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Abstract: Occurrence of cyanobacterial harmful blooms (CHBs) in water has caused serious concern 

to environmental and health authorities because of their potential to produce and release lethal 

biological toxins. Among many toxins, microcystins (MCs) are of particular interest. There have 

been significant efforts to observe the harmful algal bloom events and cyanotoxin levels, including: 

(i) manual field sampling followed by lab analysis to directly measure MCs, (ii) remote sensing 

based on satellite image analysis to estimate cyanobacterial index (CI), and (iii) in-situ sensing of 

proxy parameters to cyanobacterial blooms such as phycocyanin. This study compared the 

observation systems in western Lake Erie to find any potential correlations among these CHB 

monitoring parameters based on the Pearson Product-Moment equation. We found the relationships 

among the parameters to be site-specific and so we compared geographical, ecological, 

meteorological, and analytical factors specific to the locations to explain the observed correlations 

and variations. The CHB observing parameters (MCs, CI, and phycocyanin) were generally well 

correlated because they inherently represented the same phenomenon. In particular, we found the 

measured biological toxin concentration (MCs) to be strongly correlated with the cyanobacterial 

bloom activity (CI) estimated by satellite image analysis. The phycocyanin concentration also had a 

strong correlation with CI, implying that measuring an easy-to-detect proxy parameter in-situ and in 

real-time is effective for monitoring CHBs. The results support the notion that key environmental 

management parameters such as CHB toxicity can be inferred from remotely-sensed ocean color 

through proxy variables such as CI. 
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1. Introduction 

Several environmental factors, such as nutrients, light, wind, temperature, pH, and hydrology, 

stimulate frequent massive and prolonged blooms of cyanobacteria and algae, forming 

cyanobacterial harmful blooms (CHBs), more commonly known as harmful algal blooms. Direct 

economic impacts of coastal harmful blooms events in U.S. have increased significantly each 

year [1]. The majority of the impacts are associated with public health and commercial fishery 

sectors. There have been increasing research activities for developing algal bloom mitigation 

strategies categorized into mechanical, physical/chemical, and biological control [2,3]. For the 

effective implementation of such strategies with given operating budgets and efforts, location and 

degree of CHBs should be identified on time or preferentially in advance [3]. 

Cyanobacteria (blue-green algae) are of particular concern in freshwater bodies because more 

than 50 species of cyanobacteria are known to produce cyanotoxins such as microcystins (MCs), 

anatoxin-a, and cylindrospermopsin [4]. In particular, MCs are among the most powerful natural 

poisons and up to 50% of the recorded blooms can be expected to contain MCs [5]. The CHB and 

MC outbreak in 2014 in drinking water resources in the city of Toledo, OH triggered close attention 

of general public all around the nation [6]. Cyanobacteria and their toxins are currently in the U.S. 

Environmental Protection Agency’s Drinking Water Contaminant Candidate List [7].  

As a result, monitoring and publicizing CHB activity can provide a major mechanism for 

reducing or preventing exposures to toxins during CHBs and for deploying bloom mitigation 

strategies in advance [8,9]. Cyanobacteria and toxins can be directly identified while measuring 

easy-to-detect surrogate (i.e., proxy) parameters to them can be an alternative to the direct 

measurement in order to simplify the monitoring process [10]. On-site, in-situ, and remote observing 

approaches can be selected for the monitoring [8]. There have been huge efforts to monitor CHB 

activities and toxin releases in U.S. particularly by National Oceanic and Atmospheric 

Administration (NOAA) [11]. Both direct (microscale) and indirect (macroscale) observational 

systems for monitoring CHBs and their characteristics have been adopted (Table 1). 

Table 1. Current observation systems for monitoring cyanobacterial harmful blooms. 

