Research article Topical Sections

Secondary metabolites with ecologic and medicinal implications in Anthemis cretica subsp. petraea from Majella National Park

  • Received: 04 July 2016 Accepted: 31 October 2016 Published: 09 November 2016
  • Anthemis cretica subsp. petraea (Ten.) Greuter is a plant belonging to the Asteraceae family and endemic of central Italy. In this paper, the first analysis of the ethanolic fraction of samples collected in the Majella National Park is reported. Seven compounds were isolated and identified namely parthenolide (1), 9α-acetoxyparthenolide (2), tamarixetin (3), 7-hydroxycoumarin (4), 4'-hydroxyacetophenone (5), leucanthemitol (conduritol F) (6), and proto-quercitol (7). Isolation of the compounds was achieved by means of column chromatography (CC), while their identification was achieved through spectroscopic and spectrometric techniques. The presence of these compounds is of great relevance. Compounds 1 and 2 are chemosystematic markers of the family, thus confirming the correct botanical classification of the species. Conversely, compounds 3, 5, and 7 were identified for the first time in the species and, instead, confirm the tendency of endemic entities to develop characteristic metabolite patterns in respect to cosmopolite species. Moreover, the presence of compounds 6 and 7 has ecologic implications and may be linked to this taxon’s adaption to dry environments. The production of these osmolytes may, in fact, represent the reason why this species is able to survive in extreme conditions of aridity. Lastly, from a medicinal standpoint, the isolated compounds are endowed with interesting biological activities and may justify, on a molecular base, the widespread traditional uses of the Anthemis species, as well as a basis for the use of the subspecies petraea.

    Citation: Alessandro Venditti, Claudio Frezza, Giacomo Rossi, Mirella Di Cecco, Giampiero Ciaschetti, Mauro Serafini, Armandodoriano Bianco. Secondary metabolites with ecologic and medicinal implications in Anthemis cretica subsp. petraea from Majella National Park[J]. AIMS Molecular Science, 2016, 3(4): 648-660. doi: 10.3934/molsci.2016.4.648

    Related Papers:

  • Anthemis cretica subsp. petraea (Ten.) Greuter is a plant belonging to the Asteraceae family and endemic of central Italy. In this paper, the first analysis of the ethanolic fraction of samples collected in the Majella National Park is reported. Seven compounds were isolated and identified namely parthenolide (1), 9α-acetoxyparthenolide (2), tamarixetin (3), 7-hydroxycoumarin (4), 4'-hydroxyacetophenone (5), leucanthemitol (conduritol F) (6), and proto-quercitol (7). Isolation of the compounds was achieved by means of column chromatography (CC), while their identification was achieved through spectroscopic and spectrometric techniques. The presence of these compounds is of great relevance. Compounds 1 and 2 are chemosystematic markers of the family, thus confirming the correct botanical classification of the species. Conversely, compounds 3, 5, and 7 were identified for the first time in the species and, instead, confirm the tendency of endemic entities to develop characteristic metabolite patterns in respect to cosmopolite species. Moreover, the presence of compounds 6 and 7 has ecologic implications and may be linked to this taxon’s adaption to dry environments. The production of these osmolytes may, in fact, represent the reason why this species is able to survive in extreme conditions of aridity. Lastly, from a medicinal standpoint, the isolated compounds are endowed with interesting biological activities and may justify, on a molecular base, the widespread traditional uses of the Anthemis species, as well as a basis for the use of the subspecies petraea.


