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Abstract: The variability in the extracellular release of organic ligands by Emiliania huxleyi under 
four different pCO2 scenarios (225, 350, 600 and 900 μatm), was determined. Growth in the batch 
cultures was promoted by enriching them only with major nutrients and low iron concentrations. No 
chelating agents were added to control metal speciation. During the initial (IP), exponential (EP) and 
steady (SP) phases, extracellular release rates, normalized per cell and day, of dissolved organic 
carbon (DOCER), phenolic compounds (PhCER), dissolved combined carbohydrates (DCCHOER) and 
dissolved uronic acids (DUAER) in the exudates were determined. 

The growth rate decreased in the highest CO2 treatment during the IP (<48 h), but later 
increased when the exposure was longer (more than 6 days). DOCER did not increase significantly 
with high pCO2. Although no relationship was observed between DCCHOER and the CO2 conditions, 
DCCHO was a substantial fraction of the freshly released organic material, accounting for 18% to 
37%, in EP, and 14% to 23%, in SP, of the DOC produced. Growth of E. huxleyi induced a strong 
response in the PhCER and DUAER. While in EP, PhCER were no detected, the DUAER remained 
almost constant for all CO2 treatments. Increases in the extracellular release of these organic ligands 
during SP were most pronounced under high pCO2 conditions. Our results imply that, during the final 
growth stage of E. huxleyi, elevated CO2 conditions will increase its excretion of acid polysaccharides 
and phenolic compounds, which may affect the biogeochemical behavior of metals in seawater. 

Keywords: Emiliania huxleyi; acidification; extracellular release; phenolic compounds dissolved 
uronic acids 
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1. Introduction 

Increasing atmospheric carbon dioxide levels causes rapid alterations of the physical and 
chemical seawater conditions, affecting ecosystem dynamics [1]. About 30% of the CO2 emitted to 
the atmosphere by human activities since preindustrial times has been tempered by oceanic uptake, 
causing wholesale shifts in seawater carbonate chemistry [2]. Moreover, emission projections of CO2 
for this century expect an important increase in total dissolved inorganic carbon and a concomitant 
decrease in pH, from its current value of 8.1 to 7.8 [3]. This last process, termed ocean acidification, 
may increase carbon fixation rates in some photosynthetic organisms [4]. Therefore, primary producers, 
which modify the concentration of CO2 in the surface natural water, play an important role in the 
global biogeochemical carbon cycle, affecting the net CO2 flux across the air-sea interface [5]. 

The extracellular release of dissolved organic carbon, normalized by cell (DOCER), is an 
excretion rate, which indicates the discharge to the medium of recently fixed inorganic carbon. In 
highly productive marine systems, the release of dissolved organic compounds by phytoplankton can 
significantly contribute to total primary production [6]. Accordingly, autotrophic DOCER plays a key 
role in the biogeochemical balance of ocean carbon, contributing decisively to the 
biologically-mediated carbon cycle [7,8]. In the open ocean, it represents the main input of reactive 
organic carbon in the photic layer [9], followed by cell lysis [10], heterotrophic organic exudation, 
and grazing [11]. Nevertheless, the variations projected for the marine carbonate chemistry [3] might 
decrease the need for employing CO2-concentrating mechanisms in autotrophic microorganisms [12], 
modifying the carbon fixation efficiency and, consequently, the release of organic matter by marine 
phytoplankton [13]. 

Although only a small fraction of marine autotrophic DOC has been identified [14], when 
biological production and DOC-loss processes are decoupled, either temporarily or spatially, 
combined carbohydrates (CCHO) and phenolic compounds represent an important fraction of 
reactive dissolved organic matter in seawater [15,16].  In the last years, several studies of the 
distribution of different biochemical components in the ocean have been carried out, both in their 
dissolved and/or particulate phases, with CCHO shown to be the dominant constituent in the 
colloidal size fraction [17]. Dissolved combined carbohydrates (DCCHO) are the major component 
of reactive organic carbon and can account for up to 10% of DOC in open ocean [18], whereas in 
continental margin and coastal systems they represent between 15% and 35% of DOC [19,20]. 
Autotrophic DCCHO are a robust indicator of the diagenetic state of organic matter, since most of the 
DCCHO produced by phytoplankton are a carbon active reservoir for bacterioplankton [21], especially in 
an ocean acidification context [22,23]. Extracellular polymeric substances released by microorganisms 
during their growth contain a high proportion of dissolved uronic acids (DUA) [24,25], a class of sugar 
acids with carboxylic acid functional groups, which confer a net negative charge, forming resilient 
linkages between the polymer chains [26]. Coagulation of those aggregates involves the formation of 
transparent exopolymeric particles, which play an important role in the sink of marine DOC [27,28].  

