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Abstract: This review article presents a survey of recent work devoted to advanced state-of-the-art 

methods for securing of medical databases. We concentrate on three main directions, which have 

received attention recently: attribute-based encryption for enabling secure access to confidential 

medical databases distributed among several data centers; homomorphic encryption for providing 

answers to confidential queries in a secure manner; and privacy-preserving data mining used to 

analyze data stored in medical databases for verifying hypotheses and discovering trends. Only the 

most recent and significant work has been included. 
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1. Introduction 

The use of advanced cryptographic methods for protecting the privacy of medical records has 

been actively investigated for some years, and is still one of the most rapidly developing and 

changing research domains. To maintain data security and patient confidentiality it is important for 

clinicians to be aware of state-of-the-art techniques in this field, as they may have significant 

implications for making decisions about what data and types of data are to be included in patient 

records, their storage and distribution. Protection of patient privacy is paramount, for both ethical and 

legal reasons. Personal Health Records (PHRs) and electronic medical databases form an integral 
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part of e-health systems, and so should be protected. In some cases PHRs and information can be 

maintained by patients via the Internet, creating further privacy issues. For preliminaries and 

background information on this broad area we refer readers to [1] and [2].  

Cloud computing and storage has attracted attention worldwide in the medical field as an 

efficient system for storing and accessing data. Many countries including the USA have been 

developing electronic health management systems to integrate data collected by hospitals for creating 

more efficient healthcare services. Cloud computing and storage can provide the basis for the 

integration of such data. A Cloud Service Provider (CSP) provides computing infrastructure, data 

storage and computing power, which allows access when required from anywhere. The computing 

infrastructure can be located in one, several or many physical locations. Cloud computing and storage 

has brought about an improvement in the provision of healthcare in terms of information management, 

providing low-cost and effective outsourced data storage but with additional privacy requirements. 

PHRs are a patient-centric model of health information exchange, with storage of records often 

outsourced to third parties such as CSPs. Efficient storage, access control and sharing of data in the 

cloud are highly desirable for modern clinical practitioners; it is easy to access and provides many 

advantages over paper documents and client-server records. However, there have been widespread 

security and privacy concerns about entrusting personal health information to third parties as this 

could increase the risk of unauthorized access to private information and highly sensitive data. 

Privacy preserving methods are essential for the storage and exchange of private health information. 

Cryptography is an essential tool that helps to ensure medical data accuracy and confidentiality 

whilst retaining data security. Cryptography is the study of disguising messages or information, the 

plaintext, so that only those for whom the messages or information are intended can read them. The 

process of disguising the plaintext is encryption, and the disguised message is the ciphertext. 

Decryption is the process of extracting the original message, the plaintext, from the ciphertext. A key 

(think of a very big number) is used together with an encryption algorithm to create the ciphertext. 

Decryption requires a key and a decryption algorithm; this algorithm and key are used to recover the 

plaintext from the ciphertext. The processes or algorithms used to encrypt the plaintext and decrypt 

the ciphertext are not secret; it is the keys that provide security. If the encryption and decryption keys 

are the same, the key is a symmetric key. If the encryption key is public, and the decryption key is 

different and private, then anyone can encipher information (for example, their health information) 

using the public key and send the ciphertext to the owner of the private key (for example, a central 

health authority) who can decipher all information received using the private key. Such a 

cryptosystem is a public key cryptosystem. 

Encryption is a crucial aspect of the preservation of privacy of medical records and PHRs, 

especially with the increasing integration of data sets, electronic sharing of data and more 

complicated access requirements. It is not difficult to eavesdrop on messages as they are transmitted 

or for a dishonest insider in a data center to copy files. If such messages and files are encrypted then 

the files are unintelligible and of no use to those who have illegally accessed them. Privacy of 

records is preserved. However, problems of efficiency and scalability with the granting and revoking 

of access to data remain very important challenges for achieving fine-grained, cryptographically 

enforced data access control. 

Medical wireless sensor networks (WSNs) are another technology used for data transfer and 

these have been widely used in healthcare applications such as in hospitals and for home patient 

monitoring systems including, for example, blood pressure monitoring [3]. WSNs are more 
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vulnerable to eavesdropping, modification, impersonation and replaying attacks than wired networks. 

Advanced cryptographic techniques play vital roles in maintaining the privacy of data in a cloud 

environment and in securing the operation of medical WSNs. Such techniques can facilitate the use 

of large distributed medical databases for medical purposes, for example, reliable verification of the 

role of lifestyle and social factors in disease prevention and improved well-being [4–6], the 

effectiveness of treatment options [7], the investigation of rare genetic diseases [8], as well as for 

finding attributes that may help in the early diagnosis of various conditions [9–17]. Likewise, medial 

databases are valuable in the development of automated computer-based diagnostic classification 

systems for e-health and mobile applications [18–20]. The preservation of privacy could also 

facilitate the creation of large medical databases combining data available in several countries. This 

could strengthen research on the automated medical diagnosis of various diseases, including cardiac 

autonomic neuropathy, which has been investigated recently in [21–29] using only one local database.  

