 in a fucosylation-independent manner. Int J Oncol 39: 203-208.
    [47] Listinsky JJ, Listinsky CM, Alapati V, et al. (2001) Cell surface fucose ablation as a therapeutic strategy for malignant neoplasms. Adv Anat Pathol 8: 330-337. doi: 10.1097/00125480-200111000-00003
    [48] Yuan K, Listinsky CM, Singh RK, et al. (2008) Cell surface associated alpha-L-fucose moieties modulate human breast cancer neoplastic progression. Pathol Oncol Res 14: 145-156. doi: 10.1007/s12253-008-9036-x
    [49] Zhao YP, Xu XY, Fang M, et al. (2014) Decreased core-fucosylation contributes to malignancy in gastric cancer. PLoS One 9: e94536. doi: 10.1371/journal.pone.0094536
    [50] Listinsky JJ, Siegal GP, Listinsky CM (2011) The emerging importance of alpha-L-fucose in human breast cancer: a review. Am J Transl Res 3: 292-322.
    [51] Julien Sylvain DP, (2014) Sialic Acid and Cancer, In: Endo Tamao SHP, Hart W. Gerald, Wong Chi-Huey, Taniguchi Naoyuki, Glycoscience: Biology and Medicine, Tokyo: Springer Japan, 1-6.
    [52] Bull C, Stoel MA, den Brok MH, et al. (2014) Sialic acids sweeten a tumor's life. Cancer Res 74: 3199-3204. doi: 10.1158/0008-5472.CAN-14-0728
    [53] Bull C, Boltje TJ, Wassink M, et al. (2013) Targeting aberrant sialylation in cancer cells using a fluorinated sialic acid analog impairs adhesion, migration, and in vivo tumor growth. Mol Cancer Ther 12: 1935-1946. doi: 10.1158/1535-7163.MCT-13-0279
    [54] Hedlund M, Ng E, Varki A, et al. (2008) alpha 2-6-Linked sialic acids on N-glycans modulate carcinoma differentiation in vivo. Cancer Res 68: 388-394. doi: 10.1158/0008-5472.CAN-07-1340
    [55] Cui H, Lin Y, Yue L, et al. (2011) Differential expression of the alpha2,3-sialic acid residues in breast cancer is associated with metastatic potential. Oncol Rep 25: 1365-1371.
    [56] Park JJ, Lee M (2013) Increasing the alpha 2, 6 sialylation of glycoproteins may contribute to metastatic spread and therapeutic resistance in colorectal cancer. Gut Liver 7: 629-641. doi: 10.5009/gnl.2013.7.6.629
    [57] Crocker PR, Varki A (2001) Siglecs in the immune system. Immunology 103: 137-145. doi: 10.1046/j.0019-2805.2001.01241.x
    [58] Schultz MJ, Swindall AF, Bellis SL (2012) Regulation of the metastatic cell phenotype by sialylated glycans. Cancer Metastasis Rev 31: 501-518. doi: 10.1007/s10555-012-9359-7
    [59] Kizuka Y, Taniguchi N (2016) Enzymes for N-Glycan Branching and Their Genetic and Nongenetic Regulation in Cancer. Biomolecules 6: 1-21. doi: 10.3390/biom6010001
    [60] Tateno H, Nakamura-Tsuruta S, Hirabayashi J (2009) Comparative analysis of core-fucose-binding lectins from Lens culinaris and Pisum sativum using frontal affinity chromatography. Glycobiology 19: 527-536. doi: 10.1093/glycob/cwp016
    [61] Bialecki ES, Di Bisceglie AM (2005) Diagnosis of hepatocellular carcinoma. HPB (Oxford) 7: 26-34. doi: 10.1080/13651820410024049
    [62] Shimizu K, Taniichi T, Satomura S, et al. (1993) Establishment of assay kits for the determination of microheterogeneities of alpha-fetoprotein using lectin-affinity electrophoresis. Clin Chim Acta 214: 3-12. doi: 10.1016/0009-8981(93)90297-H
    [63] Monira PYK, Mamoru I, Yoriyuki N (2015) Plant Lectins in Therapeutic and Diagnostic Cancer Research. Int J Plant Biol Res 3: 1-6.