Phenolic compounds (PhC) are also naturally present in marine systems, since they are 
considered to be one of the principal functional groups in humic substances [29]. Phenols can also be 
released from polymers, during both photochemical decomposition and biodegradation of natural organic 
matter [30,31]. Therefore, river discharge and the subsequent physical mixing processes of seawater play 
an important role in controlling the concentration and distribution of PhC in the ocean [31]. Phenolic 
fractions contribute significantly to the fluorescence of organic matter extracted from interstitial water of 
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marine sediments [32] and comprise an important part of the DOC pool, accounting to up to 5% of 
that, accrued in the surface waters of subtropical ocean gyres [33]. Moreover, PhC are excreted by a 
wide range of marine macroalgae as secondary metabolites [34]. Although the regulatory processes 
of exudation of phenolic compounds by phytoplankton have not been clearly established, recently an 
increase in the phenolic content of exudates in diatoms (Phaeodactylum tricornutum) and green 
algae (Dunaliella tertiolecta), were measured when those microorganisms grew under iron deficient 
scenarios [35,36], suggesting that phenolic release might be a response to unfavorable growth in iron 
limited conditions. 

Phenolic compounds and dissolved uronic acids can form complexes with iron through 
hydroxyl and carboxylic acid groups [37,38]. Both catechol, a frequent and reactive 
dihydroxyphenolic moiety found in exudates of phytoplankton [39], and carboxylic acids bind iron to 
produce relatively stable Fe-organic complexes, preventing iron precipitation [40,41] and increasing 
the iron bioavailability in seawater [42,43]. This is particularly important in a significant proportion 
of the open ocean, where iron limits phytoplankton growth [44]. Therefore, in some Fe-limited 
regions, phytoplankton could be a significant source of PhC and DUA [45,46]. Nevertheless, the 
fractional contribution of phenolic PhC and DUA to the pool of autotrophic DOC production is 
controlled by the physico-chemical parameters of the extracellular medium, such as temperature, pH, 
light, and bioavailability of inorganic nutrients [4,36,47,48]. Ocean acidification alters the 
physiologic pathways of the coccolithophorid Emiliania.huxleyi, such as the Krebs cycle and 
mitochondrial respiration, due to an increase in the production of PhC [49]. Such elevated CO2 
conditions can also stimulate the release of DUA in eukariota community [50]. In fact, chemostat 
experiments have exhibited an increase in the production of saccharides in E.huxleyi, as well as 
magnification in the transfer of dissolved high molecular weight carbohydrates to transparent 
exopolimeric particles, by abiotic aggregation processes [51]. Nevertheless, an experimental 
assessment of releasing E.huxleyi-derived Fe-ligands under ocean acidification conditions has not 
been conducted without continued nutrient supply, which regulates the rate of growth and, therefore, 
the physiological status of microorganisms. Moreover, the chemical variation of Fe-binding agents 
due to ocean acidification, along the coccolithophorid growth curve remains unclear, given that 
growth phases have been shown to affect the composition of DOC released by phytoplankton [52]. 

In order to improve our understanding of the extracellular release of organic ligands excreted by 
phytoplankton under future and pre-industrial marine carbon chemistry conditions, we have 
conducted several microcosm experiments with E. huxleyi where the dissolved inorganic carbon and 
the pH have been manipulated. The coccolithophorids play a key role in the biogeochemical cycle of 
carbon and are particularly sensitive to ocean acidification, due to the production of calcite 
coccoliths [53]. The high genomic plasticity of coccolithophorid E.huxleyi causes it to thrive in 
large-scale episodic blooms in a wide variety of habitats [54]. Therefore, the objectives of this 
research are (1) to study the variation, normalized per cell and day, of DOC, saccharides (i.e., 
DCCHO and DUA) and phenolic compounds in the exudates of E. huxleyi during the different 
growth stages, (2) to quantify the contribution of organic compounds excreted to DOC, and (3) to 
carry out a statistical analysis for growth rates and the release rates of DOC and organic ligands, 
taking into account the effect of CO2 conditions on the E. huxleyi batch cultures under low iron state. 
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2. Materials and methods 

2.1. Set-up 

The carbonate chemistry in the culture medium was manipulated through a system (Figure 1) 
based on bubbling a gas mixture of CO2-free air and pure CO2 [55]. To ensure quasi-constant 
seawater carbonate chemistry (Table 1), when the seawater pH values reached the target value, a 
solenoid valve, connected both to gas cylinders and a pH controller, modulated the CO2 flux, 
maintaining the set pH (±0.02). pH was measured on the free hydrogen ion scale, pHF = −log [H+] 
with a Ross Combination glass body electrode calibrated daily with TRIS buffer solutions. To 
establish the present and future CO2 ocean conditions, four experimental scenarios, based on 
projections by the Intergovernmental Panel on Climate Change [3] were fixed: preindustrial, close to 
contemporary and two futures ocean acidification conditions with pCO2 225, 350, 600 and 900 μatm, 
respectively. Consequently, the aeration with a CO2-air-mixture generated constant pH values of 8.25, 
8.10, 7.90 and 7.75 (Table 1). Microcosms were carried out in autoclaved and closed 2.5 L polycarbonate 
cylindrical tanks to avoid gas exchange between the medium and the ambient atmosphere and to prevent 
variation in salinity by evaporation. To ensure gas homogeneity in the solution and to keep cells in 
suspension, the cultures were mixed at 60 rpm with a teflon-coated magnetic stirrer. Material, including 
cell incubators, gas inoculators and tubes connected to them, were cleaned according to a standard 
protocol [56] and subsequently sterilized by autoclaving at 121 ºC for 30 min before usage.  