Observing approach Measuring target Directness Scale
a 

Final information 

On-site sampling 

followed by lab analysis 

Biological toxins (MCs) and 

cyanobacterial species 

Direct Microscale
 

Exact cyanobacterial 

community and toxin 

release 

Remote sensing based on 

satellite image analysis 

Cyanobacterial index  

(color image) 

Indirect Macroscale
 

General cyanobacterial 

blooms 

In-situ sensing for 

monitoring a proxy 

parameter 

Phycocyanin, an accessory 

pigment to chlorophyll 

Indirect Macroscale 
General cyanobacterial 

blooms 

a Microscale data: detailed information for a confined area and macroscale data: general information for a vast area. 
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First, on-site manual sampling followed by lab analysis is commonly used to identify 

cyanobacterial species and to assay biological toxins [12]. In spite of its high accuracy and reliability, 

this approach is neither sustainable nor practical to meet the vast spatial and temporal measuring 

need. Second, remote monitoring relies on spectral images taken from satellites and aircrafts and 

provides the large spatial scale and high frequency of observations required to assess bloom locations 

and movements. The remote sensing approach is useful for monitoring general cyanobacterial bloom 

activities by allowing the construction of a cyanobacterial index (CI) from analysis of pixels in 

remote sensing images [13]. Third, in-situ sensing is a recent monitoring approach [14]. For example, 

an in-situ autonomous observing approach employing a fluorescence probe mounted on buoys 

optically senses phycocyanin as an accessory pigment to chlorophyll often associated with CHBs 

(i.e., phycocyanin is a surrogate chemical or proxy to CHBs) [15]. The remote and in-situ (real-time) 

monitoring approaches improve opportunities for immediate decision-making and timely response. 

However, these color-based products are not specific to CHBs because high level of chlorophyll may 

or may not be associated with toxic blooms and thus not all cyanobacterial blooms are associated 

with release of biological toxins [16,17]. 

In spite of their utility, no one has attempted to collect and compare these CHB observing 

parameters to quantify correlations among the parameters to better assess, interpret, and even 

forecast CHBs and the presence of cyanobacterial toxins. The objective of this present study, 

therefore, is to compare and correlate the current observation systems and thus to evaluate the 

effectiveness of each system to monitor and assess CHB events and associated toxins. The 

observation systems monitor different CHB parameters such as biological toxins (e.g., MCs), general 

cyanobacterial blooms (e.g., CI), and proxy targets (e.g., phycocyanin). We hypothesize that they are 

correlated because they are inherently designed to reflect the phenomenon associated with 

cyanobacterial blooms. Since most of the CHB data and information are open to public, this study is 

not intended to present already-publicized CHB parameters but to compare the CHB parameters in 

order to find any correlation between the parameters. 

We collected CHB abundance, meteorological conditions, and geographical information in 

western Lake Erie in 2013 only for which all of the three monitoring parameters were available. We 

interpreted correlations among the CHB data to test the hypothesis above and to better understand 

relationships between CHB outbreak and toxin release. This is the first study to compare and 

correlate the different observation parameters that exclusively target at monitoring and interpreting 

the same phenomenon, CHBs. 

2. Materials and methods 

2.1. Selection of a CHB study site 

Western Lake Erie was selected as a CHB study site due to the frequent observation of 

cyanobacterial blooms and toxin releases there [18]. The Maumee River flows through northern Ohio 

and Toledo and then into Maumee Bay in the western basin of the lake [6]. We selected four study 

sites (WE2, WE4, WE6, and WE8) in western Lake Erie (Figure 1) because significant monitoring 

activities around these locations have provided useful CHB-associated information [18]. 
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Figure 1. Study locations in western Lake Erie: WE2 (N41º45.825; W83º19.701), WE4 

(N41º49.663; W83º11.649), WE6 (N41º42.454; W83º23.000), and WE8 (N41º49.998; 

W83º21.895). Inset shows the whole Lake Erie and the rectangle in the inset shows the 

western Lake Erie (adapted and modified from Google map at 

https://www.google.com/maps). 

2.2. On-site monitoring of MC concentration 

The NOAA Great Lakes Environmental Research Laboratory in collaboration with the 

Cooperative Institute for Limnology and Great Lakes Research at the University of Michigan has 

operated a sampling program for Lake Erie and publicized the distribution of MCs in many locations 

around western Lake Erie [19]. The NOAA laboratory collected samples from the four different 

locations denoted as WE2, WE4, WE6, and WE8 during typically May-October when cyanobacterial 

blooms were abundant [19]. The samples were taken at the surface (the upper 0.5 m of the water) to 

be most representative of the portion of water column that recreational users contact. The surface 

portion also corresponds to the focus of satellite images. As one of the most powerful biological 

assays, neurochemical and enzyme-linked immunosorbent assay (ELISA) was introduced to quantify 

the intracellular concentration of MCs in the water samples [12]. Basically, the MC information 

published by NOAA was used in this study. 