    [64] Leerapun A, Suravarapu SV, Bida JP, et al. (2007) The utility of Lens culinaris agglutinin-reactive alpha-fetoprotein in the diagnosis of hepatocellular carcinoma: evaluation in a United States referral population. Clin Gastroenterol Hepatol 5: 394-402. doi: 10.1016/j.cgh.2006.12.005
    [65] Kawai K, Kojima T, Miyanaga N, et al. (2005) Lectin-reactive alpha-fetoprotein as a marker for testicular tumor activity. Int J Urol 12: 284-289. doi: 10.1111/j.1442-2042.2005.01032.x
    [66] Wu AM, Wu JH, Yang Z, et al. (2008) Differential contributions of recognition factors of two plant lectins -Amaranthus caudatus lectin and Arachis hypogea agglutinin, reacting with Thomsen-Friedenreich disaccharide (Galbeta1-3GalNAcalpha1-Ser/Thr). Biochimie 90: 1769-1780. doi: 10.1016/j.biochi.2008.08.001
    [67] Badr HA, Alsadek DM, Darwish AA, et al. (2014) Lectin approaches for glycoproteomics in FDA-approved cancer biomarkers. Expert Rev Proteomics 11: 227-236. doi: 10.1586/14789450.2014.897611
    [68] Chen K, Gentry-Maharaj A, Burnell M, et al. (2013) Microarray Glycoprofiling of CA125 improves differential diagnosis of ovarian cancer. J Proteome Res 12: 1408-1418. doi: 10.1021/pr3010474
    [69] Lee JE, Mirza SP, Didier DN, et al. (2008) Identification of cell surface markers to differentiate rat endothelial and fibroblast cells using lectin arrays and LC-ESI-MS/MS. Anal Chem 80: 8269-8275. doi: 10.1021/ac801390b
    [70] Milutinović B, Janković B (2007) Analysis Of The Protein And Glycan Parts Of Ca125 Antigen From Human Amniotic Fluid. Arch Biol Sci 52: 97-103.
    [71] Wu J, Xie X, Liu Y, et al. (2012) Identification and confirmation of differentially expressed fucosylated glycoproteins in the serum of ovarian cancer patients using a lectin array and LC-MS/MS. J Proteome Res 11: 4541-4552. doi: 10.1021/pr300330z
    [72] Saldova R, Struwe WB, Wynne K, et al. (2013) Exploring the glycosylation of serum CA125. Int J Mol Sci 14: 15636-15654. doi: 10.3390/ijms140815636
    [73] Li C, Simeone DM, Brenner DE, et al. (2009) Pancreatic cancer serum detection using a lectin/glyco-antibody array method. J Proteome Res 8: 483-492. doi: 10.1021/pr8007013
    [74] Takeya A, Hosomi O, Nishijima H, et al. (2007) Presence of beta-linked GalNAc residues on N-glycans of human thyroglobulin. Life Sci 80: 538-545. doi: 10.1016/j.lfs.2006.10.004
    [75] Zhao L, Liu M, Gao Y, et al. (2013) Glycosylation of sera thyroglobulin antibody in patients with thyroid diseases. Eur J Endocrinol 168: 585-592. doi: 10.1530/EJE-12-0964
    [76] Hayes JH, Barry MJ (2014) Screening for prostate cancer with the prostate-specific antigen test: a review of current evidence. JAMA 311: 1143-1149. doi: 10.1001/jama.2014.2085
    [77] Pihikova D, Pakanova Z, Nemcovic M, et al. (2016) Sweet characterisation of prostate specific antigen using electrochemical lectin-based immunosensor assay and MALDI TOF/TOF analysis: Focus on sialic acid. Proteomics 16: 3085-3095. doi: 10.1002/pmic.201500463
    [78] Bhanushali PB, Badgujar SB, Tripathi MM, et al. (2016) Development of glycan specific lectin based immunoassay for detection of prostate specific antigen. Int J Biol Macromol 86: 468-480. doi: 10.1016/j.ijbiomac.2016.01.110
    [79] Batabyal SK, Majhi R, Basu PS (2009) Clinical utility of the interaction between lectin and serum prostate specific antigen in prostate cancer. Neoplasma 56: 68-71. doi: 10.4149/neo_2009_01_68
    [80] Movafagh A, Heydary H, Mortazavi-Tabatabaei SA, et al. (2011) The Significance Application of Indigenous Phytohemagglutinin (PHA) Mitogen on Metaphase and Cell Culture Procedure. Iran J Pharm Res 10: 895-903.