 

Figure 1. CO2/pH perturbation experiment set-up, indicating the components. 
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Table 1. Carbonate chemistry parameters, for each CO2 treatment: pH (total scale), total 
alkalinity (TA) normalized to S‰ = 35, total dissolved inorganic carbon concentration 
([DIC]) and calculated pCO2 (µatm) Temperature 25 ºC. Mean values and standard errors 
(in parentheses) were derived from sampling (n = 6). 

pCO2 treatment 
(μatm) 

pHT  
(±0.02) 

TA  
(μmol kg−1) 

[DIC] 
(μmol kg−1) 

pCO2 
(μatm) 

225 8.25 2355.5 (±11.7) 1886.8 (±19.0) 223.2 (±1.2) 
350 8.10 2353.7 (±14.0) 1991.6 (±16.2) 351.4 (±3.9) 
600 7.90 2368.3 (±14.8) 2106.6 (±18.1) 607.7 (±5.3) 
900 7.75 2383.6 (±10.9) 2196.3 (±12.8) 917.8 (±12.6)

2.2. Cultures 

The axenic culture stock of E. huxleyi was supplied by the Spanish Bank of Algae (BEA, 
Taliarte). The stock and experimental cultures were placed in an incubator clean chamber (Friocell 
FC111) at a constant temperature of 25 ºC, under complete photoperiod (24 h) with light intensity of 
200 μmol photons m−2. In order to pre-adapt to each CO2 treatment, the stock cultures were 
maintained under the experimental conditions for 48 h before starting each experiment, allowing 
the acclimatization to CO2 perturbation, in order to avoid short-term stress effects on 
coccolithophorid physiology. Experimental cultures were grown in sterile filtered (0.1 μm) North 
Atlantic seawater (S = 36.48) obtained at the ESTOC site (29º10’ N, 15º30’ W). When the 
seawater reached the desired value of pCO2/pH, the coccolithophorids were inoculated in the batch 
cultures to a density of 106 cells L−1. Stock and experimental cultures were monitored for 
contamination and cell densities using a microscope and a hematocytometer (Microbiotest, Inc.). 
Immediately and in order to promote a useful development during the coccolithophorid growth, 
nitrate and phosphate were added at a ratio of 30:1 [28], yielding initial concentrations of 
ortophosphate (PO4

3−) and nitrate (NO3
−) of 28 and 850 μM, respectively. To promote 

coccolithophorid growth, iron was added to seawater from a stock solution (1 mM) of ferric chloride 
(Sigma), making an initial concentration of 2.5 nM. All nutrients used in the batch cultures were 
trace analytical grade. To carry out the organic assays, the seawater enriched with exudates was 
sampled and filtered using acid cleaned and combusted polycarbonate (Nucleopore) syringe-filters 
(0.45 μm), to avoid cell breakage. 

2.3. Total Alkalinity and total dissolved inorganic carbon 

Samples for total alkalinity were potentiometrically titrated with HCl to carbonic acid end point 
using the VINDTA 3C system as described in detail by González-Dávila and co-workers [57]. The 
titration of the different CRMs (provided by A. Dickson at Scripps Institution of Oceanography) was 
used to test the performance of the titration system giving values with an accuracy of ±1.5 µmol kg−1 
and a standard deviation of 6 µmol kg−1. The precision (between-bottle reproducibility) as judged 
from regular measurements of duplicate samples was 0.5 µmol kg−1. Dissolved inorganic carbon was 
analyzed with coulometer determination. The accuracy and standard deviation obtained after CRMs 
titration were ±1.0 and 11.8 µmol kg−1 respectively. In order to compare with other seawater values, 
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dissolved inorganic carbon and total alkalinity (X) were normalized (Xn) to a constant salinity (Sref = 35), 
Xn = (X/Ssample)·Sref. The package Seawater Carbonate (Seacarb version 3.0), developed with R (R 
development Core Team) was used to calculate the values of pCO2, using the experimental results of pH, 
dissolved inorganic carbon and total alkalinity and considering the carbonic acid dissociation 
constants of Millero and coworkers [58]. 

2.4. Dissolved organic carbon (DOC) 

DOC concentration in samples (both in seawater and in the seawater enriched with E .huxleyi 
natural exudates) was monitored using a Total Organic Carbon analyzer (Shimadzu TOC-V) 
previously calibrated from standard curves (20 to 300 μmol C L−1) with a potassium hydrogen 
phthalate standard (Sigma-Aldrich) [59]. DOC reference material (Dr. Hansell; University of Miami) 
was analyzed to check for the accuracy and precision of the instrument. The method had an 
uncertainty of 3% and a detection limit of 1.3 μmol C L−1. The measures of certified reference 
material had a standard deviation of 0.99 μmol C L–1. The instrument blank (3–10 µmol C L−1) was 
measured using UV-irradiated Milli-Q water and was subtracted from each sample. 

2.5. Phenolic compounds (PhC) 

The Arnow test [60] enabled the selective detection of hydroxyphenolic compounds in 
seawater enriched with exudates of E. huxleyi (5 mL, filtered by 0.45 μm) by addition of 
hydrochloric acid (5 mL; 0.5 M), followed by addition of 5 mL (0.5 M) of sodium molybdate 
(Sigma-Aldrich) and 5 mL (0.5 M) of sodium nitrite (PanReac). Then, sodium hydroxide (Sigma) 
was added in excess (5 mL; 1 M). Maximum absorbance was read at 510 nm using a UV-VIS 
spectrophotometer (S4000, Ocean OpticsTM), connected to a 5 m long waveguide capillary flow 
cell (World precision instrumentsTM), which allowed to reach a detection limit of 2 × 10−8 M. The 
standard employed for the assay was catechol (Sigma-Aldrich) and Mili-Q water with the reagents 
was used as blank.  

