Order reprints

The divergence between the virus and cellular oxidative stress as separate environmental agents that trigger autoimmunity originates from their different procedural mechanisms of activating the same molecular entity: the transcription factor NF-kappa B

Norbert O. Temajo Neville Howard

*Corresponding author: Norbert O. Temajo temajo@grapevine.net.au

Allergy2017,2,50doi:10.3934/Allergy.2017.2.50

To happen, autoimmunity in man requires triggering by environmental factors: the viruses and cellular stress, in genetically primed individuals. The viruses and stress are operatives in this scene as stimuli for the activation of the transcription factor (TF), NF-ΚB. NF-ΚB is unusually activated: the viral activation occurs via serine residues-phosphorylation by IKKβ and IKKε, while the activation by oxidative stress occurs via tyrosine phosphorylation of IΚBα. The phosphorylation of particular amino acid residues of a given protein molecule modulates that protein’s polymorphic conformations, appropriately. For a TF, a given conformation influences its choice of cognate DNA sequence recognition as well as its interactions with neighboring molecules. The TF NF-ΚB performs a battery of regulatory functions. Because it is variously phosphorylated as seen above this implies that NF-ΚB is capable of assuming a multitude of polymorphic conformations that we refer to as “derivative isoforms”. Thus the virus activation of NF-ΚB occurring by phosphorylation at serines S536 and S468 is observed to generate the isoforms with the potential to activate the transcription of viral latency genes, hereby installing a latent infection. But oxidative stress activation of NF-ΚB occurs via phosphorylation of Tyr42 of IΚBα and this yields isoforms that activate the transcription of replication and transcription activator (RTA), the master lytic switch, which thereby abrogates the latency. The steps involved are that the stress-activated NF-ΚB and the viral miRNAs conjoin in a regulatory circuitry identified as feedback and feed-forward network motifs that co-accomplish the switching on of RTA which in turn activates the transcription of the immediate early genes BZLF1 and BRLF1. These two latter genes together mobilize the expression of the set of lytic genes, resulting in a lytic cascade and consequentially set in trend the viral journey to the triggering of autoimmunity (Figure 1).

Please supply your name and a valid email address you yourself

Fields marked*are required

Article URL   http://www.aimspress.com/Allergy/article/1550.html
Article ID   allergy-01-00050
Editorial Email  
Your Name *
Your Email *
Quantity *

Copyright © AIMS Press All Rights Reserved