    [81] Kim YS, Son OL, Lee JY, et al. (2008) Lectin precipitation using phytohemagglutinin-L(4) coupled to avidin-agarose for serological biomarker discovery in colorectal cancer. Proteomics 8: 3229-3235. doi: 10.1002/pmic.200800034
    [82] Basu PS, Majhi R, Batabyal SK (2003) Lectin and serum-PSA interaction as a screening test for prostate cancer. Clin Biochem 36: 373-376. doi: 10.1016/S0009-9120(03)00050-X
    [83] Meany DL, Zhang Z, Sokoll LJ, et al. (2009) Glycoproteomics for prostate cancer detection: changes in serum PSA glycosylation patterns. J Proteome Res 8: 613-619. doi: 10.1021/pr8007539
    [84] Qiu Y, Patwa TH, Xu L, et al. (2008) Plasma glycoprotein profiling for colorectal cancer biomarker identification by lectin glycoarray and lectin blot. J Proteome Res 7: 1693-1703. doi: 10.1021/pr700706s
    [85] Fry SA, Afrough B, Lomax-Browne HJ, et al. (2011) Lectin microarray profiling of metastatic breast cancers. Glycobiology 21: 1060-1070. doi: 10.1093/glycob/cwr045
    [86] Narasimhan S, Freed JC, Schachter H (1986) The effect of a "bisecting" N-acetylglucosaminyl group on the binding of biantennary, complex oligosaccharides to concanavalin A, Phaseolus vulgaris erythroagglutinin (E-PHA), and Ricinus communis agglutinin (RCA-120) immobilized on agarose. Carbohydr Res 149: 65-83. doi: 10.1016/S0008-6215(00)90370-7
    [87] Wu L, Bao JK (2013) Anti-tumor and anti-viral activities of Galanthus nivalis agglutinin (GNA)-related lectins. Glycoconj J 30: 269-279. doi: 10.1007/s10719-012-9440-z
    [88] Yamaki K, Yoshino S (2011) Aspergillus oryzae lectin induces anaphylactoid oedema and mast cell activation through its interaction with fucose of mast cell-bound non-specific IgE. Scand J Immunol 74: 445-453. doi: 10.1111/j.1365-3083.2011.02598.x
    [89] You WK, Kasman I, Hu-Lowe DD, et al. (2010) Ricinus communis agglutinin I leads to rapid down-regulation of VEGFR-2 and endothelial cell apoptosis in tumor blood vessels. Am J Pathol 176: 1927-1940. doi: 10.2353/ajpath.2010.090561
    [90] Nishijima Y, Toyoda M, Yamazaki-Inoue M, et al. (2012) Glycan profiling of endometrial cancers using lectin microarray. Genes Cells 17: 826-836. doi: 10.1111/gtc.12003
    [91] Yamamoto K, Konami Y, Osawa T (2000) A chimeric lectin formed from Bauhinia purpurea lectin and Lens culinaris lectin recognizes a unique carbohydrate structure. J Biochem 127: 129-135. doi: 10.1093/oxfordjournals.jbchem.a022573
    [92] Pervin MKY, Isemura M, Nakamura Y (2015) Plant Lectins in Therapeutic and Diagnostic Cancer Research. Int J Plant Biol Res 3: 1-6.
    [93] Sharon N, Lis H (2004) History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 14: 53R-62R. doi: 10.1093/glycob/cwh122
    [94] Di Cola A, Frigerio L, Lord JM, et al. (2001) Ricin A chain without its partner B chain is degraded after retrotranslocation from the endoplasmic reticulum to the cytosol in plant cells. Proc Natl Acad Sci U S A 98: 14726-14731. doi: 10.1073/pnas.251386098
    [95] Montanaro L, Sperti S, Mattioli A, et al. (1975) Inhibition by ricin of protein synthesis in vitro. Inhibition of the binding of elongation factor 2 and of adenosine diphosphate-ribosylated elongation factor 2 to ribosomes. Biochem J 146: 127-131.
    [96] Montanaro L, Sperti S, Stirpe F (1973) Inhibition by ricin of protein synthesis in vitro. Ribosomes as the target of the toxin. Biochem J 136: 677-683.
    [97] Sperti S, Montanaro L, Mattioli A, et al. (1973) Inhibition by ricin of protein synthesis in vitro: 60 S ribosomal subunit as the target of the toxin. Biochem J 136: 813-815. doi: 10.1042/bj1360813
    [98] Lord MJ, Jolliffe NA, Marsden CJ, et al. (2003) Ricin. Mechanisms of cytotoxicity. Toxicol Rev 22: 53-64. doi: 10.2165/00139709-200322010-00006
    [99] Zou LB, Zhan JB (2005) Purification and anti-cancer activity of ricin. Zhejiang Da Xue Xue Bao Yi Xue Ban 34: 217-219.