The present review article is devoted to recent developments in the area of medical applications 

of cryptographic techniques. We concentrate on three advanced directions, where active research has 

been carried out recently. These three directions have significant implications for security of medical 

data. In the next section, we begin with background and recent results devoted to k-anonymity. 

Section 3 deals with attribute-based encryption. Homomorphic encryption is presented in Section 4. 

Finally, a review of recent work on privacy-preserving data mining is given in Section 5. For the 

fundamentals of computer security and mathematical foundations of classical cryptographic 

primitives, the readers can turn, for example, to [30–33]. For preliminaries on private information 

retrieval, we refer to [34]. 

2. K-anonymity 

For medical research it may be essential to use some parts of the medical records of arbitrary 

selections of patients without requesting the patients to sign legal consent which might otherwise 

introduce a bias to the study and reduce participation. When only a part of the record is released, to 

comply with the privacy legislation it is essential to guarantee that the identity of the person cannot 

be established. To achieve this it is necessary to ensure an important property known as k-anonymity. 

It is essential for the protection of data being released against the possibility of re-identification of 

the patients to which the released attributes refer. 

To define the notion of k-anonymity, suppose that a database D is to be released and made 

available for medical research. We assume that the identifiers of patients, such as their name, 

Medicare number or private health insurance membership number have been deleted. The database D 

may contain quasi-identifiers, i.e., attributes which can be exploited for linking the records to the 

patients. This means that an attacker can use quasi-identifiers to identify the patients by using other 

sources of publicly available information. Examples of quasi-identifiers include the date of birth, age, 

sex, type of employment, postal code of the area, the medical practice name, and so on. If there is a 

combination of quasi-identifiers, which is unique, then an attacker can determine the identity of the 

respondent to which the record with this combination of quasi-identifiers refers. The notion of 

k-anonymity requires that the quasi-identifiers of every record in D be related to no fewer than k 

patients. More specifically, the database D is said to satisfy the k-anonymity condition if, for every 

combination of values of quasi-identifying attributes occurring in D, there exist k records in D with 

exactly the same combination of the quasi-identifiers.  
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2.1. Previous work on k-anonymity 

The main methods for enforcing k-anonymity in medical databases are presented in Table 1.  

Table 1. Major methods for enforcing k-anonymity. 

Method Summary 

Generalization Replaces values of attributes with generalized version of these attributes. 

Different values can be generalized to a same value so that the number of 

occurrences of the new value will increase. 

Suppression Suppresses sensitive information by removing it. Suppression can be applied 

by deleting a single attribute in one record, or a single attribute in all records, 

or an entire record. Usually suppression is applied to remove outliers or 

records without similar records. Suppression makes it possible to reduce the 

amount of generalization required for achieving k-anonymity. 

 

Suppression and generalization were applied for achieving k-anonymity before sharing medical 

information in [35]. An extended version of k-anonymity, called a modified entropy 1-diversity 

model, is introduced and investigated. Several types of linking attacks are considered and it is shown 

that they can be prevented using this model. It is explained how to use suppression and 

generalization to achieve the modified 1-diversity.  

A new globally optimal de-identification algorithm Optimal Lattice Anonymization (OLA) was 

developed in [36]. It is designed for use with medical data in order to achieve k-anonymity. A 

thorough experimental study was carried out to compare OLA with previous techniques proposed by 

other authors. The results established that OLA was significantly faster than other methods in finding 

the globally optimal de-identification solution. 

Anonymization techniques for PHRs keeping patient data safe while preserving useful medical 

information were studied in [37]. In order to design an algorithm for privacy protection that reduces 

the overall information distortion and leads to consistent information loss, the paper [37] introduced 

a k-member cluster seed selection algorithm (KMCSSA) and applies it in k-member clustering to 

achieve k-anonymity. The k-member clustering with KMCSSA aims to collect records minimizing 

the amount of generalization required to achieve k-anonymity. It is well known that many classical 

clustering techniques involve choosing a random seed, which results in inconsistencies in 

performance. To overcome this problem, KMCSSA selects the seed based on the closeness of records 

in order to reduce the information distortion and to produce consistent information loss. Experiments 

presented in the paper show that KMCSSA is superior to previous algorithms as far as information 

loss is concerned.  

An application of k-anonymity to preserve privacy in wireless sensor network medical 

environments was considered in [38]. The paper proposes a clustering-based architecture for 

effective data aggregation and achieving k-anonymity. The architecture is resource aware. It 

minimizes energy consumption. Experimental results evaluating the energy consumption and 

network performance of the system are presented.  

A k-anonymity study of medical care data is undertaken in [39]. Experimental results discussed 

in this article have highlighted high risk of disclosure of the identities of the patients in medical 
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records and the need to develop a robust technique for k-anonymization. 

In [40], the authors develop a novel method for achieving k-anonymity while preserving the 

data distribution by applying dithered quantization and Rosenblatt's transformation. The quality of 

preserving data distribution is workload driven. This method is then used for real-life publicly 

available medical datasets in order to solve the medical insurance cost minimization problems. 

Distributed randomization is combined with k-anonymity in [41] for the privacy protection of 

medical data. A clinical dataset of diabetic nephropathy is used to assess novel method for the 

reduction of the information loss rate proposed in the paper. 