2.3. Satellite-based remote sensing for CI 

The NOAA National Centers for Coastal Ocean Science and Great Lakes Environmental 

Research Laboratory have analyzed satellite images around Great Lakes and published the Lake Erie 

Harmful Algal Bloom Bulletins [20]. The NOAA uses CI to quantify blooms because CI indirectly 

corresponds to the amount of algal biomass. The estimated threshold for cyanobacteria detection is at 

35,000 cells/mL. We analyzed the satellite images published in the Lake Erie Harmful Algal Bloom 

Bulletins to extract values of CI. A number between 1 and 250 was assigned to each pixel in a 

satellite image. We calculated CI, based on Eq 1, where DN is pixel number based on color from 1 

(coolest color) to 250 (warmest color) and CI ranges from 0.0001 to 0.031 [13,18]. 
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           (1) 

2.4. In-situ sensing of phycocyanin 

The Erie Land and Ocean Biochemical Observatory (LOBO) has monitored and publicized 

phycocyanin concentration in western Lake Erie as a surrogate parameter to CHBs [21]. The Erie 

LOBO location (N41º49.533; W83º11.617) is very close to WE4. It is an autonomous observing 

buoy for monitoring and collecting water quality and environmental data such as temperature, 

dissolved oxygen, nutrient level, etc., which researchers can use in their statistical ecological niche 

models to develop predictive capabilities for CHBs. The LOBO buoy is equipped with a 

phycocyanin fluorescence probe that has been calibrated based on regular field sampling. The 

phycocyanin information published by the LOBO was used in this study. 

2.5. Correlation of CHB parameters 

The observing systems monitored three CHB parameters without any functional dependence, 

and thus we applied correlation analysis rather than simple linear regression to investigate potential 

linear relationship between parameters. Furthermore, because the monitoring parameters were 

measured at different time schedules, we used the Pearson Product-Moment (PPM) correlation 

equation (Eq 2), where X and Y are all independent variables and r is the PPM correlation coefficient 

ranging            [22]. The equation is widely used as a measure of the degree of linear 

dependence between two independent variables. We quantified the relationships between two 

parameters with the correlation coefficient. If r is greater than zero, the two parameters show positive 

relationship. Very strong, strong, moderate, weak, and negligible (or no) relationships are indicated 

by r values at 1.0−0.7, 0.7−0.4, 0.4−0.3, 0.3−0.2, and 0.2−0.01, respectively. Correlation refers to 

quantitative relationship between two variables that are measured on either ordinal or continuous 

scales. Correlation implies an association between two variables rather than causation [23]. 

  
              

                             
        (2) 

3. Results and discussion  

The NOAA has measured concentrations of MCs through weekly water sampling at WE2, WE4, 

WE6, and WE8 locations during May-October since 2009 [19]. The NOAA has also developed a 

time series of CI-embedded satellite images for western Lake Erie weekly since 2009 and we 

extracted CI values from the images for WE2, WE4, WE6, and WE8 locations [20]. The LOBO has 

estimated phycocyanin concentration every hour at the Toledo Harbor Light since 2013, which is 

close to WE4 location (less than 0.2 mile) [21]. Considering availability of the spatial (measuring 

locations should be close enough) and temporal (measuring times should be close enough) 

monitoring data, comparison between MCs and CI was valid for WE2, WE4, WE6, and WE8 in 2013 

while comparison between phycocyanin and MCs and comparison between phycocyanin and CI 

were valid only for WE4 in 2013. 
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3.1. Correlation of MCs with CI 

We compared MCs (biological toxins) with CI (cyanobacterial blooms) for WE2, WE4, WE6, 

and WE8 based on data collected in 2013 (Figure 2) to find any correlations between two CHB 

parameters, and thus to ultimately predict MCs from CI information in the areas once established 

later. It should be noted that the two parameters were not measured simultaneously because the two 

observing systems were operated independently. Observing dates showing high cyanobacterial 

bloom tendency labeled with CI also showed high MC concentrations in water. For some dates and 

locations, MC concentrations were very low or negligible in spite of high CI (e.g., WE4 and WE6 in 

middle September). Based on the observation of MCs and CI for the locations, in general, the 

production of biological toxins was found to be highly associated with CHB activity. WE8 has the 

highest correlation of MCs and CI. 

