Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Life’s Critical Role in the Long-term Carbon Cycle: the Biotic Enhancement of Weathering

Department of Biology, Howard University, Washington DC, USA

The biotic enhancement of weathering (BEW) has important implications for the long-term carbon cycle, in particular as a driver of climatic cooling. The BEW factor is defined as how much faster the silicate weathering carbon sink is under biotic conditions than under abiotic conditions at the same atmospheric pCO2 level and surface temperature. The BEW factor and its evolution over geological time can potentially be inferred from consideration of empirical and theoretical weathering studies. Estimates of the global magnitude of the BEW are presented, drawing from laboratory, field, watershed data and models of the long-term carbon cycle, with values ranging from one to two orders of magnitude.
  Article Metrics

Keywords biotic enhancement of weathering; long-term carbon cycle; chemical; physical and biological weathering

Citation: David W. Schwartzman. Life’s Critical Role in the Long-term Carbon Cycle: the Biotic Enhancement of Weathering. AIMS Geosciences, 2017, 3(2): 216-238. doi: 10.3934/geosci.2017.2.216


  • 1. Brantley SL, Megonigal JP, Scatena FN, et al. (2011) Twelve testable hypotheses on the geobiology of weathering. Geobiology 9: 140-165.
  • 2. Akob DM, and Küsel K (2011) Where microorganisms meet rocks in the Earth's Critical Zone. Biogeosciences 8: 3531-3543.    
  • 3. Brecheisen ZS, Richter D deB (2014) Ordering interfluves: a simple proposal for understanding critical zone evolution. Procedia Earth Planetary Sci 10: 77–81.
  • 4. Field JP, Breshears DD, Law DJ, et al. (2015) Critical Zone Services: Expanding Context, Constraints, and Currency beyond Ecosystem Services. Vadose Zone J 14.
  • 5. Summers S, Thomson BC, Whiteley A, et al. (2016). Mesophilic mineral weathering bacteria inhabit the critical-zone of a perennially cold basaltic environment. Geomicrobiology J 33: 52-62.
  • 6. Schwartzman DW, Volk T (1989) Biotic enhancement of weathering and the habitability of Earth. Nat 340: 457-460.    
  • 7. Schwartzman D (1999 2002) Life, Temperature, and the Earth: The Self-Organizing Biosphere. New York: Columbia University Press.
  • 8. Schwartzman DW (2008) Coevolution of the Biosphere and Climate, In: S.E. Jorgensen SE, Fath B (eds.), Encyclopedia of Ecology, 1st Edition, Oxford: Elsevier B.V., 648-658.
  • 9. Brantley SL, Lebedeva M, Hausrath EM (2012) A geobiological view of weathering and erosion. In Knoll AH, Canfield DE, Konhauser KO (eds.) Fundamentals of Geobiology, 1st Edition., Oxford: Blackwell Publishing Ltd., 205-227.
  • 10. Lovelock JE, Watson AJ (1982) The regulation of carbon dioxide and climate: Gaia or geochemistry. Planet. Space Sci. 30: 795-802.
  • 11. Richter D deB, Billings SA (2015) "One physical system": Tansley's ecosystem as Earth's critical zone. New Phytol 206: 900-912.
  • 12. Bray AW, Oelkers EH, Bonneville S, et al. (2013) How bugs get their food: Linking mineral surface chemistry to nutrient availability. Mineral Mag 77: 765.
  • 13. Quirk J, Beerling DJ, Banwart SA, et al. (2012) Evolution of trees and mycorrhizal fungi intensifies silicate mineral weathering. Biol Lett 8: 1006-1011.
  • 14. Quirk J, Andrews MY, Leake JR, et al. (2014) Ectomycorrhizal fungi and past high CO2 atmospheres enhance mineral weathering through increased below-ground carbon-energy fluxes. Biol Lett 10: 387-393.
  • 15. Quirk J, Leake JR, Banwart SA, et al. (2014) Weathering by tree-root-associating fungi diminishes under simulated Cenozoic atmospheric CO2 decline. Biogeosciences 11: 321-331.    
  • 16. Burghelea C, Zaharescu DG, Dontsova K, et al. (2015) Mineral nutrient mobilization by plants from rock: influence of rock type and arbuscular mycorrhiza. Biogeochemistry 124:187-203.    