An extensive collection of algorithms for k-anonymization is studied in [42]. The results of 

comprehensive experiments are presented and the best three algorithms are chosen based on their 

execution time and performance in the degree k of anonymization for various choices of quasi-identifiers. 

A scalable k-anonymization approach using MapReduce is proposed in [43]. In the case of very 

large medical databases, the amount of generalization and suppression required to achieve the same 

level of k-anonymity reduces considerably because of the well-known large crowd effect. However, 

the problem of handing big data for anonymization remains challenging. MapReduce can be used to 

handle large volumes of data. To apply it effectively, it is essential to design scalable algorithms. The 

paper [43] introduces an algorithm called scalable k-anonymization (SKA) using MapReduce for 

privacy preserving big data publishing. Experiments comparing it with previous solutions 

demonstrate that the new algorithm leads to a remarkable improvement in quality of the outcomes and in 

running time. 

The paper [44] proposes a semantic-based k-anonymity scheme for health record linkage. It is 

applied for linking the original records from sources in situations where direct access to the data is 

not possible. The semantic-based linkage k-anonymity is proposed for de-identifying record linkage with 

fewer generalizations at the same time eliminating inference disclosure by means of semantic reasoning.  

2.2. Challenges facing k-anonymity 

Legislative requirements to obtain consent may be waived if the disclosed data are de-identified. 

Achieving k-anonymity means that the probability of identifying the patient is reduced to 1/k. 

Careful legal studies are needed to determine the appropriate value of k that should be used to avoid 

legal challenges for compliance with legislation during data release in each particular situation. 

The concept of k-anonymity is absolutely necessary for the preservation of privacy of the shared 

data. Therefore the crucial challenge of minimizing the data loss will remain central in future work 

devoted to k-anonymity for medical databases. 

However, k-anonymity is not a sufficient condition, which means that is it does not guarantee 

that the privacy of patient data is protected. For example, suppose that a sensitive attribute S in a 

medical database D must be protected and that there is a group of k records in D with the same 

selection of quasi-identifiers and such that the values of S in all of these k records are similar, or 

perhaps they may even be equal. In this case, if an attacker can reveal the identity of a patient from 

these quasi-identifiers, then the attacker will be able to identify all k individuals in this group, and so 

the attacker will know the value of the confidential attribute S for all k patients. Furthermore, 

suppose that the HIV status (or the diagnosis of any other disease) with values 0 and 1 is the sensitive 

attribute S. In this case, since the attribute S can take on only two values, it follows that if the 

attacker looks at many subsets of k patients with coinciding quasi-identifiers each, then the 
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probability that the attacker can find k individuals having the same diagnosis and also the same 

quasi-identifiers rapidly approaches 1 with the growth of size of the medical database. Therefore 

with a probability approaching 1 the attacker can find and identify a group of k patients with the 

same HIV status, which is a security risk.  

2.3. Future directions for work on k-anonymity 

The example given in the preceding section shows that further research is needed to develop 

more advanced generalized versions of k-anonymity and investigate medical databases satisfying 

these conditions. 

Another promising direction for future work is to investigate ways of combining k-anonymity 

with cryptographic techniques for the development of hybrid solutions increasing the effectiveness 

and efficiency of both approaches in preserving the privacy of medical data. 

These challenges demonstrate that further research on k-anonymity and its generalizations is 

required. Currently available stronger privacy protection methods based on cryptography discussed 

in the following sections can be recommended to the medical practitioners.  

3. Attribute-based encryption 

For stronger and more reliable protection of data privacy, it is desirable to store all data items in 

encrypted form, and allow only authorized users to access the original values. Attribute-based 

encryption (ABE) [45] is a form of public key encryption. It identifies users by attributes such as 

medical condition, gender, age, hospital, and position. An ABE system enables scalable access 

control by specifying access polices (or access structures) over encrypted data. The access policies 

are used to determine what kind of users can decrypt and access a ciphertext stored in the medical 

database. Following [46], the main types of ABE are presented in Table 2. 

Table 2. Main types of abe. 

Acronym Method 

CP-ABE Ciphertext-Policy ABE 

KP-ABE Key-Policy ABE 

 

In CP-ABE, each user is issued with a private key which encapsulates his/her attributes, and 

each message is encrypted under a specified access policy in terms of attributes. Thus the users can 

decrypt a ciphertext if and only if their attributes, which are associated with their private keys, satisfy 

the access policy of the ciphertext. In KP-ABE the situation is reversed. Private user keys are 

associated with their access policies and the ciphertexts are associated with the attributes. This means 

that a user can decrypt a ciphertext if and only if the corresponding access policy (associated with 

their private key) is satisfied by the attributes of the ciphertext. 

3.1. Previous work on ABE 

This use of attributes makes ABE a successful security application for providing flexible and 
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fine-grained access control over medical data. It also makes ABE a promising solution for the 

protection of data privacy in scenarios requiring scalable access control, for example, medical 

databases. For technical background on ABE the readers are referred to the original articles [45–48]. 