    加载中
    [1] Baytop T (1999) Türkiye’de Bitkiler ile Tedavi, Geçmis¸te ve Bugün (Therapy with Medicinal Plants in Turkey, Past and Present), 2nd ed., Nobel Tıp Kitabevleri, Istanbul, Turkey.
    [2] Kultur S (2007) Medicinal plants used in Kırklareli Province (Turkey). J Ethnopharmacol 111: 341-364. doi: 10.1016/j.jep.2006.11.035
    [3] Ugurlu E, Secmen O (2008) Medicinal plants popularly used in the villages of Yunt Mountain (Manisa-Turkey). Fitoterapia 79: 126-131. doi: 10.1016/j.fitote.2007.07.016
    [4] Gonenc T, Argyropoulou C, Erdogan T, et al. (2011) Chemical constituents from Anthemis wiedemanniana Fisch. & Mey. Biochem Syst Ecol 39: 51-55. doi: 10.1016/j.bse.2011.01.007
    [5] Pavlovic M, Kovacevic N, Couladis M, et al. (2006) Phenolic constituents of Anthemis triumfetti (L.) DC. Biochem Syst Ecol 34: 449-452. doi: 10.1016/j.bse.2005.11.009
    [6] Kivcak B, Mert T, Saglam H, et al. (2007) Chemical composition and antimicrobial activity of the essential oil of Anthemis wiedemanniana from Turkey. Chem Nat Compd 43: 47-51. doi: 10.1007/s10600-007-0029-x
    [7] Uzel A, Guvensen A, Cetin E (2004) Chemical composition and antimicrobial activity of the essential oils of Anthemis xylopoda O. Schwarz from Turkey. J Ethnopharm 95: 151-154. doi: 10.1016/j.jep.2004.06.034
    [8] Javidnia K, Miri R, Kamalinejad M, et al. (2004) Chemical composition of the essential oils of Anthemis altissima L. grown in Iran. Flavour Fragr J 19: 213-216. doi: 10.1002/ffj.1277
    [9] Bruno M, Bonoi ML, Vassallo N, et al. (1997) Guaianolides and other terpenoids from Anthemis aetnensis. Phytochemistry 45: 375-377. doi: 10.1016/S0031-9422(96)00846-1
    [10] Hofer O, Greger H (1985) New Sesquiterpene-Coumarin Ethers from Anthemis cretica. Liebigs Annalen der Chemie 6: 1136-1144.
    [11] Vajs V, Bulatovic V, Fodulovic-Savikin K, et al. (1999) Highly oxygenated guaianolides from Anthemis cretica subsp. cretica. Phytochemistry 50: 287-291. doi: 10.1016/S0031-9422(98)00504-4
    [12] Tenore M (1811-1815) Flora Neapolitana ossia descrizione delle piante indigene del Regno di Napoli e delle più rare specie di piante esotiche coltivate nei giardini, Vol.1. Stamperia reale, Tip. del Giornale Enciclopedico e Stamperia Francese, Napoli.
    [13] Peruzzi L, Conti F, Bartolucci F (2014) An inventory of vascular plants endemic to Italy. Phytotaxa 168: 1-75. doi: 10.11646/phytotaxa.168.1.1
    [14] Conti F (1998) An annotated checklist of the flora of the Abruzzo. Bocconea 10: 276.
    [15] Venditti A, Serrilli AM, Di Cecco M, et al. (2013) Phytochemical composition of polar fraction of Stachys germanica L. subsp. salviifolia (Ten.) Gams, a typical plant of Majella National Park. Nat Prod Res 27: 190-193. doi: 10.1080/14786419.2012.661732
    [16] Venditti A, Serrilli AM, Di Cecco M, et al. (2012) Phytochemical analysis of Plantago sempervirens from Majella National Park. Nat Prod Res 26: 2035-2039. doi: 10.1080/14786419.2011.633520
    [17] Venditti A, Maggi F, Vittori S, et al. (2014) Volatile compounds from Achillea tenorii (Grande) growing in the Majella National Park (Italy). Nat Prod Res 28: 1699-1704. doi: 10.1080/14786419.2014.940349
    [18] Venditti A, Maggi F, Vittori S, et al. (2015) Antioxidant and α-glucosidase inhibitory activities of Achillea tenorii. Pharm Biol 53: 1505-1510. doi: 10.3109/13880209.2014.991833
    [19] Tiuman TS, Ueda-Nakamura T, Cortez DAG, et al. (2005) Antileishmanial activity of parthenolide, a sesquiterpene lactone isolated from Tanacetum parthenium. Antimicrob. Agents Chemother 49: 176-182. doi: 10.1128/AAC.49.11.176-182.2005
    [20] Worawalai W, Rattanangkool E, Vanitcha A, et al. (2012) Concise synthesis of (+)-conduritol F and inositol analogues from naturally available (+)-proto-quercitol and their glucosidase inhibitory activity. Bioorg Med Chem Lett 22: 1538-1540. doi: 10.1016/j.bmcl.2012.01.007