 

Figure 2. Comparison of microcystin concentration (MCs; biological toxin; solid dots) and 

cyanobacterial index (CI; cyanobacterial bloom; empty dots) in 2013 for (a) WE2, (b) WE4, 

(c) WE6, and (d) WE8 in western Lake Erie (data source: [19] and [20]). It should be 

noted that different axis scales (i.e., scales for double Y axes in main figures and scales 

for X and Y axes in insets) were used for each location to align the maximum values of 

the two parameters so that correlation of the two parameters can be easily visualized in 

each location, while thus varying the MC/CI ratios for the sites. Insets show correlation 

between MC and CI paired and measured within 48 hours time difference and thus 

actually indicate the varying MC/CI ratios specific to the sites. The correlation 

coefficient (r) of the Pearson Product-Moment equation is shown. 
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In order to investigate the degree of correlation for a set of two parameters, we paired and 

plotted variables measured within 48 hours difference, and then applied the PPM equation to 

calculate a PPM correlation coefficient, r, as shown in the insets in Figure 2. Although there were 

some outliers, in general MCs were linearly correlated with CI (i.e., r is greater than 0). WE2, WE4, 

and WE8 locations showed very strong correlation at r of +0.68, +0.77, and +0.81, respectively, 

while WE6 showed strong correlation at +0.50. We did a t-test to evaluate the significance of the 

correlation coefficients. The p-values (at 95% confidence level) were 0.026, 0.034, and 0.007 for 

WE2, WE4 and WE8 locations, respectively. All p-values were less than 0.05, which confirms that 

the correlation confidents at the locations are statistically significant. Meanwhile the p-value at WE6 

was 0.079 which is at the margin of statistical significance. We also found relationship between MCs 

and CI to be site-specific. For example, MC level for WE4 changed within a very narrow range of 

only 0−2.8 μg/L while its CI changed greatly from 0 to 50 × 10
−4

. Meanwhile, MC level for WE6 

changed within a wide range of 0−57 μg/L while its CI changed from 0 to 142 × 10
−4

. This means the 

MC concentration at WE4 was very low compared to the MC concentration at WE6, with given CIs 

expressing cyanobacterial bloom tendency. 

Many geographical, ecological, meteorological, and analytical factors specific to the locations 

might have been involved in the observed variations. In cloudy weather, satellites cannot properly 

capture high resolution images for the areas of concern, which impacts calculation of CI. The 

accuracy of MCs measurement also significantly decreases at low concentrations due to the nature of 

the ELISA method [24]. The average water temperature increased up to 3 °C between mid-August 

and early September. Since high temperature is favorable for the growth of cyanobacteria, both CI 

and MCs were high at that period. As cyanobacteria concentrate near the water surface, blue green 

scums are generated and can be clearly identified on satellite images. 

Looking at MCs and CI carefully for all the locations (particularly WE2 and WE6), CI peaks 

slightly followed MC peaks in 1−2 weeks. This might be particularly true to the end of 

cyanobacterial bloom season. During new and peak bloom periods, the intercellular MCs measured by 

the ELISA are very close to total MCs in cells and water because most of MCs are retained in the cells 

until cell death (i.e., negligible MCs in water) [25]. However, ageing cells during a dying bloom 

release MCs into the water, which are not counted by the ELISA method, while satellite images still 

keep capturing cyanobacterial blooms and proposing high CI. The early stages of a CHB in the Lake 

Erie tend to be more toxic per biomass than its later stages. These all might partly explain low MCs 

but still high CI in each observing time during September. 

In fact, the situation is more complicated when vertical movement of cyanobacteria over time is 

considered. Some cyanobacteria, such as Anabaena flos-aquae, have gas-filled cavities that allow 

them to float and rise from near the bottom level to the water surface. Other cyanobacteria, such as 

Planktothrix agardhi, can be found in bottom sediment and may float to the water surface when 

mobilized by severe storm events and other sediment disturbance [26]. Such a cyanobacterial 

movement also depends on light conditions, nutrient levels, water temperature, and wind speed, and 

the movement typically takes several days. For example, unusually significant decreases in air 

temperature (from 24.5 to 23.7 ºC) and rapid increase in wind speed (from 2.6 to 10.3 m/sec which is 

above 7.7 m/sec, a threshold wind speed strong enough to mix blooms through water column) were 

reported for WE4 location in September 4, 2013 [19]. 
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3.2. Correlation of phycocyanin with MCs and CI 

