Order reprints

A detailed chemical kinetic model for pyrolysis of the lignin model compound chroman

James Bland Gabriel da Silva

*Corresponding author: Gabriel da Silva gdasilva@unimelb.edu.au

environmental2014,1,12doi:10.3934/environsci.2013.1.12

The pyrolysis of woody biomass, including the lignin component, is emerging as a potential technology for the production of renewable fuels and commodity chemicals. Here we describe the construction and implementation of an elementary chemical kinetic model for pyrolysis of the lignin model compound chroman and its reaction intermediate ortho-quinone methide (o-QM). The model is developed using both experimental and theoretical data, and represents a hybrid approach to kinetic modeling that has the potential to provide molecular level insight into reaction pathways and intermediates while accurately describing reaction rates and product formation. The kinetic model developed here can replicate all known aspects of chroman pyrolysis, and provides new information on elementary reaction steps. Chroman pyrolysis is found to proceed via an initial retro-Diels–Alder reaction to form o-QM + ethene (C2H4), followed by dissociation of o-QM to the C6H6 isomers benzene and fulvene (+ CO). At temperatures of around 1000–1200 K and above fulvene rapidly isomerizes to benzene, where an activation energy of around 270 kJ mol-1 is required to reproduce experimental observations. A new G3SX level energy surface for the isomerization of fulvene to benzene supports this result. Our modeling also suggests that thermal decomposition of fulvene may be important at around 950 K and above. This study demonstrates that theoretical protocols can provide a significant contribution to the development of kinetic models for biomass pyrolysis by elucidating reaction mechanisms, intermediates, and products, and also by supplying realistic rate coefficients and thermochemical properties.

Please supply your name and a valid email address you yourself

Fields marked*are required

Article URL   http://www.aimspress.com/environmental/article/39.html
Article ID   20140102
Editorial Email  
Your Name *
Your Email *
Quantity *

Copyright © AIMS Press All Rights Reserved