An important aspect of practical encryption is a trusted key escrow system, that is, a system for 

storage of decryption keys, in which the keys can be provided to authorized participants, and to 

authorized third parties in special circumstances. Though ABE has many advantages in terms of 

access control, it has limitations. Further research is needed to improve aspects of key management 

including key escrow [49], revocation, efficiency and privacy protection. To solve these issues, 

various types of ABE schemes have been proposed. Regarding key escrow, where a single trusted 

party monitors attributes and issues private keys for all users, the notion of multi-authority ABE [50,51] 

has been introduced in which multiple attribute authorities operate simultaneously, each distributing 

private key components corresponding to different sets of attributes.  

In terms of revocation, there are solutions such as revocable and decentralized ABE [49], which 

split the task of decryption key generation across multiple attribute authorities, without requiring any 

central party, so that attribute revocation is achieved by simply stopping the updating of the 

corresponding private key. Server-aided revocable ABE [52] optimizes user revocation in ABE by 

delegating almost all of the workload incurred by user revocation to an untrusted server. ABE with 

granular revocation [53] utilizes the key separation technique to support selective revocation in 

which a user’s attributes can be selectively revoked.  

Many ABE schemes with outsourced decryption have been proposed [52,54,55]. Outsourcing 

increases efficiency as it decreases the computations to be performed by a user when decrypting a 

ciphertext. With regard to privacy protection, there are ABE schemes with partially hidden access 

structures [56–58] or fully hidden access structures [59], which hide the sensitive attribute 

information of users from the access policies included in the ciphertexts. 

A novel patient-centric framework and a suite of mechanisms for data access control of PHRs 

stored in semi-trusted servers are proposed in [60]. To achieve fine-grained and scalable data access 

control for PHRs, an ABE is used in [60] to encrypt each patient’s PHR. The encryption protocol 

focuses on handling information with multiple data owners. It divides the owners in the PHR system 

into multiple security domains, which greatly reduces the key management complexity for owners 

and users. A high degree of patient privacy is guaranteed simultaneously by exploiting 

multi-authority ABE. The scheme proposed in [60] enables dynamic modification of access policies 

or file attributes, supports efficient on-demand user attribute revocation and incorporates special 

procedures for access in case of emergency.  

A privacy-preserving PHR scheme is set out in [61] to support fine-grained access control and 

efficient revocation. It achieves efficient on-demand user/attribute revocation, dynamic policy update, 

and scalable and fine-grained access control for PHRs by using a multi-authority ABE scheme. The 

PHRs of patients are encrypted and stored in semi-trusted servers, where access is allowed by 

multiple data owners. It is demonstrated in [61] where the security of the scheme reduces to the 

standard decisional bilinear Diffie-Hellman assumption. 

Extending patient data transfer from within health care providers with possible access by 

patients from fixed sources, wireless body area networks (WBANs) have emerged as a new method 

for e-healthcare. WBANs can greatly improve healthcare quality, because clinicians can give 

guidance to patients in real-time without frequent face-to-face meetings and measurements. WBANs 

are designed for storage and processing of personal information and medical data collected by the 
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body area sensors. Security and privacy are two vital issues for the successful operation of WBANs. 

A KP-ABE scheme for fine-grained access control in WBANs is designed in [62]. User access can be 

revoked if necessary. This protects the security and privacy of patients, providing confidentiality and 

resistance to collusion attack.  

A distributed ABE framework is proposed in [63] for sharing records stored in the cloud with 

other hospitals. The framework is designed to achieve secure and scalable storage of records in the 

cloud environment. Lambay [64] uses KP-ABE and multi-authority ABE combined with symmetric 

key cryptography to achieve fine-grained data access control for encrypted PHRs stored on cloud 

servers. A novel framework for secure sharing of PHRs stored in the cloud is proposed in [65] to 

fully realize the patient-centric concept. Patients have complete control of their own privacy as their 

PHRs are encrypted using several encryption algorithms. Another PHR management system is 

studied in [66]; it guarantees a high degree of patient privacy by exploiting multi-authority ABE. In a 

multi-authority ABE all users are divided into multiple security domains that greatly reduce the key 

management complexity for owners and users. 

A scalable, flexible and fine-grained access control mechanism for outsourcing health records to 

cloud storage is provided in [67]. It categorizes users as personal or professional. For the professional 

domain, hierarchical attribute set based encryption is employed and for the personal domain a 

KP-ABE [46] is used. This achieves the needed scalability and fine-grained access for the 

professional domain and simplicity of key management in the personal domain. The sensitivity of 

outsourced cloud data is upheld in [68] by employing ABE to restrict admission to encrypted data. 

Data privacy is safeguarded by established key management and indexing methodologies.  

A model for a cloud-based PHR system for health information exchange is studied in [69]. It 

allows PHR owners to securely store their health data with semi-trusted cloud service providers, and 

to selectively share their health data with a wide range of PHR users. To reduce the key management 

complexity, the PHR users are divided into public and personal security domains [69]. PHR owners 

encrypt their health data for the public domain using CP-ABE, while encrypting their health data for 

the personal domain using an anonymous multi-receiver identity-based encryption scheme. Only 

authorized users whose credentials satisfy the specified ciphertext-policy or whose identities belong 

to dedicated identities can decrypt the encrypted health data. 