2.6. Total dissolved combined carbohydrates (DCCHO) 

The levels of DCCHO both in seawater and in seawater enriched with exudates of E.huxleyi 
were analysed by the method developed by Myklestad and co-workers [61] with slight 
amendments [19], which is based upon oxidizing the free reduced DCCHO with the 
2,4,6-Tris(2-pyridyl)-s-triazine (TPTZ; Sigma-Aldrich). The assay involved the acid hydrolysis of 
the sample (4 mL) with HCl (0.4 mL), in a sealed ampoule, for 2 h at 120 ºC. When the solution 
was neutralised (0.4 mL of 1 M NaOH), 1 mL of the hydrolysate was added to a 1 mL of a 0.7 mM 
potassium ferricyanide (Sigma-Aldrich), prepared in 1 L of Milli-Q water containing 20 g Na2CO3 and 
400 mg NaOH. The well-mixed solution was placed in a boiling water bath for 15 min. Then, 1 mL of 
solution of ferric chloride solution (2 mM) and 1 mL of TPTZ solution (3 M) were promptly added [61] 
and thoroughly mixed on a Vortex. After 30 min, the absorbance was measured, using UV-VIS 
spectrophotometer (S4000, Ocean OpticsTM), at 595 nm, (S4000, Ocean OpticsTM). The standard 
employed was glucose (Sigma-Aldrich) and the absorbance of the reagent blank in Milli-Q water 
was subtracted before reading the absorbance of the monosaccharide of each sample. 
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2.7. Dissolved uronic acids (DUA) 

In order to have a measurable level for DUA, the samples were concentrated by rotary 
evaporation, under reduced pressure at 40 ºC. Subsequently, the concentration of DUA was measured 
according to the method reported by Blumenkrantz and Asboe-Hansen [62] and modified in Bastos 
and coworkers [63]. 3 mL of 75 mM sodium tetraborate in concentrated sulfuric acid was added to 
0.5 mL of the concentrated sample and the resulting solution was heated to 100 °C for 10 min in a 
boiling water bath. After cooling, 100 μL of 0.15% m-hydroxydiphenyl (Sigma-Aldrich) was added, 
and the absorbance was determined spectrophotometrically at 525 nm. The reagent blank was 
considered in order to compute the final concentration of the monosaccharide. Galacturonic acid 
(Sigma-Aldrich) was used as the standard.  

Table 2. Parameters computed during pCO2/pH treatments for each growth stage. The 
statisticals computing (Analysis of variance, ANOVA), are also included. 

Growth Stages pCO2 

(μatm) 

μ 

(day−1) 

DOCER 

 (fmol C cell−1 day−1)

PhCER  

(fmol C cell−1day−1)

DCCHOER  

(fmol C cell−1 day−1) 

DUAER 

(fmol C cell−1 day−1)

IP (day 2) 225 1.12 ± 0.03 - - 38.86 ± 5.94 - 

350 1.18 ± 0.06 - - 34.59 ± 6.92 - 

600 1.15 ± 0.04 - - 35.39 ± 6.42 - 

900 1.07 ± 0.06 - - 35.08 ± 4.82 - 

EP (day 5) 225 0.59 ± 0.05 177.06 ± 10.95 - 40.38 ± 4.16 2.27 ± 0.42 

350 0.60 ± 0.04 186.84 ± 52.96 - 45.43 ± 7.20 2.36 ± 0.46 

600 0.62 ± 0.02 196.33 ± 44.01 - 41.14 ± 6.82 2.64 ± 0.90 

900 0.60 ± 0.05 209.74 ± 50.00 - 41.00 ± 3.49 2.35 ± 0.61 

SP (day 8) 225 0.13 ± 0.03 333.68 ± 71.35 0.34 ± 0.03 44.43 ± 2.98 5.24 ± 0.41 

350 0.15 ± 0.01 345.75 ± 45.86 0.36 ± 0.02 45.74 ± 4.93 6.25 ± 0.48 

600 0.16 ± 0.02 370.14 ± 15.79 0.40 ± 0.02 47.39 ± 7.36 6.70 ± 0.97 

900 0.19 ± 0.01 384.19 ± 47.40 0.41 ± 0.02 46.95 ± 3.92 7.39 ± 0.30 

Factors of variation  

Growth Stages F value - 25.8422 - 3.4735 80.9422 

p - <0.001 - <0.05 <0.001 

Growth Stages x pCO2 F value - 0.0212 - 0.162 0.9084 

p - 0.9956 - 0.9855 0.4787 

pCO2 - (IP) F value 1.257 - - 0.095 - 

p 0.324 - - 0.962 - 

pCO2 - (EP) F value 0.113 0.3161 - 0.168 0.208 

p 0.949 0.8136 - 0.916 0.888 

pCO2 - (SP) F value 4.228 0.0212 3.765 0.086 6.227 

p <0.05 0.9956 <0.05 0.967 <0.05 
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2.8. Data and statistical treatments 