  • 17. Callesen I, Harrison R, Stupak I, et al. (2016) Carbon storage and nutrient mobilization from soil minerals by deep roots and rhizospheres. For Ecol Manage 359: 322-331.    
  • 18. Quirk J, Leake JR, Johnson DA, et al. (2015) Constraining the role of early land plants in Palaeozoic weathering and global cooling. Proc R Soc B 282: 20151115.
  • 19. Taylor LL, Leake JR, Quirk J, et al. (2009) Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm. Geobiology 7: 171-191.    
  • 20. Lucas Y (2001) The role of plants in controlling rates and products of weathering: Importance of biological pumping. Annu Rev Earth Planet Sci 29: 135-163.
  • 21. Buss HL, Sak PB, Webb SM, et al. (2008) Weathering of the Rio Blanco quartz diorite, Luquillo Mountains, Puerto Rico: Coupling oxidation, dissolution, and fracturing. Geochim Cosmochim Acta 72: 4488-4507.
  • 22. Navarre-Sitchler AK, Cole DR, Rother G, et al. (2013) Porosity and surface area evolution during weathering of two igneous rocks. Geochim Cosmochim Acta 109: 400-413.    
  • 23. Dorn RI (2014) Ants as a powerful biotic agent of olivine and plagioclase dissolution. Geol 42: 771-774.
  • 24. Chadwick OA, Derry LA, Vitousek PM, et al. (1999) Changing sources of nutrients during four million years of ecosystem development. Nat 397: 491-497.    
  • 25. Chadwick KD, Asner GP (2016) Tropical soil nutrient distributions determined by biotic and hillslope processes. Biogeochemistry 127: 273-289.
  • 26. Porder S, Clark DA, Vitousek PM (2006) Persistence of rock-derived nutrients in the wet tropical forests of La Selva, Costa Rica. Ecology 87: 594-602.    
  • 27. Callesen I, Harrison R, Stupak I, et al. (2016) Carbon storage and nutrient mobilization from soil minerals by deep roots and rhizospheres. For Ecol Manage 359: 322-331.    
  • 28. Calmels D, Gaillardet J, Brenot A, et al. (2007) Sustained sulfide oxidation by physical erosion processes in the Mackenzie River basin: Climatic perspectives. Geol 35: 1003-1006.    
  • 29. Torres MA, West AJ, Li G (2014) Sulphide oxidation and carbonate dissolution as a source of CO2 over geological timescales. Nat 507: 346-349.    
  • 30. Torres MA, West AJ, Clark KE (2015) Geomorphic regime modulates hydrologic control of chemical weathering in the Andes–Amazon. Geochim Cosmochim Acta 166: 105–128.
  • 31. Caves JK, Jost AB, Laub KV, et al. (2016) Cenozoic carbon cycle imbalances and a variable weathering feedback. Earth Planet Sci Lett 450: 152-163.    
  • 32. West AJ, Torres M, Moosdorf N, et al. (2016) Glacial weathering, sulfide oxidation, and the geologic evolution of CO2. Goldschmidt Conf Abstr 3402.
  • 33. Larson DW (1987) The absorption and release of water by lichens. In: Peveling E (ed.), Progress and Problems in Lichenology in the Eighties, Bibliothca lichenological 25, Berlin:J. Cramer, 351-360.
  • 34. Li Z, Liu L, Chen J, Teng HH (2016) Cellular dissolution at `hypha-and spore-mineral interfaces revealing unrecognized mechanisms and scales of fungal weathering. Geol 44: 319-322.    
  • 35. Jones D, Wilson MJ (1985) Chemical activity of lichens on mineral surfaces; a review. Int Biodeterior 21: 99-104.
  • 36. Chen J, Blume H-P, Beyer L (2000) Weathering of rocks induced by lichen colonization–a review. Catena 39: 121-146.    
  • 37. Amundson R, Heimsath A, Owen, et al. (2015) Hillslope soils and vegetation. Geomorphol 234: 122-13.    
  • 38. Hahm WJ, Riebe CS, Lukens CE, et al. (2014) Bedrock composition regulates mountain ecosystems and landscape evolution. Proc Natl Acad Sci USA. 111: 3338-3343.    