Attribute based broadcast encryption is proposed in [70] to handle workflow access control 

scenarios by combining ABE with data access rights based on user identity. It achieves fine-grained 

and scalable data access control for PHR data in a patient-centric framework for the multiple data 

owner setting. The attribute based broadcast encryption scheme enables dynamic modification of 

access policies or file attributes and efficient on demand user attribute revocation. A system for 

scalable and secure sharing of data in the cloud using ABE is discussed in [71]. PHR data is stored in 

encrypted form and the system allows authorized persons to access details via a health social network 

and to generate reports in a secure and authenticated manner.  

An innovative architecture for collecting and accessing large amounts of data generated by 

medical sensor networks is proposed in [72]. The architecture makes it easy for clinicians to share 

medical information in normal and emergency situations. An effective and flexible security 

mechanism is presented to guarantee confidentiality, integrity, and fine-grained access control to 

outsourced medical data. This mechanism relies on CP-ABE to achieve high flexibility and performance. 

Eom et al. [73] studied a patient-controlled ABE scheme, which enables patients as data owners 

to control access to their health data while reducing the operational burden for patients. Patients have 
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control authority over their own health data; they have the final say on the access and its time 

limitations. The scheme also provides for medical emergencies with the ability to access health data 

without patient permission only in an emergency.  

An extension of the patient-controlled ABE scheme was designed by [74] to determine the 

credentials to be used to give access to encrypted sensitive PHRs for users including specialist 

doctors, physicians, family members, and clinic administrative staff.  

Cloud servers can be divided into public and private clouds for storage of information according 

to the sensitivity of data, as suggested by [75]. ABE is employed for fast data retrieval from multiple 

servers and one-time passwords are generated and emailed to authorized users for security based data 

access via Smartphones. Utilizing this method, the level of security is increased and trustworthiness 

is also maintained. Another efficient specialized ABE technique for pharmaceutical databases was 

introduced in [76]. 

A framework using ABE to assist CSPs to securely store and share patient data, and for 

addressing healthcare regulatory requirements, is explored in [77]. The ABE mechanism studied in [77] 

guarantees authentication, data confidentiality, availability, and integrity in a multi-level hierarchical 

order. This allows the healthcare provider to easily add/delete any access rule in any order, which is 

particularly beneficial for medical practices. 

A new method of secure fine-grained access control to PHRs is studied in [78]. It is based on 

ABE primitives and division of the PHR data into privacy levels. KP-ABE provides fine-grained 

access control storage system for outsourced sensitive data. It can also provide efficient user 

revocation by using a timestamp in the private key. The construction achieves data confidentiality, 

preventing unauthorized users from gaining access to the outsourced data.  

3.2. Challenges facing ABE 

An attribute-based medical system enables fine-grained access control over encrypted PHRs, 

which provides data privacy such that only privileged data users are able to access the original PHRs, 

scalability such that the size of each encrypted PHR is independent of the number of targeted data 

users, and fine-grained access control such that data owners can specify who are able to access the 

encrypted PHRs in an expressive manner. In addition to these properties born with ABE, an 

attribute-based medical system should also address the following issues before it can be widely 

applied in practice. 

• Dynamic user management to enable unbounded number of data users in the system and 

revocation of data users; 

• Data owner anonymity and traceability such that it preserves data owner anonymity in 

normal circumstances while keeping his/her identity traceable by a trusted authority in case that the 

data owner misbehaves; 

• Secure data provenance to provide irrefutable evidence on who creates and modifies the 

PHRs in the cloud-based medical system. 

All these problems have been separately addressed in ABE schemes, and it might be possible to 

simply apply these solutions to an attribute-based medical system to solve the related problems in an 

attribute-based medical system. Anyway, to the best of our knowledge, there has not been an 

attribute-based medical system that considers all the issues mentioned above. 



10 

AIMS Medical Science Volume 5, Issue 1, 1–22. 

3.3. Future directions of ABE 

Recently, the concept of Internet of Things (IoT) has become increasingly popular. We think this 

development raises new challenges for the current medical systems based on ABE.  

Firstly, many IoT devices are resourced-constrained, but existing ABE schemes are very 

expensive in calculations, and thus it is not suitable for them to access encrypted data generated by 

an ABE scheme. It seems that ABE with outsourced decryption can solve this computation problem, 

but it is not clear that in a medical system, who should play the role of the third party (i.e., a proxy or 

a cloud server) to perform the calculation for the user. In addition, as the third party should not be 

trusted at all in the cloud storage scenario, it is important to guarantee that any false calculation 

conducted by the proxy can be easily detected by the user who sends the outsourcing request and all 

the information held by the proxy should not leak any information about the real data.  

Secondly, current medical systems based on ABE only focus on how to specify access policy 

over recipients, i.e., what kind of users can decrypt the ciphertext. However, in practice, it is also 

important to clarify that data owners can share the data with what kind of data users. In other words, 

the access control should also be performed over data owners such that the administrator of the 

medical system can be convinced that the data owner does not share any data with those who are 

outsiders of the whole medical system. 

4. Homomorphic encryption 

Existing encryption systems can protect patient data during transmission and when stored. 