    [100] Rao PV, Jayaraj R, Bhaskar AS, et al. (2005) Mechanism of ricin-induced apoptosis in human cervical cancer cells. Biochem Pharmacol 69: 855-865. doi: 10.1016/j.bcp.2004.11.010
    [101] Endo Y, Tsurugi K, Franz H (1988) The site of action of the A-chain of mistletoe lectin I on eukaryotic ribosomes. The RNA N-glycosidase activity of the protein. FEBS Lett 231: 378-380.
    [102] Lee CH, Kim JK, Kim HY, et al. (2009) Immunomodulating effects of Korean mistletoe lectin in vitro and in vivo. Int Immunopharmacol 9: 1555-1561. doi: 10.1016/j.intimp.2009.09.011
    [103] Hajto T, Krisztina F, Ildiko A, et al. (2007) Unexpected different binding of mistletoe lectins from plant extracts to immobilized lactose and N-acetylgalactosamine. Anal Chem Insights 2: 43-50.
    [104] Doser C, Doser M, Hulsen H, et al. (1989) Influence of carbohydrates on the cytotoxicity of an aqueous mistletoe drug and of purified mistletoe lectins tested on human T-leukemia cells. Arzneimittelforschung 39: 647-651.
    [105] Mikeska R, Wacker R, Arni R, et al. (2005) Mistletoe lectin I in complex with galactose and lactose reveals distinct sugar-binding properties. Acta Crystallogr Sect F Struct Biol Cryst Commun 61: 17-25. doi: 10.1107/S1744309104031501
    [106] Fu LL, Zhou CC, Yao S, et al. (2011) Plant lectins: targeting programmed cell death pathways as antitumor agents. Int J Biochem Cell Biol 43: 1442-1449. doi: 10.1016/j.biocel.2011.07.004
    [107] Thies A, Dautel P, Meyer A, et al. (2008) Low-dose mistletoe lectin-I reduces melanoma growth and spread in a scid mouse xenograft model. Br J Cancer 98: 106-112. doi: 10.1038/sj.bjc.6604106
    [108] Marvibaigi M, Supriyanto E, Amini N, et al. (2014) Preclinical and clinical effects of mistletoe against breast cancer. Biomed Res Int 2014: 1-15.
    [109] Lyu SY, Choi SH, Park WB (2002) Korean mistletoe lectin-induced apoptosis in hepatocarcinoma cells is associated with inhibition of telomerase via mitochondrial controlled pathway independent of p53. Arch Pharm Res 25: 93-101. doi: 10.1007/BF02975269
    [110] Choi SH, Lyu SY, Park WB (2004) Mistletoe lectin induces apoptosis and telomerase inhibition in human A253 cancer cells through dephosphorylation of Akt. Arch Pharm Res 27: 68-76. doi: 10.1007/BF02980049
    [111] Yau T, Dan X, Ng CC, et al. (2015) Lectins with Potential for Anti-Cancer Therapy. Molecules 20: 3791-3810. doi: 10.3390/molecules20033791
    [112] Zuo Z, Fan H, Wang X, et al. (2012) Purification and characterization of a novel plant lectin from Pinellia ternata with antineoplastic activity. SpringerPlus 1: 1-9. doi: 10.1186/2193-1801-1-1
    [113] Shi Z, Chen J, Li CY, et al. (2014) Antitumor effects of concanavalin A and Sophora flavescens lectin in vitro and in vivo. Acta Pharmacol Sin 35: 248-256. doi: 10.1038/aps.2013.151
    [114] Chambard JC, Lefloch R, Pouyssegur J, et al. (2007) ERK implication in cell cycle regulation. Biochim Biophys Acta 1773: 1299-1310. doi: 10.1016/j.bbamcr.2006.11.010
    [115] Mebratu Y, Tesfaigzi Y (2009) How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle 8: 1168-1175. doi: 10.4161/cc.8.8.8147
    [116] Guttridge DC, Albanese C, Reuther JY, et al. (1999) NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol 19: 5785-5799. doi: 10.1128/MCB.19.8.5785
    [117] Karin M (2009) NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol 1: a000141.
    [118] Wada JM, Penninger T (2004) Mitogen-activated protein kinases in apoptosis regulation. Oncogene 2838-2849.