  • 39. Schwartzman DW (2015) The case for a hot Archean climate and its implications to the history of the biosphere. Arxiv org April 1.
  • 40. Sheldon ND (2006) Precambrian paleosols and atmospheric CO2 levels. Precambrian Res 147: 148-155.    
  • 41. Hren MT, Tice MM, Chamberlain CP (2009) Oxygen and hydrogen isotope evidence for a temperate climate 3.42 billion years ago. Nat 462: 205-208.
  • 42. Blake RE, Chang SJ, Lepland A (2010) Phosphate oxygen isotopic evidence for a temperate and biologically active Archaean ocean. Nat 464: 1029-1032.    
  • 43. Rosing MT, Bird DK, Sleep NH, et al. (2010) No climate paradox under the faint early Sun. Nat 464: 744-747.
  • 44. Driese SG, Jirsa MA, Ren M, et al. (2011) Neoarchean paleoweathering of tonalite and metabasalt: Implications for reconstructions of 2.69 Ga early terrestrial ecosystems and paleoatmospheric chemistry. Precambrian Res 189: 1-17.
  • 45. Sheldon, ND, Tabor, NJ (2009) Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Sci Rev 95: 1-52.    
  • 46. de Wit MJ, Furnes H (2016) 3.5-Ga hydrothermal fields and diamictites in the Barberton Greenstone Belt-Paleoarchean crust in cold environments. Sci Adv 2: e1500368.
  • 47. Airapetian VS , Glocer A, Grono G, et al. (2016) Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun. Nat Geosci 9: 452-455.
  • 48. Som, SM, Buick R, Hagadorn JW, et al. (2016) Earth's air pressure 2.7 billion years ago constrained to less than half of modern levels. Nat Geosci 9: 448-451.
  • 49. Som SM, Catling DC, Harnmeijer JP, et al. (2012) Air density 2.7 billion years ago limited to less than twice modern levels by fossil raindrop imprints. Nat 484: 359-362.
  • 50. Kavanagh L, Goldblatt C (2015) Using raindrops to constrain past atmospheric density. Earth Planet Sci Lett 413: 51-58.    
  • 51. Sahagian D, Proussevitch A (2007) Paleoelevation measurement on the basis of vesicular basalts. Rev Mineral Geochem 66: 195-213.    
  • 52. Fournier, GP, Alm, E J (2015) Ancestral Reconstruction of a Pre-LUCA Aminoacyl-tRNA Synthetase Ancestor Supports the Late Addition of Trp to the Genetic Code. J Mol Evol 80: 171-185.    
  • 53. Romero-Romero ML, Risso VA, Martinez-Rodriguez S, et al. (2016) Selection for Protein Kinetic Stability Connects Denaturation Temperatures to Organismal Temperatures and Provides Clues to Archaean Life. PLoS ONE, 11: e0156657.    
  • 54. Tartèse, R, Chaussidon M, Gurenko A, et al. (2017) Warm Archean oceans reconstructed from oxygen isotope composition of early-life remnants. Geochem Perspect Lett 3: 55-65.
  • 55. Schwartzman DW, Volk T (1991) Biotic enhancement of weathering and surface temperatures on Earth since the origin of life. Glob Planet Change Sect 4: 357-371.
  • 56. Kasting JF, Ackerman TP (1986) Climatic consequences of a very high CO2 level in Earth's early atmosphere. Sci 234: 1383-1385.    
  • 57. Charnay B, Forget F, Wordsworth R, et al. (2013) Exploring the faint young Sun problem and the possible climates of the Archean Earth with a 3-D GCM. J Geophys Res: Atmos 118: 1-18.
  • 58. Le Hir G, Teitler Y, Fluteau F, et al. (2014) The faint young Sun problem revisited with a 3-D climate–carbon model–Part 1. Clim Past 10: 697-713.    
  • 59. Flament N, Coltice N, Rey PF (2013) The evolution of the 87Sr/86Sr of marine carbonates does not constrain continental growth. Precambrian Res 229: 177-188.
  • 60. Jellinek AM, Jackson MG (2015) Connections between the bulk composition, geodynamics and habitability of Earth. Nat Geosci 8: 587-593.    