Having data encrypted protects data from some insider attacks, for example, where an administrator 

of a medical database or computer system decides to reveal sensitive or private medical data. This is 

because encrypted data is unintelligible and so unusable to those who do not have decryption keys. 

However, medical data can be invaluable for research and therefore require different types of 

encryption systems to allow, for example, statistical analysis of data in a medical database. For this, 

as with other analyses, computations need to be performed on the data. One way to do this is to have 

the data decrypted, transmit all relevant data to one place if it is stored in various locations, and then 

the analyses can be performed and answers obtained. This risks insider attacks from those with 

access to the computers, and eavesdropping if data transfer is required. These security risks are 

removed if calculations can be carried out without decrypting the data. Then analysis can be 

completed by any party, whether trusted or not. Homomorphic encryption enables this. 

Homomorphic encryption allows computations to be performed on encrypted data; decryption is not 

needed. The computation generates an encrypted result which, when decrypted, produces the same 

result as if the calculation had been performed on the unencrypted data. 

Table 2. Main categories of homomorphic encryption. 

Acronym Method 

FHE Fully Homomorphic Encryption 

PHE Partially Homomorphic Encryption 
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Partial homomorphic encryption allows one operation to be performed on encrypted data. Such 

encryption might allow addition (we get subtraction for free) of encrypted data, but not 

multiplication. Fully homomorphic encryption (FHE) allows both addition (and subtraction) and 

multiplication (and division). The Paillier [79] and ElGamal [80] cryptosystems are partially 

homomorphic and so can be employed to perform some analyses of patient data without 

compromising patient privacy [81]. 

For preliminaries on homomorphic encryption, examples, detailed technical information, and 

historical overview the readers are referred to the monograph [82]. The most widely used 

homomorphic encryption methods are the ElGamal [80] and Paillier [79] cryptosystems. Open-source 

FHE libraries, the HElib library [83] and the FHEW library [84], are available for practitioners. 

4.1. Previous work on homomorphic encryption 

FHE can eliminate privacy concerns in computations involving confidential medical data. 

However, its current implementations are very slow. This is an active area of research and there is 

hope for improvement. One option is the use of branching programs to achieve a dramatic increase in 

processing speed, though these methods lead to restrictions on the types of data elements that can be 

used in FHE computations [85]. Another technique for increasing the efficiency, and parallelism, of 

certain algorithms under FHE is proposed in [86]. Simulations show that parallelization increases the 

processing speed by a factor of about 20. This is a significant step towards practical FHE-based 

medical remote monitoring. 

Personal health monitoring tools, such as commercially available wireless ECG patches, can 

significantly reduce healthcare costs by allowing patient monitoring outside healthcare institutions. 

These tools transmit the acquired medical data to the cloud, and so provide an invaluable diagnostic 

tool for healthcare professionals. Despite the potential of such systems to revolutionize the medical 

field, the adoption of medical cloud computing in general has been slow due to the strict privacy 

regulations on patient health information. FHE is used in [87–89] to protect patient privacy during 

monitoring of their conditions via wearable devices connected to the cloud. The paper [87] describes 

homomorphic encryption to develop a system for secure assessment of cloud based health 

monitoring. A feasibility study of an application of FHE to long-term patient monitoring via cloud 

based ECG data acquisition through existing ECG acquisition devices was conducted in [88]. FHE is 

applied to perform secure data analysis and may open up this technology to health care providers.  

Several PHR access control protocols based on the ElGamal threshold public key encryption 

scheme are proposed in [90] under the multi-party framework where all PHRs are encrypted with a 

common public key, and an encrypted PHR can be decrypted only with the cooperation of all parties. 

In these protocols, multiple parties cooperate to control clinicians’ access to PHRs without actually 

knowing the content of the PHRs. This ensures protection of the patient data from insider attacks as 

long as at least one party can be trusted. The protocols are built on public key infrastructure, which 

facilitates clinician registration and revocation. 

The use of WSNs to connect wearable monitoring devices in health care is growing rapidly. 

Numerous applications are ready to use, such as blood pressure monitors and heart rate monitors that 

have Bluetooth or WiFi capability. Therefore it is important for system designers to consider how to 

protect patient privacy in WSNs. A data division scheme for WSNs is proposed in [91]. It utilizes 

homomorphic encryption to achieve stronger protection. In the proposed scheme, even if a 
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transmitting node in a WSN is compromised, data privacy is preserved. Experimental results show 

that the scheme provides a good trade-off between resources consumed and system security, and it is 

efficient for encryption and decryption. 

A novel medical cloud computing approach proposed in [92] eliminates privacy concerns 

associated with the cloud provider. It uses FHE for computations on private health data in encrypted 

form without observing the underlying data. The article [92] presents a feasibility study with a 

working implementation of a long-term cardiac health monitoring application using a 

well-established open source FHE library. 

The paper [93] describes an online health analysis system in the cloud that monitors a patient’s 

health regardless of the geographical location of the patient or clinician. The proposed application 

reduces patients’ traveling time and also reduces time spent in taking and delivering medical reports. 