The growth rates (μ day–1) were calculated from the changes in the cell number over time and 
data were fitted to an exponential growth model (ߤ ൌ ሺln ௧ܰଶ െ ln ௧ܰଵሻ/∆ݐ). The cell densities (N) 
were determined from the average of 5 experimental batch cultures at each pCO2 treatment. The 
goodness of the fit for each curve was estimated by the coefficient of correlation (r2 > 0.95). Under 
the different CO2 scenarios, the development of E. huxleyi happened according to a sigmoid curve 
(Figure 2) showing three significantly marked trends in the growth rates, as the culture time elapsed 
(Table 2). Thus, the measurements of DOC (μmol C L−1), as well as, the determination of organic 
extracellular release rates (μmol C cell−1 day−1), were carried out distinguishing the three stages in 
the growth curves of E. huxleyi: initial (IP, until 2nd day), exponential (EP, from 3rd to 5th day) and 
steady (SP, from 6th to 8th day) phases (Table 2). The concentrations of, DOC, PhC, DCCHO and 
DUA were corrected to levels of seawater and the unit utilized was obtained by multiplying the 
concentration values (μmol L−1) by the number of carbon per mole of compounds used as standards 
during calibrations (i.e., phthalate, catechol, glucose and galacturonic acid, respectively). Given that 
the exudation rate of freshly dissolved material is a parameter best specified when it is normalized 
per cell and day, we followed the procedure in Borchard and Engel [64]. Thus, extracellular release 
rates (μmol C cell−1 day−1) were derived from DOC accumulation rates (μmol C L−1 day−1) and 
variation of the cell densities.  

 

Figure 2. Changes in Emiliania huxleyi abundances (broken lines) and dissolved organic 
carbon (DOC) concentration (solid lines), under different CO2 conditions, during 
experimental cultures. Error bars represent ±SE of the mean (n = 5). 



796 

AIMS Environmental Science  Volume 4, Issue 6, 788-808. 

R (R Development Core Team, 2008) was used for statistical computing. Analysis of variance 
(ANOVA) was carried out to test for significant effects of both different pCO2 treatments and growth 
stages on the normalized production of DOC, DCCHO and organic ligands (i.e., PhC and DUA) 
present in the E.huxleyi natural exudates during the culture development. A post-hoc test, Tukey’s 
HSD, was used to do a multiple comparison procedure to find means that were significantly different. 
The assumptions of normality and homoscedasticity were verified using the Shapiro-Wilk and 
Barlett tests respectively. Regression models were used to assess the relationships between organic 
parameters. For all statistical procedures, a probability level of α = 0.05 was considered. 

3. Results and discussion 

3.1. Growth rates 

Initially, average E. huxleyi cell numbers were 106 and increased continuously during the 8 
days of study to 9.98 ± 0.53 × 107 (pCO2 225 μatm), 1.07 ± 0.13 × 108 (pCO2 350 μatm), 1.04 ± 
0.07 × 108 (pCO2 600 μatm) and 9.15 ± 0.41 × 107 (pCO2 900 μatm) (Figure 2). Therefore, 
acidification conditions did not significantly affect the final cells densities (one-way ANOVA, 
F-value: 1.327, p = 0.332). Nevertheless, to evaluate in detail the effect of pCO2/pH on coccolithophorids 
cellular division rates, we distinguished three growth stages separately: the initial phase (IP), the 
exponential phase (EP) and the steady phase (SP). During the IP, the growth rate showed the lowest 
values when the microalgae were exposed to the highest CO2 levels (μ = 1.07 ± 0.05 day−1), while the 
maximum growth rates were achieved with pCO2 350 μatm and 600 μatm (μ = 1.19 ± 0.07 and 
1.15 ± 0.03 day−1, respectively). In EP, the growth rates remained fairly constant under the 
different CO2 conditions and were matched to the results found for E. huxleyi [65] and other 
coccolithophorid species [66] in studies conducted in batch cultures. However, during SP, a 
statistically significant growth rate rise was observed (F-value: 4.228, p < 0.05), in response to 
increasing CO2 concentration, reaching 0.19 (± 0.01) day−1 at pCO2 900 μatm, (Table 2). Our 
results indicated that the E. huxleyi populations adapted to experimental acidification, displaying 
a slight increase in growth rates during SP. Nevertheless, the highest peaks of algae biomass, 1.07 
(± 0.10) and 1.04 (± 0.06) × 108 cells L−1, were recorded in the microcosms with intermediate CO2 
levels (350 and 600 μatm respectively). Over the last decade, studies involving acidification 
perturbation experiments, carried out with coccolithophorids in batch cultures, have exhibited 
variability on the specific growth response [67-69], related to intrinsic physiological parameters such 
as the process of calcification or cell size of the different strains [70]. Environmental conditions such 
as light intensity [71], temperature [72] or major nutrients availability [73] were also pointed out as 
decisive co-factors to induce changes in the division rates during CO2/pH perturbation experiments. 
However, in the present study, the cultures were kept under identical temperature and photon flux 
density. In the short term incubations discussed here, we exclude the limitation of P and N as a cause 
of the decline in growth rates, since both the initial nitrate and phosphate concentrations (850 µM and 28 
μM, respectively) are fairly above the half-saturation constant of N and P uptake [74]. E. huxleyi has 
typically been assumed to be a strong competitor under iron deficient conditions [75], even though 
incubation experiments have provided evidence that iron can limit E. huxleyi growth [76]. Although 
in the open ocean dissolved iron is found at subnanomolar levels [77], the concentrations fixed in the 
present study (2.5 nM) could be considered as low Fe conditions, since the abundances of E. huxleyi, 
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reached during experimental cultures were between one and three orders of magnitude higher than the 
biomass of photosynthetic eukaryotes found in different marine systems [78]. Nevertheless, the dissolved 
iron concentration was not a factor considered during the experiments and therefore the Fe-limitation 
might not be assured. 