    [119] Alcorta DA, Xiong Y, Phelps D, et al. (1996) Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci U S A 93: 13742-13747. doi: 10.1073/pnas.93.24.13742
    [120] Gartel AL, Radhakrishnan SK (2005) Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res 65: 3980-3985. doi: 10.1158/0008-5472.CAN-04-3995
    [121] Chang CP, Yang MC, Liu HS, et al. (2007) Concanavalin A induces autophagy in hepatoma cells and has a therapeutic effect in a murine in situ hepatoma model. Hepatology 45: 286-296. doi: 10.1002/hep.21509
    [122] Lei HY, Chang CP (2007) Induction of autophagy by concanavalin A and its application in anti-tumor therapy. Autophagy 3: 402-404. doi: 10.4161/auto.4280
    [123] Barth S, Glick D, Macleod KF (2010) Autophagy: assays and artifacts. J Pathol 221: 117-124. doi: 10.1002/path.2694
    [124] Chan YS, Ng TB (2013) A lectin with highly potent inhibitory activity toward breast cancer cells from edible tubers of Dioscorea opposita cv. nagaimo. PLoS One 8: e54212. doi: 10.1371/journal.pone.0054212
    [125] Panda PK, Mukhopadhyay S, Behera B, et al. (2014) Antitumor effect of soybean lectin mediated through reactive oxygen species-dependent pathway. Life Sci 111: 27-35. doi: 10.1016/j.lfs.2014.07.004
    [126] Alejandra VQ, Daniel AB, María CA (2015) Amaranth lectin presents potential antitumor properties. LWT Food Sci Technol 60: 478-485. doi: 10.1016/j.lwt.2014.07.035
    [127] Imtiaj HFI, Yasuhiro O, Syed RK (2014) Antiproliferative activity of cytotoxic tuber lectins from Solanum tuberosum against experimentally induced Ehrlich ascites carcinoma in mice. Afr J Biotechnol 13: 1679-1685. doi: 10.5897/AJB2014.13633
    [128] Kabir SR, Nabi MM, Nurujjaman M, et al. (2015) Momordica charantia seed lectin: toxicity, bacterial agglutination and antitumor properties. Appl Biochem Biotechnol 175: 2616-2628. doi: 10.1007/s12010-014-1449-2
    [129] Xu XC, Zhang ZW, Chen YE, et al. (2015) Antiviral and antitumor activities of the lectin extracted from Aspidistra elatior. Z Naturforsch C 70: 7-13.
    [130] Kajstura M, Halicka HD, Pryjma J, et al. (2007) Discontinuous fragmentation of nuclear DNA during apoptosis revealed by discrete "sub-G1" peaks on DNA content histograms. Cytometry A 71: 125-131.
    [131] Tatsuta T, Sugawara S, Takahashi K, et al. (2014) Leczyme: a new candidate drug for cancer therapy. Biomed Res Int 2014: 1-10.
    [132] Tatsuta T, Hosono M, Takahashi K, et al. (2014) Sialic acid-binding lectin (leczyme) induces apoptosis to malignant mesothelioma and exerts synergistic antitumor effects with TRAIL. Int J Oncol 44: 377-384.
    [133] Tatsuta T, Hosono M, Sugawara S, et al. (2013) Sialic acid-binding lectin (leczyme) induces caspase-dependent apoptosis-mediated mitochondrial perturbation in Jurkat cells. Int J Oncol 43: 1402-1412.
    [134] Cao X, Huo Z, Lu M, et al. (2010) Purification of lectin from larvae of the fly, Musca domestica, and in vitro anti-tumor activity in MCF-7 cells. J Insect Sci 10: 1-13.
    [135] Singh RS, Kaur HP, Kanwar JR (2016) Mushroom Lectins as Promising Anticancer Substances. Curr Protein Pept Sci 17: 797-807. doi: 10.2174/1389203717666160226144741
    [136] Hassan MA, Rouf R, Tiralongo E, et al. (2015) Mushroom lectins: specificity, structure and bioactivity relevant to human disease. Int J Mol Sci 16: 7802-7838. doi: 10.3390/ijms16047802
    [137] Yu L, Fernig DG, Smith JA, et al. (1993) Reversible inhibition of proliferation of epithelial cell lines by Agaricus bisporus (edible mushroom) lectin. Cancer Res 53: 4627-4632.
