Order reprints

Alzheimer’s Disease: A short introduction to the calmodulin hypothesis

Danton H. O’Day

*Corresponding author: Danton H. O’Day danton.oday@utoronto.ca

neuroscience2019,4,231doi:10.3934/Neuroscience.2019.4.231

At the cellular level, Alzheimer’s disease (AD) is characterized by the presence of intracellular plaques containing amyloid beta (Aβ) protein and neurofibrillary tangles consisting of phospho-tau (p-tau). These biomarkers are considered to contribute, at least in part, to the neurodegenerative events of the disease. But the accumulation of plaques and tangles is widely considered to be a later event with other factors likely being the cause of the disease. Calcium dysregulation—the unregulated accumulation of calcium ions—in neurons is an early event that underlies neurodegeneration. In 2002, O’Day and Myre extended this “Calcium Hypothesis” to include calmodulin (CaM) the primary target of calcium, suggesting the “Calmodulin Hypothesis” as an updated alternative. Here we overview the central role of CaM in the formation of the classic hallmarks of AD: plaques and tangles. Then some insight into CaM’s binding to various risk factor proteins is given followed by a short summary of specific receptors and channels linked to the disease that are CaM binding proteins. Overall, this review emphasizes the diversity of Alzheimer’s-linked CaM-binding proteins validating the hypothesis that CaM operates critically at all stages of the disease and stands out as a potential primary target for future research.

Please supply your name and a valid email address you yourself

Fields marked*are required

Article URL   http://www.aimspress.com/neuroscience/article/4277.html
Article ID   neurosci-06-04-231
Editorial Email  
Your Name *
Your Email *
Quantity *

Copyright © AIMS Press All Rights Reserved