Order reprints

A theta-scheme approximation of basic reproduction number for an age-structured epidemic system in a finite horizon

Wenjuan Guo Ming Ye Xining Li Anke Meyer-Baese Qimin Zhang

*Corresponding author: Xining Li zhangqimin@nxu.edu.cn

MBE2019,5,4107doi:10.3934/mbe.2019204

This paper focuses on numerical approximation of the basic reproduction number $\mathcal{R}_0$ , which is the threshold defined by the spectral radius of the next-generation operator in epidemiology. Generally speaking, $\mathcal{R}_0$ cannot be explicitly calculated for most age-structured epidemic systems. In this paper, for a deterministic age-structured epidemic system and its stochastic version, we discretize a linear operator produced by the infective population with a theta scheme in a finite horizon, which transforms the abstract problem into the problem of solving the positive dominant eigenvalue of the next-generation matrix. This leads to a corresponding threshold $\mathcal{R}_0$,n . Using the spectral approximation theory, we obtain that $\mathcal{R}_0$,n → $\mathcal{R}_0$ as n → +∞. Some numerical simulations are provided to certify the theoretical results.

Please supply your name and a valid email address you yourself

Fields marked*are required

Article URL   http://www.aimspress.com/MBE/article/3694.html
Article ID   mbe-16-05-204
Editorial Email  
Your Name *
Your Email *
Quantity *

Copyright © AIMS Press All Rights Reserved