    [138] Yu LG, Fernig DG, White MR, et al. (1999) Edible mushroom (Agaricus bisporus) lectin, which reversibly inhibits epithelial cell proliferation, blocks nuclear localization sequence-dependent nuclear protein import. J Biol Chem 274: 4890-4899. doi: 10.1074/jbc.274.8.4890
    [139] Zhang G, Sun J, Wang H, et al. (2010) First isolation and characterization of a novel lectin with potent antitumor activity from a Russula mushroom. Phytomedicine 17: 775-781. doi: 10.1016/j.phymed.2010.02.001
    [140] Zhao C, Sun H, Tong X, et al. (2003) An antitumour lectin from the edible mushroom Agrocybe aegerita. Biochem J 374: 321-327. doi: 10.1042/bj20030300
    [141] Jiang S, Chen Y, Wang M, et al. (2012) A novel lectin from Agrocybe aegerita shows high binding selectivity for terminal N-acetylglucosamine. Biochem J 443: 369-378. doi: 10.1042/BJ20112061
    [142] Ernst E, Schmidt K, Steuer-Vogt MK (2003) Mistletoe for cancer? A systematic review of randomised clinical trials. Int J Cancer 107: 262-267.
    [143] Tammy Y, Xiuli D, Charlene CWN, et al. (2015) Lectins with Potential for Anti-Cancer Therapy Molecules 3791-3810.
    [144] Grossarth-Maticek R, Kiene H, Baumgartner SM, et al. (2001) Use of Iscador, an extract of European mistletoe (Viscum album), in cancer treatment: prospective nonrandomized and randomized matched-pair studies nested within a cohort study. Altern Ther Health Med 7: 57-66, 68-72, 74-76 passim.
    [145] Friess H, Beger HG, Kunz J, et al. (1996) Treatment of advanced pancreatic cancer with mistletoe: results of a pilot trial. Anticancer Res 16: 915-920.
    [146] Cazacu M, Oniu T, Lungoci C, et al. (2003) The influence of isorel on the advanced colorectal cancer. Cancer Biother Radiopharm 18: 27-34. doi: 10.1089/108497803321269304
    [147] Jeung IC, Chung YJ, Chae B, et al. (2015) Effect of helixor A on natural killer cell activity in endometriosis. Int J Med Sci 12: 42-47. doi: 10.7150/ijms.10076
    [148] Patel S, Suryakanta P (2014) Emerging roles of mistletoes in malignancy management. 3 Biotech 4: 13-20.
    [149] Alter G, Malenfant JM, Altfeld M (2004) CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods 294: 15-22. doi: 10.1016/j.jim.2004.08.008
    [150] Mengs U, Burger A, Wetzel D, et al. (2001) The standardized mistletoe preparation Lektinol has antitumoral potencies. Breast Cancer Res 3: A41. doi: 10.1186/bcr368
    [151] Poddar KH, Ames M, Hsin-Jen C, et al. (2013) Positive effect of mushrooms substituted for meat on body weight, body composition, and health parameters. A 1-year randomized clinical trial. Appetite 71: 379-387.
    [152] Twardowski P, Kanaya N, Frankel P, et al. (2015) A phase I trial of mushroom powder in patients with biochemically recurrent prostate cancer: Roles of cytokines and myeloid-derived suppressor cells for Agaricus bisporus-induced prostate-specific antigen responses. Cancer 121: 2942-2950. doi: 10.1002/cncr.29421
    [153] Torkelson CJ, Sweet E, Martzen MR, et al. (2012) Phase 1 Clinical Trial of Trametes versicolor in Women with Breast Cancer. ISRN Oncol 2012: 1-7.
    [154] Patel S, Goyal A (2012) Recent developments in mushrooms as anti-cancer therapeutics: a review. 3 Biotech 2: 1-15.
    [155] Troger W, Galun D, Reif M, et al. (2013) Viscum album [L.] extract therapy in patients with locally advanced or metastatic pancreatic cancer: a randomised clinical trial on overall survival. Eur J Cancer 49: 3788-3797.
    [156] Piao BK, Wang YX, Xie GR, et al. (2004) Impact of complementary mistletoe extract treatment on quality of life in breast, ovarian and non-small cell lung cancer patients. A prospective randomized controlled clinical trial. Anticancer Res 24: 303-309.
    [157] Schoffski P, Riggert S, Fumoleau P, et al. (2004) Phase I trial of intravenous aviscumine (rViscumin) in patients with solid tumors: a study of the European Organization for Research and Treatment of Cancer New Drug Development Group. Ann Oncol 15: 1816-1824. doi: 10.1093/annonc/mdh469
    [158] Bar-Sela G, Wollner M, Hammer L, et al. (2013) Mistletoe as complementary treatment in patients with advanced non-small-cell lung cancer treated with carboplatin-based combinations: a randomised phase II study. Eur J Cancer 49: 1058-1064. doi: 10.1016/j.ejca.2012.11.007
    [159] Semiglazov VF, Stepula VV, Dudov A, et al. (2006) Quality of life is improved in breast cancer patients by Standardised Mistletoe Extract PS76A2 during chemotherapy and follow-up: a randomised, placebo-controlled, double-blind, multicentre clinical trial. Anticancer Res 26: 1519-1529.