3.2. DOC dynamics 

From seawater control initial DOC concentrations (117.34 ± 1.97 μmol C L−1) decreased 
non-significantly during IP (F-value = 2.273, P = 0.156). This decline of DOC levels was slightly 
affected by CO2 conditions, since the loss of DOC varied from pCO2 225 μatm (3.04 ± 2.32 μmol C L−1) 
to pCO2 900 μatm (6.19 ± 2.71 μmol C L−1). Pre-sterilization both of seawater and bioreactors allowed to 
keep a low density of heterotrophic bacteria (<106 cell L−1) in the course of the experimental period. 
Hence, microbial organic matter degradation might explain the decline in DOC levels under the 
different experimental CO2 conditions during IP, since in bacterial enzyme’s environments, a drop in 
the pH modifies the ionization state of labile organic matter, exposing the actives sites of their 
three-dimensional structure [79], and thus accelerating their degradation [23]. DOC sinking might 
also be due to aggregation of high molecular weight dissolved components, which is increased at 
high CO2 levels [80]. We did not measure the transparent exopolymeric particles formation but the 
aggregation process is highly dependent on the physiological status of the microbial community [81] 
and its formation occurs after exhaustion of the major nutrients [28]. Therefore, in the short term 
incubations, conducted under N and P repletion conditions, the relevance of abiotic aggregation 
processes can be considered negligible.  

The incubations showed an increase in the productivity status, achieving autotrophic conditions 
during the EP and SP (Figure S1, Supporting Information). The accumulation of DOC did not show a 
significant difference among the CO2-treatments (F-value = 0.174, P = 0.911 for EP; F-value = 0.474, 
P = 0.709 for SP). In the same way, Borchard and Engel [51] found no significant effect of pCO2 on 
concentrations of DOC during steady state growth in continuous cultures of E. huxleyi. Recently, 
during shipboard bioassay experiments with a natural community from North Sea, neither was not 
observe any strong or consistent effect of pCO2 on DOC production [81]. The amount DOC exuded 
into environment may be highly variable and is a function of the dominant species and its response to 
changes in the CO2 conditions [82]. For example, in mesocosms experiments carried out in a high 
nutrient low chlorophyll region of the Pacific Ocean, pH-dependence of the DOC levels only 
occurred when diatoms increased their dominance over the haptophyta algae group (i.e., 
coccolithophorids) [83]. Unlike absolute measures, the organic production rates (i.e., extracellular 
release) are relatively constant parameters between the different phytoplankton species and only 
change in response to physiological perturbations produced by environmental factors, such as 
nutrient availability or CO2 conditions [51,84]. 

DOCER increased as the levels of CO2 became higher in the culture medium (Figure 3), from 
177.06 ± 10.95 fmol C cell−1 day−1 (pCO2 225 μatm) to 209.74 ± 50.00 fmol C day−1 cell−1 (pCO2 
900 μatm) in EP and from 333.68 ± 71.35 fmol C cell−1 day−1 (pCO2 225 μatm) to 384.19 ± 47.40 
fmol C day−1 cell−1 (pCO2 900 μatm) in SP. The increment of pCO2 in the experimental cultures, 
from 225 μatm to 900 μatm, enhanced DOCER by 19% and 15% during EP and SP, respectively. As 
CO2 is a key substrate for primary production, the trend of DOCER with pCO2 was also in agreement 
with those obtained during the first week of a long-term mesocosm with a phytoplankton pelagic 
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community, where the assimilation of inorganic carbon was improved under acidified conditions [85]. 
Therefore, DOCER of E. huxleyi might have been slightly stimulated by the elevated pCO2, although 
the response was highly variable and no significant effect of pCO2 was determined (Table 1). Our 
results are also comparable with the range of DOCER presented by Becker et al. [86] with different 
strains of cyanobacteria and diatoms. As bioassay time proceeded, from day 5 to 8 (EP to SP), an increase 
of DOCER between 83% (pCO2 225 μatm) and 89% (pCO2 900 μatm) was estimated. Higher DOCER in 
SP compared to the EP have been also noted previously in batch cultures both of diatom [87,88] and 
coccolithophorids [89,90].  

On the other hand, during another Baltic Sea mesoscosm study [91] and also in laboratory 
incubations [92], the higher CO2 levels supported the production and release of carbon-rich 
components by microorganisms. Therefore, in order to ascertain how the CO2 perturbation 
experiments, carried out in the present work, condition the composition of organic ligands in natural 
exudates of E.huxleyi, the release of PhC, DCCHO and DUA were monitored. 