Phycocyanin (as a proxy to cyanobacterial blooms) was compared with MCs (biological toxins) 

and finally CI (cyanobacterial blooms) monitored around WE4 location, as shown in Figures 3 and 4, 

respectively, to find any correlations between the CHB parameters, and thus to ultimately predict 

MCs from information on phycocyanin and CI in the areas once established later. Peak points for 

phycocyanin in accordance with MCs and CI occurred in the mid-August and early September, most 

probably due to the rapid increases in water temperature (from 22.5 to 25.5 ºC) which is favorable 

for cyanobacterial blooms. Dates showing high MCs and CI generally exhibited high phycocyanin 

concentration, implying the production of phycocyanin is highly associated with CHB activity.  

Unlike paired data of MCs and CI measured within 48 hours difference, a pair of phycocyanin 

and MCs (or CI) was measured almost simultaneously. The correlation coefficient of phycocyanin 

with MCs was at only +0.19, indicative of weak relationship (but still positive relation). As a result, 

the p-value (at 95% confidence level) was 0.616, indicating no statistical significance for the 

correlation coefficient. It is known that not all of cyanobacterial blooms produce MCs [17]. Up to 50% 

of recorded blooms are expected to contain such toxins [5]. Meanwhile, the correlation coefficient of 

phycocyanin with CI was at r = +0.68, indicative of strong relationship. The p-value was 0.061 

which is close to 0.05 cutoff for statistical significance. In fact, phycocyanin is an accessory pigment 

to chlorophyll generally associated with cyanobacterial blooms. 

 

Figure 3. Comparison of phycocyanin concentration (a proxy to cyanobacterial bloom; 

solid dots) with microcystins concentration (MCs, biological toxins; empty dots) in 

western Lake Erie in 2013 (data source: [19] and [21]). Phycocyanin has been monitored 

since 2013 only for the location (N41°49.533 and W83°11.617) very close to WE4. Inset 

shows correlation between two comparing parameters paired and measured almost at the 

same time. The correlation coefficient (r) of the Pearson Product-Moment equation is 

shown. 
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Figure 4. Comparison of phycocyanin concentration (a proxy to cyanobacterial bloom; 

solid dots) with cyanobacterial index (CI; empty dots) in western Lake Erie in 2013 (data 

source: [20] and [21]). Phycocyanin has been monitored since 2013 only for the location 

(N41°49.533 and W83°11.617) very close to WE4. Inset shows correlation between two 

comparing parameters paired and measured almost at the same time. The correlation 

coefficient (r) of the Pearson Product-Moment equation is shown. 

4. Conclusions 

The CHB observing parameters (MCs, CI, and phycocyanin) were generally well correlated 

because they inherently represent the same phenomenon, CHBs. In particular, measured biological 

toxin concentration (MCs) was strongly aligned with cyanobacterial bloom activity (CI) estimated by 

satellite image analysis. The relationships between MCs and CI seemed to be site-specific. 

Phycocyanin had strong correlation with CI, implying that measuring an easy-to-detect proxy 

parameter in-situ and in real-time is effective for monitoring cyanobacterial blooms. Although it was 

hard to make solid conclusions due to the limited amount of the CHB data available in this study, we 

would say combining data by integrating the current CHB monitoring systems and observing 

programs is helpful to reliably assess CHB activities with high accuracy. This study comparing only 

three major CHB parameters can be extended to include many other observing targets associated 

with CHBs, including chlorophyll and phycoerythrin. More observing locations and longer 

monitoring periods, once established in the future, would enable us to propose more comprehensive 

correlations of the current monitoring systems and to understand the behavior and functioning of 

CHBs. When such a site-specific correlation is found through this kind of study, we will be able to 

better forecast biological toxin release from other CHBs-associated data such as CI and to better 

understand relationship between CHB activity and toxin release (ultimate goal). Publicizing the CHB 

activity and correlation can provide a major mechanism for reducing exposures to toxins and for 

deploying bloom mitigation strategies in advance. As a result, this study can significantly contribute 

to the areas of water supply, water quality, and algal bloom monitoring.  
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