    [160] Schumacher K, Schneider B, Reich G, et al. (2003) Influence of postoperative complementary treatment with lectin-standardized mistletoe extract on breast cancer patients. A controlled epidemiological multicentric retrolective cohort study. Anticancer Res 23: 5081-5087.
    [161] Loewe-Mesch A, Kuehn JJ, Borho K, et al. (2008) [Adjuvant simultaneous mistletoe chemotherapy in breast cancer--influence on immunological parameters, quality of life and tolerability]. Forsch Komplementmed 15: 22-30. doi: 10.1159/000112860
    [162] Eisenbraun J, Scheer R, Kroz M, et al. (2011) Quality of life in breast cancer patients during chemotherapy and concurrent therapy with a mistletoe extract. Phytomedicine 18: 151-157. doi: 10.1016/j.phymed.2010.06.013
    [163] Li D, Chiu H, Zhang H, et al. (2013) Analysis of serum protein glycosylation by a differential lectin immunosorbant assay (dLISA). Clin Proteomics 10: 1-9. doi: 10.1186/1559-0275-10-1
    [164] Gray MP (1962) Process of preparing anti-h lectin: Google Patents US3053739 A, 1-4.
    [165] Andrade CA, Correia MT, Coelho LC, et al. (2004) Antitumor activity of Cratylia mollis lectin encapsulated into liposomes. Int J Pharm 278: 435-445. doi: 10.1016/j.ijpharm.2004.03.028
    [166] Lyu SY, Kwon YJ, Joo HJ, et al. (2004) Preparation of alginate/chitosan microcapsules and enteric coated granules of mistletoe lectin. Arch Pharm Res 27: 118-126. doi: 10.1007/BF02980057
    [167] Yang X, Wu L, Duan X, et al. (2014) Adenovirus carrying gene encoding Haliotis discus discus sialic acid binding lectin induces cancer cell apoptosis. Mar Drugs 12: 3994-4004. doi: 10.3390/md12073994
    [168] Mo Y, Lim LY (2004) Mechanistic study of the uptake of wheat germ agglutinin-conjugated PLGA nanoparticles by A549 cells. J Pharm Sci 93: 20-28. doi: 10.1002/jps.10507
    [169] Mo Y, Lim LY (2005) Preparation and in vitro anticancer activity of wheat germ agglutinin (WGA)-conjugated PLGA nanoparticles loaded with paclitaxel and isopropyl myristate. J Control Release 107: 30-42. doi: 10.1016/j.jconrel.2004.06.024
    [170] Wang C, Ho PC, Lim LY (2010) Wheat germ agglutinin-conjugated PLGA nanoparticles for enhanced intracellular delivery of paclitaxel to colon cancer cells. Int J Pharm 400: 201-210. doi: 10.1016/j.ijpharm.2010.08.023
    [171] Gao X, Wang T, Wu B, et al. (2008) Quantum dots for tracking cellular transport of lectin-functionalized nanoparticles. Biochem Biophys Res Commun 377: 35-40. doi: 10.1016/j.bbrc.2008.09.077
    [172] Wang J, Duan T, Sun L, et al. (2009) Functional gold nanoparticles for studying the interaction of lectin with glycosyl complex on living cellular surfaces. Anal Biochem 392: 77-82. doi: 10.1016/j.ab.2009.05.036
    [173] Obaid G, Chambrier I, Cook MJ, et al. (2012) Targeting the oncofetal Thomsen-Friedenreich disaccharide using jacalin-PEG phthalocyanine gold nanoparticles for photodynamic cancer therapy. Angew Chem Int Ed Engl 51: 6158-6162. doi: 10.1002/anie.201201468
    [174] Seymour LW, Ferry DR, Anderson D, et al. (2002) Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin. J Clin Oncol 20: 1668-1676. doi: 10.1200/JCO.20.6.1668
    [175] Cho J, Kushiro K, Teramura Y, et al. (2014) Lectin-tagged fluorescent polymeric nanoparticles for targeting of sialic acid on living cells. Biomacromolecules 15: 2012-2018. doi: 10.1021/bm500159r
    [176] Sakuma S, Yano T, Masaoka Y, et al. (2010) Detection of early colorectal cancer imaged with peanut agglutinin-immobilized fluorescent nanospheres having surface poly(N-vinylacetamide) chains. Eur J Pharm Biopharm 74: 451-460. doi: 10.1016/j.ejpb.2010.01.001
    [177] Singh A, Dilnawaz F, Sahoo SK (2011) Long circulating lectin conjugated paclitaxel loaded magnetic nanoparticles: a new theranostic avenue for leukemia therapy. PLoS One 6: e26803. doi: 10.1371/journal.pone.0026803
    [178] Nakata S, Kimura T (1985) Effect of ingested toxic bean lectins on the gastrointestinal tract in the rat. J Nutr 115: 1621-1629.