 

Figure 3. Extracellular release rates (fmol C·cell−1 day−1) of (a) dissolved organic carbon 
(DOC), (b) phenolic compounds (PhC), (c) dissolved combined carbohydrates (DCCHO), 
and dissolved uronic acids (DUA) for each growth stage, from Emiliania huxleyi cultures 
subject under different CO2 treatments.  Stacked bars show the standard error of replicate 
samplings (n = 3, 5, 5 and 3 for DOC, Ph, DCCHO and DUA respectively). The 
following indications: *, nd and ** denote: not detected, no significate differences 
between SW and SW enriched with microalga exudates and statistical differences 
between pCO2 treatments respectively. 
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Figure 4. Linear correlations between concentrations of freshly phenolic compounds 
(PhC) and dissolved uronic acids (DUA) with dissolved organic carbon (DOC), released 
in E. huxleyi cultures. 

3.3. Phenolic compounds 

Figure 4 shows the strong correlation between the concentrations of freshly produced PhC with 
DOC, indicating that phenolic compounds made up a relatively constant fraction of the organic material 
excreted by E.huxleyi. However, the dissolved phenolic compounds were only detected in SP and their 
release rate was affected by CO2 conditions. Extracellular release of phenolic compounds (PhCER) was 
statistically higher (Table 1) at pCO2 900 μatm (0.41 ± 0.02 fmol C cell−1 day−1) than at pCO2 
225 μatm (0.34 ± 0.03 fmol C cell−1 day−1; Tukey contrast: t value = 2.898; p < 0.05) and 
350μatm (0.36 ± 0.02 fmol C cell−1day−1; Tukey contrast: t value = 2.495; p < 0.1). The 
biosynthesis of PhC has implications for grazers, pathogens [93], for preventing photo-damage [94] 
and free radical scavenging activity [95]. Phytoplankton can also regulate the bioavailability of trace 
metals through the production and release of phenolic compounds [39]. However, the mechanism by 
which autotrophic organisms regulate their phenolic exudation in response to increased pCO2 is also 
not clear. Jin et al. [49] have reported that the high CO2-induced changes in seawater carbonate 
chemistry enhanced the intracellular production of phenolic compounds in E.huxleyi. Recently, 
another study has also determined how a natural acidification event regulates the biosynthesis of 
phenolic compounds in calcified macroalgae communities, although the magnitude of their response 
depends on nutrient and light levels [96]. Our data (Figure 3) suggest that ocean acidification might 
significantly intensify the PhCER, when E.huxleyi grows under low iron conditions. Thereby, an 
increase in the phenolic fraction in the exudates of E.huxleyi might improve its capacity for iron 
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acquisition [41,42] under an ocean acidification scenario, in which the bioavailability of Fe for 
eukaryote phytoplankton seems to decline [97]. Similarly, under an iron starvation state, some 
prokaryote microorganisms exudate ferric chelators (i.e., siderophores) [98] capable of solubilizing, 
capturing, and delivering iron to the cell through protein-specific transport systems [99]. In addition, 
marine siderophore production seems to be optima in buffered acidified media [100], although in 
natural seawater the pH-dependence on siderophore release remains unknown. 

3.4. Dissolved combined carbohydrates  

The initial concentration of DCCHO in the cultures was 24.14 ± 0.88 μmol C L−1. DCCHO 
increased in solution during E.huxleyi growth, representing a substantial fraction of freshly produced 
DOC during all growth stages. The levels of freshly produced DCCHO were very close among the 
different CO2 treatments (data not shown). Figure S2 (Supporting Information) shows the significant 
linear relationships between the concentrations of freshly DCCHO and DOC yielded, where the 
contribution of DCCHO to excreted DOC was higher during EP (18–37%) than during SP (14–23%). 
Our data are comparable with that obtained by Hung et al. [19] in high productivity Gulf of Mexico 
waters, where the authors also linked the increase in DCCHO levels to the different peaks of 
chlorophyll a concentration, found in that region.  

Extracellular release of dissolved combined carbohydrates (DCCHOER) during the 
initial-state of E. huxleyi growth were 38.9 ± 6.9 fmol C cell−1 day−1, 34.6 ± 7.7 fmol C cell−1 day−1, 
35.4 ± 6.4 fmol C cell−1 day−1 and 35.1 ± 4.8 fmol C cell−1 day−1 for pCO2 225, 350, 600 and 900 
μatm respectively (Figure 3), increasing significantly as time elapsed from EP until the cultures 
reached the SP (Table 2). Extracellular release rates of DOC and DCCHO slightly differ from those 
determined by Borchard and Engel [51] during steady-state growth under CO2 simulated condition in 
phosphorus controlled chemostats. Those differences might be attributed both to different 
coccolithophorid strains being evaluated and experimental drawing, as well as the physico-chemical 
parameters fixed during the growth of E. huxleyi, such as light:dark cycle, photon intensity, and 
nutrient status (i.e., P and Fe). In agreement with our results, these previous results did not reflect a 
relationship among DCCHOER and CO2 conditions. For the batch cultures here presented the 
DCCHOER was statistically lower in IP than EP and SP (Table 2) in accordance with previous 
observations with several phytoplankton species [89]. The effect of nutrient availability on the 
amount of DCCHO produced and excreted by phytoplankton are often highly species-specific [101].  