    [21] Bohlmann F, Zdero C (1975) Naturally occurring terpene derivatives. XLVI. A new sesquiterpene lactone from Matricaria suffructicosa var. leptoloba. Chem Ber 108: 437-439. doi: 10.1002/cber.19751080208
    [22] Bruno M, Diaz JG, Herz W (1991) Germacranolides from Anthemis cupaniana. Phytochemistry 30: 3458-3460. doi: 10.1016/0031-9422(91)83229-E
    [23] Lewin G, Maciuk A, Thoret S, et al. (2010) Semisynthesis of Natural Flavones Inhibiting Tubulin Polymerization, from Hesperidin. J Nat Prod 73: 702-706. doi: 10.1021/np100065v
    [24] Tzenge‐Lien S, Ya‐Ling L (2005) Epoxidation of Protected (1,4,5)-Cyclohex-2-ene-triols and Their Acid Hydrolysis to Synthesize Quercitols from D-(-)-Quinic Acid. Synth Commun 35: 1809-1817. doi: 10.1081/SCC-200063960
    [25] Dhanuskodi S, Manikandan S (2005) EPR investigations on γ-irradiated 4-hydroxyacetophenone single crystals. An NLO material. Radiat Eff Defects Solids 160: 197-205. doi: 10.1080/10420150500275569
    [26] Timonen JM, Nieminen RM, Sareila O, et al. (2011) Synthesis and anti-inflammatory effects of a series of novel 7-hydroxycoumarin derivatives. Eur J Med Chem 46: 3845-3850. doi: 10.1016/j.ejmech.2011.05.052
    [27] Bianco A, Serrilli AM, Venditti A, et al. (2016) Endemic Plants of Italy and Their Peculiar Molecular Pattern. In: Studies in Natural Products Chemistry (Bioactive Natural Products), Ed. Atta-Ur-Rahman, Elsevier Science Publishers - Amsterdam. Vol. 50, Chap. 7, pp. 215-247.
    [28] Staneva JD, Todorova MN, Evstatieva LN (2008) Sesquiterpene lactones as chemotaxonomic markers in genus Anthemis. Phytochemistry 69: 607-618. doi: 10.1016/j.phytochem.2007.07.021
    [29] Sarg T, El-Dahmy SI, Salem S (1990) Germacranolides from Anthemis melampodina. Sci Pharm 58: 33-35.
    [30] Ghantous A, Sinjab A, Herceg Z, et al. (2013) Parthenolide: from plant shoots to cancer roots. Drug Discov Today 18: 894-905. doi: 10.1016/j.drudis.2013.05.005
    [31] Yang Q, Wan L, Zhou Z, et al. (2013) Parthenolide from Parthenium integrifolium reduces tumor burden and alleviate cachexia symptoms in the murine CT-26 model of colorectal carcinoma. Phytomedicine 20: 992-998. doi: 10.1016/j.phymed.2013.04.020
    [32] Wollenweber E, Schober I, Dostal P, et al. (1986) Flavonoids and terpenoids from the exudates of some Baccharis species. Zeitschrift fuer Naturforschung C 41: 87-93.
    [33] Le Quesne PW, Levery SB, Menachery MD, et al. (1979) ChemInform Abstract: Antitumor plants Part 6. Novel modified germacranolides and other constituents of Eremanthus elaeagnus Schultz-Bip (Compositae). ChemInform 12: 1572-1580.
    [34] Saito Y, Iwamoto Y, Okamoto Y, et al. (2012) Four new guaianolides and acetylenic alcohol from Saussurea katochaete collected in China. Nat Prod Commun 7: 447-450.
    [35] Ahmed KM, El-Din SS, Wahab SA, et al. (2001) Study of the coumarin and volatile oil composition from aerial parts of Achillea millefolium L. Pak J Sci Ind Res 44: 218-222.
    [36] Gonzalez AG, Estevez RR, Herrera VJ (1975) Chemistry of the Compositae. XXVI. Sesquiterpene lactones and coumarins of Artemisia ramosa. Anales de Quimica 71: 437-439.
    [37] Hsieh SF, Hsieh TJ, El-Shazly M, et al. (2012) Chemical constituents from Farfugium japonicum var. formosanum. Nat Prod Commun 7: 435-440.
    [38] Li YS, Luo SD, Zhang M, et al. (2001) Constituents of Liguliria vellerea (Franch.) Hand-Mazz. China J Chin Mater Med 26: 835-837.
    [39] Plouvier V (1963) Distribution of aliphatic polyols and cyclitols. In Chemical Plant Taxonomy, 1st Edition, Swain T. Ed, Academic Press London - New York. Chap. 11, pp 321.
    [40] Abe F, Yamauchi T, Honda K, et al. (1998) Cyclitols and their glycosides from leaves of Marsdenia tomentosa. Phytochemistry 47: 1297-1301. doi: 10.1016/S0031-9422(97)00766-8
    [41] Merchant A, Richter A, Popp M, et al. (2006) Targeted metabolite profiling provides a functional link among eucalypt taxonomy, physiology and evolution. Phytochemistry 67: 402-408. doi: 10.1016/j.phytochem.2005.11.027