    [179] Vasconcelos IM, Oliveira JT (2004) Antinutritional properties of plant lectins. Toxicon 44: 385-403. doi: 10.1016/j.toxicon.2004.05.005
    [180] Freed DL (1999) Do dietary lectins cause disease? BMJ 318: 1023-1024. doi: 10.1136/bmj.318.7190.1023
    [181] Miyake K, Tanaka T, McNeil PL (2007) Lectin-based food poisoning: a new mechanism of protein toxicity. PLoS One 2: e687. doi: 10.1371/journal.pone.0000687
    [182] Xiong C, O'Keefe BR, Byrd RA, et al. (2006) Potent anti-HIV activity of scytovirin domain 1 peptide. Peptides 27: 1668-1675. doi: 10.1016/j.peptides.2006.03.018
    [183] Pashov A, MacLeod S, Saha R, et al. (2005) Concanavalin A binding to HIV envelope protein is less sensitive to mutations in glycosylation sites than monoclonal antibody 2G12. Glycobiology 15: 994-1001. doi: 10.1093/glycob/cwi083
    [184] Bewley CA, Gustafson KR, Boyd MR, et al. (1998) Solution structure of cyanovirin-N, a potent HIV-inactivating protein. Nat Struct Biol 5: 571-578. doi: 10.1038/828
    [185] Ferir G, Huskens D, Noppen S, et al. (2014) Broad anti-HIV activity of the Oscillatoria agardhii agglutinin homologue lectin family. J Antimicrob Chemother 69: 2746-2758. doi: 10.1093/jac/dku220
    [186] Schafranski MD, Stier A, Nisihara R, et al. (2004) Significantly increased levels of mannose-binding lectin (MBL) in rheumatic heart disease: a beneficial role for MBL deficiency. Clin Exp Immunol 138: 521-525. doi: 10.1111/j.1365-2249.2004.02645.x
    [187] Beltrame MH, Catarino SJ, Goeldner I, et al. (2014) The lectin pathway of complement and rheumatic heart disease. Front Pediatr 2: 1-14.
    [188] Tanaka M, Ikeda K, Suganami T, et al. (2014) Macrophage-inducible C-type lectin underlies obesity-induced adipose tissue fibrosis. Nat Commun 5: 1-13.
    [189] Guan LZ, Tong Q, Xu J (2015) Elevated serum levels of mannose-binding lectin and diabetic nephropathy in type 2 diabetes. PLoS One 10: e0119699. doi: 10.1371/journal.pone.0119699
    [190] Karathanasis E, Bhavane R, Annapragada AV (2007) Glucose-sensing pulmonary delivery of human insulin to the systemic circulation of rats. Int J Nanomedicine 2: 501-513.
    [191] Sharma G, Sharma AR, Nam JS, et al. (2015) Nanoparticle based insulin delivery system: the next generation efficient therapy for Type 1 diabetes. J Nanobiotechnology 13: 1-13. doi: 10.1186/s12951-014-0062-4
    [192] Argueso P (2013) Glycobiology of the ocular surface: mucins and lectins. Jpn J Ophthalmol 57: 150-155. doi: 10.1007/s10384-012-0228-2
    [193] Streeten BW, Gibson SA, Li ZY (1986) Lectin binding to pseudoexfoliative material and the ocular zonules. Invest Ophthalmol Vis Sci 27: 1516-1521.
    [194] Jha P, Bora PS, Bora NS (2007) The role of complement system in ocular diseases including uveitis and macular degeneration. Mol Immunol 44: 3901-3908. doi: 10.1016/j.molimm.2007.06.145
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (
通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索


Article views(8371) PDF downloads(2374) Cited by(23)

Article outline

Figures and Tables

Figures(2)  /  Tables(5)

Other Articles By Authors


DownLoad:  Full-Size Img  PowerPoint