3.5. Dissolved uronic acids 

Initial DUA concentrations of 3.43 ± 0.12 µmol C L−1 were determined in the natural seawater 
used in the E. huxleyi cultures. During IP, no-significant differences (F = 0.13, p = 0.891) were found 
in the levels of DUA between seawater and seawater enriched with exudates of E. huxleyi, in the 
different pCO2 treatments, where the average DUA concentration was 3.49 ± 0.10 µmol C L−1. The 
levels of newly fixed DUA increased for EP and SP. The quantification of DUA in the cultures, corrected 
to seawater, revealed highest concentrations in treatments with pCO2 350 μatm (0.56 ± 0.13 μmol C L−1 
and 2.57 ± 0.16 μmol C L−1 for IP and SP respectively) and pCO2 600 μatm (0.60 ± 0.26 μmol C L−1 
and 2.69 ± 0.12 μmol C L−1 for IP and SP respectively). The concentrations of DUA show a linear 
correlation with the production of fresh DOC (Figure 4), indicating that the contribution of DUA to 
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DOC was fairly constant during the experimental cultures. The slope indicates that DUA were 
responsible for about 1.8% of the DOC released. This value is similar to published values of 
fractions of DUA to DOC in different marine environments [27,28]. While we did not observe any 
consistent effect of pCO2 on the DUA:DOC ratio, the fraction of DUA to DCCHO showed a drastic 
pH/pCO2 pattern, increasing during SP from 12.2% to 19.1% when the partial pressure of CO2 rose 
from 225 μatm to 900 μatm (Figure 5). Similarly, the computed DUA fractions are in agreement with 
the values obtained by other authors in different natural systems with high primary production 
conditions, where the concentrations of DUA accounted for about 0.7 to 5.3% of the DOC and 4.2 to 
17.2% of the DCCHO [20,102]. In laboratory studies with continuous cultures of E. huxleyi, DUA ranged 
between 5 and 25% of high molecular weight combined carbohydrates [64]. 

 

Figure 5. 3D-model contribution of freshly dissolved uronic acids to dissolved 
carbohydrates released by E. huxleyi cultures during the different growth stages (IP: 
Initial phase; EP: exponential phase and SP: steady phase) under different ocean 
acidification and major nutrient replete conditions. Tª 25 ºC. 

Table 2 shows that DUAER concurrently increased with the rise in DOCER. In all CO2 treatments 
DUAER was maximal in the SP. During the period of exponential growth (EP) statistically 
insignificant differences in DUAER were observed between treatments (Table 2). However, in SP, 
DUAER significantly varied due to changes in the CO2 conditions and was higher at pCO2 900 μatm 
(7.39 ± 0.30 fmol C cell−1 day−1) than pCO2 225 μatm (5.24 ± 0.30 fmol C cell−1 day−1; Tukey 
contrast: t value = 4.206; p < 0.05) and pCO2 350 μatm (6.25 ± 0.48 fmol C cell−1 day−1; Tukey 
contrast: t value = 2.834; p < 0.1), whereas at pCO2 600 (6.70 ± 0.97 fmol C cell−1 day−1) it was 
higher than at pCO2 225 μatm (Tukey contrast: t value = 2.864; p < 0.1) (Table 2). DUA are a major 
constituent of the carbohydrates found in E. huxleyi exudates during exponential and steady growth 
phases (Figure 5). They have been recognized as a dominant surface-active fraction of extracellular 
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polymeric substances produced by eukaryotic phytoplankton [103]. Additionally, in vitro 
experiments carried out with seawater from the Southern Ocean have shown that the presence of 
DUA and uronic acids-rich extracellular polymeric substances enhanced iron bioavailability, yielding 
an increase in the growth of autochthonous eukaryotic populations [41]. Therefore future alterations 
of DUAER, due to ocean acidification, might be a crucial driver of a change in the speciation of iron 
in marine systems, with consequent implications on its bioavailability [104]. 

4. Conclusions 

The results presented in this study indicated that growth rates of E. huxleyi under different pCO2 
conditions depend on the microalgal life cycle. Under acidification conditions, an increase in 
extracellular release potentially represented a physiological response. Growth stages and variation of 
pH/pCO2 conditions in the cultures changed the chemical composition of E.huxleyi exudates and the 
release rates of ligands with high capacity to bind trace metals, such as iron. These findings cannot 
simply be extrapolated to natural systems, because these results were derived from microcosms, 
which might introduce experimental artifacts [105] (i.e., bottle effects), nevertheless, they revealed 
new information on how the extracellular organic release from E. huxleyi is influenced by 
acidification conditions and growth phases. Possible effects of rising oceanic CO2 concentrations on 
organic ligand excretion rates will therefore play a major role in metal bioavailability in the future 
ocean [106]. Accordingly, the CO2-dependence for PhCER and DUAER could also have direct effects 
in Fe-bioavailability. However, in order to ascertain whether the CO2-estimulated extracellular 
release of phenolic compounds and uronic acids increases the Fe-bioavailability, additional 
Fe-uptake experiments need to be conducted under ocean acidification conditions. 
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