In the application, PHR data are encrypted using a strong security algorithm and stored in the cloud 

by applying ElGamal encryption, using its homomorphic property to secure computations.  

Mobile medical queries can also pose a threat to patient location privacy because the location of 

a query may reveal sensitive information about the patient. An efficient solution using the Paillier 

public key cryptosystem for preserving location privacy for particular queries is given in [94]. An 

improvement on methods to preserve location anonymity of patients querying a service, while also 

allowing the owner of the data to maintain control over their data, was developed in [95]. The article [96] 

allows a patient to retrieve one type of point of interest, for example, hospitals, without revealing to 

the location-based services provider what type of point of interest is retrieved. The generic solution is 

built on the Paillier public key cryptosystem and handles multiple discrete attributes of private 

location-based queries.  

Paillier and ElGamal cryptosystems are used in [97] to encrypt patient data including 

temperature, heartbeat, and blood pressure. The data are sensed using appropriate wearable sensors, 

encrypted, and stored in the cloud. Patient data are securely distributed by employing the Paillier and 

ElGamal cryptosystems. To this end, a mobile application based on homomorphic encryption was 

developed by [98] to protect patient privacy while carrying out analysis of health data in the cloud.  

Large amounts of data are invaluable for learning about and understanding many health issues, 

leading to improved health care. Complex data mining algorithms are needed to maximize the use of 

available data, however, the privacy concerns of people, society and organizations put at risk the use 

of such valuable data. Therefore solutions such as those addressed in this paper to secure data and 

preserve privacy deserve consideration. 

4.2. Challenges facing homomorphic encryption 

Further work on increasing the speed of FHE and PHE algorithms is the most important 

challenge in order to make homomorphic techniques suitable for applications in large medical databases.  

4.3. Future directions for work on homomorphic encryption 

The development of effective FHE and PHE algorithms with split keys is a valuable direction, 

because split keys are a convenient way of incorporating secret sharing in a cryptosystem. 
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5. Privacy preserving data mining 

Data mining is the process of sorting through very large data sets to identify patterns, establish 

relationships and gain knowledge. The main tasks of data mining are association rule mining, 

classification and clustering. Association rule mining looks for associations between items of the 

form ―if X then Y‖, meaning that if X is present then it is likely that Y is also. For example, it might 

be found that a large proportion of people with disease X also have characteristic Y. Classification 

aims to assign items to categories. For example, based on various characteristics it might be possible 

to assign people as low, medium or high risk for disease X. Clustering is about grouping like items 

together. Data mining tools allow enterprises to predict future trends. Privacy preserving data mining 

facilitates the use of large datasets for research, and is important for clinical practice as it can detect 

trends in confidential data and provide valuable recommendations to health practitioners, while 

preserving privacy.  

5.1. Previous work on privacy preserving data mining 

Privacy preserving data mining research has been divided into two areas presented in Table 3.  

Table 3. Main categories of privacy preserving data mining areas. 

Acronym Method 

Data perturbation approach It alters the data before applying the data mining algorithm so that 

real values are obscured, but important statistics remain preserved.  

Privacy preserving 

distributed data mining 

Privacy preserving distributed data mining use sensitive data from 

distributed databases held by different parties, e.g., hospitals. 

The first is to alter the data before delivery to the data miner so that real values are obscured. If 

a random number chosen from a Gaussian distribution is added to each data value, the data miner no 

longer knows the exact data values. However, important statistics such as average and standard 

deviation remain preserved. Research has addressed related statistical issues [99]. Data mining 

techniques on such altered data have been developed for constructing decision trees, which can be 

used for classification [100,101] and for association rules [102,103]. This data perturbation approach 

works in the ―data warehouse‖ model of data mining, but trades privacy for accuracy of results. 

The second approach is privacy preserving distributed data mining. Distributed data mining 

applications, such as those dealing with health care, use sensitive data from distributed databases 

held by different parties. Consider the case where several hospitals wish to mine their patient data 

jointly for the purpose of medical research. In many countries privacy policies and legal 

requirements do not allow hospitals to pool their data or to reveal data to each other. Although 

hospitals may be allowed to release data after identifiers, such as name and address, have been 

removed, this does not guarantee privacy as sometimes re-identification is possible by linking 

different public databases to relocate the original subjects [104]. In order to conduct research and 

allay privacy concerns, protocols are needed for privacy-preserving distributed data mining. 

A cryptographic approach was firstly used to build a decision tree [105] in the case where the 
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data is held by two parties, each with their own database. The databases are not shared and there is 

no third trusted party involved. Computations are done by both parties and though information is 

shared (without revealing to each party anything about the data held by the other party), a decision 

tree on the combined data is constructed. A well-known algorithm (ID3) is used ensuring efficient 

communication between the two parties.   

Data can be separated with different partitions kept on different servers. This could reduce the 

load on each server. Horizontal partitioning is one way of splitting data such that, for example, on 

one server are all records for patients under 25, on another for those over 25 and under 50, and a 

third for those 50 and over. In the case where three or more parties jointly mine data to obtain global 

association rules on horizontally partitioned data, a protocol to preserve confidentiality was proposed 

in [106]. In this application the parties learn (almost) nothing beyond the global results. The protocol 

involves the parties sharing data and encrypting it as it is passed along (data gets encrypted many 

times). Based on other information that is gathered during this process, association rules are 

discovered. A particular type of encryption (commutative encryption) must be used for this protocol 

to work. 