    [42] Adams MA, Richter A, Hill AK, et al. (2005) Salt tolerance in Eucalyptus spp.: identity and response of putative osmolytes. Plant Cell Environ 28: 772-787. doi: 10.1111/j.1365-3040.2005.01328.x
    [43] Honda K, Omura H, Hayashi N, et al. (2004) Conduritols as oviposition stimulants for the danaid butterfly, Parantica sita, identified from a host plant, Marsdenia tomentosa. J Chem Ecol 30: 2285-2296. doi: 10.1023/B:JOEC.0000048789.06504.f1
    [44] Kim SL, Lee ST, Trang KT, et al. (2014) Parthenolide exerts inhibitory effects on angiogenesis through the downregulation of VEGF/VEGFRs in colorectal cancer. Int J Mol Med 33: 1261-1267.
    [45] Al-Fatlawi AA, Al-Fatlawi AA, Irshad M, et al. (2015) Effect of parthenolide on growth and apoptosis regulatory genes of human cancer cell lines. Pharm Biol 53:104-109. doi: 10.3109/13880209.2014.911919
    [46] Dong L, Qiao H, Zhang X, et al. (2013) Parthenolide is neuroprotective in rat experimental stroke model: downregulating NF-κB, phospho-p38MAPK, and caspase-1 and ameliorating BBB permeability. Mediat Inflamm 2013: 370804.
    [47] Materazzi S, Benemei S, Fusi C, et al. (2013) Parthenolide inhibits nociception and neurogenic vasodilatation in the trigeminovascular system by targeting the TRPA1 channel. Pain 154: 2750-2578. doi: 10.1016/j.pain.2013.08.002
    [48] Magni P, Ruscica M, Dozio E, et al. (2012) Parthenolide inhibits the LPS-induced secretion of IL-6 and TNF-α and NF-κB nuclear translocation in BV-2 microglia. Phytother Res 26: 1405-1409. doi: 10.1002/ptr.3732
    [49] Nicolini F, Burmistrova O, Marrero MT, et al. (2014) Induction of G2/M phase arrest and apoptosis by the flavonoid tamarixetin on human leukemia cells. Mol Carcinog 53: 939-950.
    [50] Ezenyi IC, Salawu OA, Kulkarni R, et al. (2014) Antiplasmodial activity-aided isolation and identification of quercetin-4'-methyl ether in Chromolaena odorata leaf fraction with high activity against chloroquine-resistant Plasmodium falciparum. Parasitol Res 113: 4415-4422. doi: 10.1007/s00436-014-4119-y
    [51] Lau AJ, Chang TK (2013) Indirect activation of the SV23 and SV24 splice variants of human constitutive androstane receptor: analysis with 3-hydroxyflavone and its analogues. Br J Pharmacol 170: 403-414. doi: 10.1111/bph.12284
    [52] Lau AJ, Chang TK (2015) 3-Hydroxyflavone and structural analogues differentially activate pregnane X receptor: Implication for inflammatory bowel disease. Pharmacol Res 100: 64-72. doi: 10.1016/j.phrs.2015.07.031
    [53] Al-Majedy YK, Al-Duhaidahawi DL, Al-Azawi KF, et al. (2016) Coumarins as Potential Antioxidant Agents Complemented with Suggested Mechanisms and Approved by Molecular Modeling Studies. Molecules 21: E135.
    [54] Jagadeesh GS, Nagoor Meeran MF, Selvaraj P (2016) Protective Effects of 7-Hydroxycoumarin on Dyslipidemia and Cardiac Hypertrophy in Isoproterenol-Induced Myocardial Infarction in Rats. J Biochem Mol Toxicol 30: 120-127. doi: 10.1002/jbt.21770
    [55] Soto-Nuñez M, Díaz-Morales KA, Cuautle-Rodríguez P, et al. (2015) Single-cell microinjection assay indicates that 7-hydroxycoumarin induces rapid activation of caspase-3 in A549 cancer cells. Exp Ther Med 10: 1789-1795.
    [56] Alvarez MA, Rotelli AE, Pelzer LE, et al. (2000) Phytochemical study and anti-inflammatory properties of Lampaya hieronymi Schum. Ex Moldenke. Il Farmaco 55: 502-505. doi: 10.1016/S0014-827X(00)00067-7
    [57] Billington DC, Perron-Sierra F, Picard I, et al. (1994) Total synthesis of novel conduritol related compounds capable of modulating insulin release. Bioorg Med Chem Lett 4: 2307-2312. doi: 10.1016/0960-894X(94)85030-5
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4032) PDF downloads(1024) Cited by(8)

Article outline

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog