Order reprints

Mathematical modelling of cardiac pulse wave reflections due to arterial irregularities

Alexandre Cornet

*Corresponding author: Alexandre Cornet alexandre.cornet@ens-paris-saclay.fr


This research aims to model cardiac pulse wave reflections due to the presence of arterial irregularities such as bifurcations, stiff arteries, stenoses or aneurysms. When an arterial pressure wave encounters an irregularity, a backward reflected wave travels upstream in the artery and a forward wave is transmitted downstream. The same process occurs at each subsequent irregularity, leading to the generation of multiple waves. An iterative algorithm is developed and applied to pathological scenarios to predict the pressure waveform of the reflected wave due to the presence of successive arterial irregularities. For an isolated stenosis, analysing the reflected pressure waveform gives information on its severity. The presence of a bifurcation after a stenosis tends do diminish the amplitude of the reflected wave, as bifurcations' reflection coefficients are relatively small compared to the ones of stenoses or aneurysms. In the case of two stenoses in series, local extrema are observed in the reflected pressure waveform which appears to be a characteristic of stenoses in series along an individual artery. Finally, we model a progressive change in stiffness in the vessel's wall and observe that the less the gradient stiffness is important, the weaker is the reflected wave.

Please supply your name and a valid email address you yourself

Fields marked*are required

Article URL   http://www.aimspress.com/MBE/article/2092.html
Article ID   1551-0018_2018_5_1055
Editorial Email  
Your Name *
Your Email *
Quantity *

Copyright © AIMS Press All Rights Reserved