  • 61. Dessert C, Dupre B, Gaillardet J, et al. (2003) Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chem Geol 202: 257-273.    
  • 62. Dupre B, Dessert C, Oliva P, et al. (2003) Rivers, chemical weathering and Earth's climate. C R Geosciences 335: 1141-1160.    
  • 63. Ibarra DE, Caves JK, Moon S, et al. (2016) Differential weathering of basaltic and granitic catchments from concentration discharge relationships. Geochim Cosmochim Acta 190: 265-293.    
  • 64. Navarre-Sitchler A, Brantley S (2007) Basalt weathering across scales. Earth Planetary Sci Lett 261: 321-334.
  • 65. Eggleston CM, Hochella MF Jr, Parks GA (1989) Sample preparation and aging effects on dissolution rate and surface composition of diopside. Geochim Cosmochim Acta 53: 979-804.
  • 66. White AF, Brantley SL ( 2003) The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? Chem Geol 202: 479-506.
  • 67. Grandstaff DE (1986) The dissolution rate of forsteritic olivine from Hawaiian beach sand. In: Coleman S, Dethier D (eds.) Rates of Chemical Weathering of Rocks and Minerals., New York: Academic Press, New York, 41-59.
  • 68. Rimstidt JD, Brantley SL, Olsen AA (2012) Systematic review of forsterite dissolution rate data. Geochim Cosmochim Acta 99: 159-178.    
  • 69. Wolff-Boenisch D, Gislason SR, Oelkers EH, et al. (2004) The dissolution rates of natural glasses as a function of their composition at pH 4 and 10.6, and temperatures from 25 to 74°C. Geochim Cosmochim Acta 68: 4843-4858.
  • 70. Shikazono N, Takino A, Ohtani, H (2005) An estimate of dissolution rate constant of volcanic glass in volcanic ash soil from the Mt. Fuji area, central Japan. Geochem J 39: 185-196.
  • 71. Gao G-L, Ding G-E, Wu B, et al. (2014) Fractal Scaling of Particle Size Distribution and Relationships with Topsoil Properties Affected by Biological Soil Crusts. PLoS ONE 9: e88559.    
  • 72. Schwartzman DW, Volk T (2015) Habitability for Complex Life and the Development and Self-Limitations of the Biotic Enhancement of Weathering, Puzzle of Earths Uninterrupted Habitability, Abstract Book, 12, London: Geological Society.
  • 73. Rad S, Rivé K, Vittecoqa B, et al. (2013) Chemical weathering and erosion rates in the Lesser Antilles: An overview in Guadeloupe, Martinique and Dominica. J South Am Earth Sci 45: 331-344.    
  • 74. Hartmann J, Moosdorf N, Lauerwald R, et al. (2014) Global chemical weathering and associated P-release-The role of lithology, temperature and soil properties. Chem Geol 363: 145-163.
  • 75. Rivé K, Gaillardet J, Agrinier P, et al. (2013) Carbon isotopes in the rivers from the Lesser Antilles: origin of the carbonic acid consumed by weathering reactions in the Lesser Antilles. Earth Surf Processes Landforms 38: 1020-1035.    
  • 76. Maher K, Chamberlain CP (2014) Hydrologic regulation of chemical weathering and the geologic carbon cycle. Sci 343: 1502-1504.
  • 77. Murphy BP, Johnson JPL, Gasparini NM, et al. (2016) Chemical weathering as a mechanism for the climatic control of bedrock river incision. Nat 532: 223-237.    
  • 78. Anders AM (2016) How rain affects rock and rivers. Nat 532: 186-187.    
  • 79. Van Cappellen P (2013) Where groundwater meets surface water. Mineral Mag 77: 2388.
  • 80. Clair JSt, Moon S, Holbrook WS, et al. (2015) Geophysical imaging reveals topographic stress control of bedrock weathering. Sci 350: 534-538.    
  • 81. Anderson RS (2015) Pinched topography initiates the critical zone. Sci 350: 506-507.
  • 82. Bazilevskaya E, Lebedeva M, Pavich M, et al. (2013) Where fast weathering creates thin regolith and slow weathering creates thick regolith. Earth Surf Process Landform 38: 847-858.
  • 83. West AJ (2012) Thickness of the chemical weathering zone and implications for erosional and climatic drivers of weathering and for carbon-cycle feedbacks. Geol 40: 811-814.    