Yi et al. [107] present a protocol which is based on a new semi-trusted mixer model, in which 

one party ―the mixer‖ (perhaps a government agency) receives messages from several other parties 

and combines, or mixes, the messages to obtain a result. This privacy-preserving distributed 

association rule mining protocol uses data from the n sites, and can protect the privacy of each 

database against collusion by a coalition of up to n-2 parties. The protocol requires many rounds of 

communication between the parties and the mixer, but only two communications between each party 

and the mixer in each round of data collection. In the protocol, each party performs distributed 

association rule mining as it would on its local data.  

By extending the single semi-mixer model to the multiple semi-mixer model, a two-party 

protocol and a multi-party protocol for a privacy-preserving naive Bayes classifier for horizontally 

partitioned distributed data was discussed in [108]. The multi-party protocol is built on the multiple 

semi-trusted mixer model in which each data site sends messages to two semi-trusted mixers, which 

run the two-party protocol and then broadcast the classification result. This model facilitates both 

trust management and implementation. Security analysis has shown that the two-party protocol is a 

private protocol and the multi-party protocol is a private protocol as long as the two mixers do not collude. 

Yi et al. [109] present an equally contributory multi-party k-means clustering protocol for 

vertically partitioned data where each party equally contributes to k-means clustering. The protocol 

is built on ElGamal encryption, Jakobsson and Juels's plaintext equivalence test protocol, and mix 

networks. It protects privacy by k-means clustering for each iteration without revealing the 

intermediate values. 

Reducing the computational burden of applying privacy preserving protocols is an important 

problem. A cloud computing environment can provide effective solutions to this problem as the 

computations are outsourced to the CSPs. However, appropriate methods for alleviating privacy and 

security concerns are needed. The paradigm of data mining-as-a-service in the cloud computing 

environment has attracted interest. In this paradigm, a client (data owners), lacking data storage, 

computational resources and expertise, stores data in the cloud and outsources data mining tasks to 

the cloud servers. In order to protect the privacy of the outsourced database and the association rules 

mined, k-anonymity, k-support, and k-privacy techniques have been proposed to perturb the data 

before it is uploaded to the server. These techniques are computationally expensive and it is often 
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better to execute association rule mining locally. Recently, more efficient techniques that encrypt 

data before storage and analysis in the cloud have been actively investigated. A scenario where a 

clinician encrypts and stores data in the cloud and outsources the task to n "semi-honest" servers was 

investigated in [110]. To mine association rules from the data, the servers cooperate to perform 

association rule mining on the encrypted data in the cloud and return encrypted association rules to 

the user. Three solutions are provided in [110] for protecting data privacy during association rule 

mining. These solutions are built on the distributed ElGamal cryptosystem and achieve item privacy, 

transaction privacy and database privacy, as long as at least one of the servers is honest. To eliminate 

the risk that all servers are compromised, users are advised either to use well established creditable 

CSPs or to combine servers from several different CSPs.  

Rao et al. [111] also propose a novel and efficient protocol for privacy-preserving outsourced 

distributed clustering for multiple users based on the k-means clustering algorithm. The protocol 

avoids the secure division operations required in computing cluster centers for k-means clustering 

through efficient transformation techniques. In addition, offline computation and pipelined execution 

are studied to boost performance. These two strategies combined with parallelism significantly 

improve the performance of the protocol. 

To make it attractive for medical practitioners to outsource data analytics to service providers 

with powerful platforms and advanced analytics skills, an effective encryption scheme employing 

homomorphic encryption to perform k-means clustering directly over the encrypted data was 

reported in [112]. Since the ciphertexts resulting from homomorphic encryption do not preserve the 

order of distances between data objects and cluster centers, the proposed approach enables the service 

provider to compare encrypted distances with the trapdoor information supplied by the data owner. 

5.2. Challenges facing privacy preserving data mining 

The reduction of information loss is the major challenge facing the data perturbation approach 

in privacy preserving data mining. 

Increasing the effectiveness and reducing the running time of privacy preserving data mining 

algorithms based on cryptographic techniques is also important. 

5.3. Future directions for work on privacy preserving data mining 

The investigation of privacy preserving ensemble classifiers is a promising new research 

direction, since ensembles are well known machine learning tools deployed in solutions to various 

medical problems and the problem of developing privacy preserving ensembles is quite challenging. 

The investigation of privacy preserving fuzzy classifiers is also an interesting direction for 

further research, because fuzzy techniques have been quite effective in medical applications recently, 

but they have never been applied in privacy preserving data mining yet. 

6. Conclusion 

This article gives a review of recent work on three advanced research directions, which have 

significant implication for practical decisions concerning the security of medical databases: 

attribute-based encryption for enabling secure access to confidential medical databases distributed 
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among several data centers; homomorphic encryption for providing answers to confidential queries 

in a secure manner; and privacy-preserving data mining used to analyze data stored in medical 

databases for verifying hypotheses and discovering trends. 
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