  • 84. Herman F, Seward D, Valla PG, et al. (2013) Worldwide acceleration of mountain erosion under a cooling climate. Nat 504: 423-426.    
  • 85. Galy V, Peucker-Ehrenbrink B, Eglinton T (2015) Global carbon export from the terrestrial biosphere controlled by erosion. Nat 521: 204-207.    
  • 86. Li G, Hartmann J, Derry LA, et al. (2016) Temperature dependence of basalt weathering. Earth Planet Sci Lett 443: 59-69.    
  • 87. Torres MA, West AJ, Clark KE, et al. (2016) The acid and alkalinity budgets of weathering in the Andes–Amazon system: Insights into the erosional control of global biogeochemical cycles. Earth Planet Sci Lett 450: 381–391.
  • 88. Pelak NF, Parolari AJ , Porporato A (2016) Bistable plant–soil dynamics and biogenic controls on the soil production function. Earth Surf Process Landforms 41: 1011-1017.
  • 89. Buendía C, Arens S, Hickler T, et al. (2014) On the potential vegetation feedbacks that enhance phosphorus availability - insights from a process-based model linking geological and ecological timescales. Biogeosciences 11: 3661-3683.    
  • 90. Porada P, Weber B, Elbert W, et al. A (2014) Estimating impacts of lichens and bryophytes on global biogeochemical cycles. Global Biogeochem. Cycles 28: 71-85.    
  • 91. Kelemen PB, Matter J (2008) In situ carbonation of peridotite for CO2 storage. Proc Natl Acad Sci USA105: 17295-17300.
  • 92. Schuiling RD, de Boer PL (2011) Rolling stones, fast weathering of olivine in shallow seas for cost-effective CO₂ capture and mitigation of global warming and ocean acidification. Earth Syst Dynam Discuss 2: 551-568.    
  • 93. Ten Berge HFM., van der Meer HG, Steenhuizen JW, et al. (2012) Olivine weathering in soil, and its effects on growth and nutrient uptake in ryegrass (Lolium perenne L.). A Pot Experiment. PLOS One 7: e42098.    
  • 94. Hartmann J, West AJ, Renforth P, et al. (2013) Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification. Rev Geophys 51: 113-149.    
  • 95. Matter JM, Stute M, Snaebjörnsdottir SO, et al. (2016) Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Sci 352: 1312-1314.
  • 96. Taylor LL, Quirk J, Thorley RMS, et al. (2016) Enhanced weathering strategies for stabilizing climate and averting ocean acidification. Nat Clim Change 6: 402–406.
  • 97. Schuiling RD (2017) Olivine weathering against climate change. Natural Science 9: 21-26.
  • 98. Juarez S, Dontsova K, Le Galliard J-F , et al. (2016) Effect of elevated CO2 and temperature on abiotic and biologically-driven basalt weathering and C sequestration. Geophys Res Abstr 18.
  • 99. Navarre-Sitchler AK, Cole DR, Rother G, et al. (2013) Porosity and surface area evolution during weathering of two igneous rocks. Geochim Cosmochim Acta 109: 400-413.
  • 100. Navarre-Sitchler A, Brantley S, Rother G (2015) How Porosity Increases During Incipient Weathering of Crystalline Silicate Rocks. Rev Mineral Geochem 80: 331-354.
  • 101. Aghamiri R, Schwartzman DW (2002) Weathering rates of bedrock by lichens: a mini watershed study. Chem Geol 188: 249-259.
  • 102. Zambell CB, Adams JM, Goring ML, et al. (2012) Effect of lichen colonization on chemical weathering of hornblende granite as estimated by aqueous elemental flux. Chem Geol 291: 166-174.
  • 103. Jackson TA, Keller WD (1970) A comparative study of the role of lichens and inorganic processes in the chemical weathering of recent Hawaiian lava flows. Am J Sci 269: 446-466.    
  • 104. Brady PV, Dorn RI, Brazel AJ, et al. (1999) Direct measurement of the combined effects of lichen, rainfall, and temperature on silicate weathering. Geochim Cosmochim Acta 63: 3293-3300.
  • 105. Stretch RC, Viles HA (2002) The nature and rate of weathering by lichens on lava flows on Lanzarote. Geomorphol 47: 87-94.    
  • 106. Lenton TM, Crouch M, Johnson M, et al. (2012) First plants cooled the Ordovician. Nat Geosci 5: 86-89.    
  • 107. Moulton KL, Berner RA (1998) Quantification of the effect of plants on weathering: studies in Iceland. Geol 26: 895-898.
  • 108. Bormann BT, Wang D, Bormann FH, et al. (1998) Rapid, plant-induced weathering in an aggrading experimental ecosystem. Biogeochemistry 43: 129-155.    
  • 109. Berner RA, Kothaval Z (2001) Geocarb III: A revised model of atmospheric CO2 over Phanerozoic time. Am J Sci 301: 182-204.    
  • 110. Berner RA (2006) GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2. Geochim Cosmochim Acta 70: 5653-5664.    
  • 111. Berner RA, Kothaval Z (2001) Geocarb III: A revised model of atmospheric CO2 over Phanerozoic time. Am J Sci 301: 182-204.
  • 112. Royer DL, Berner RA, Montanez IP, et al. (2004) CO2 as a primary driver of Phanerozoic climate. GSA Today 14: 4-10.
  • 113. Taylor LL, Banwart SA, Valdes PJ, et al. (2012) Evaluating the effects of terrestrial ecosystems, climate and carbon dioxide on weathering over geological time: a global-scale process-based approach. Phil. Trans. R. Soc. B, 367: 565-582.    
  • 114. Arens S, Kleidon A (2011) Eco-hydrological versus supply-limited weathering regimes and the potential for biotic enhancement of weathering at the global scale. Appl Geochem 26: S274-S278.    
  • 115. Von Bloh W, Bounama C, Eisenack K, et al. (2008) Estimating the biogenic enhancement factor of weathering using an inverse viability method. Ecol Modell 216: 245-251.
  • 116. Schwartzman DW, Brantley S (2013) The Geobiology of Weathering: the 13th Hypothesis. Mineral Mag 77: 2170.
  • 117. Beraldi-Campesi H (2013) Early life on land and the first terrestrial ecosystems. Available from: http://www.ecologicalprocesses.com/content/2/1/1.
  • 118. Rastogi RP, Sinha RP, Moh SH, et al. (2014) Ultraviolet radiation and cyanobacteria. J Photochem Photobiol B 141: 154-169.    
  • 119. Lalonde SV, Konhauser KO (2015) Benthic perspective on Earth's oldest evidence for oxygenic photosynthesis. Proc Natl Acad Sci USA 112: 995-1000.    
  • 120. Gauger T, Konhauser K, Kappler A (2015) Protection of phototrophic iron(II)-oxidizing bacteria from UV irradiation by biogenic iron(III) minerals: Implications for early Archean banded iron formation. Geol 43 (12): 1067-1070.
  • 121. Lenton TM, Daines SJ (2016) Matworld-the biogeochemical effects of early life on land. New Phytol doi: 10.1111/nph.14338.
  • 122. Garcia AK, Schopf JW, Yokobori S-i, et al. (2017) Reconstructed ancestral enzymes suggest long-term cooling of Earth's photic zone since the Archean. Proc Natl Acad Sci USA 114: 4619-4624.
  • 123. Sleep NH, Zahnle K, Carbon dioxide cycling and implications for climate on ancient Earth. J Geophys Res 106: 1373-1399.
  • 124. Kanzaki Y, Murakami T (2015) Estimates of atmospheric CO2 in the Neoarchean–Paleoproterozoic from paleosols. Geochim Cosmochim Acta 159: 190-219.


This article has been cited by

  • 1. Alida Perez-Fodich, Louis A. Derry, Organic acids and high soil CO2 drive intense chemical weathering of Hawaiian basalts: Insights from reactive transport models, Geochimica et Cosmochimica Acta, 2019, 10.1016/j.gca.2019.01.027
  • 2. David Schwartzman, An Ecosocialist Perspective on Gaia 2.0: The Other World That is Still Possible, Capitalism Nature Socialism, 2020, 1, 10.1080/10455752.2020.1729943

Reader Comments

your name: *   your email: *  

Copyright Info: 2017, David W. Schwartzman, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved