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Abstract: Digital Holographic Microscopy (DHM) is an emerging technique for three-dimensional 

imaging of microorganisms due to its high throughput and large depth of field relative to traditional 

microscopy techniques. While it has shown substantial success for use with eukaryotes, it has proven 

challenging for bacterial imaging because of low contrast and sources of noise intrinsic to the 

method (e.g. laser speckle). This paper describes a custom written MATLAB routine using machine-

learning algorithms to obtain three-dimensional trajectories of live, lab-grown bacteria as they move 

within an essentially unrestrained environment with more than 90% precision. A fully annotated 

version of the software used in this work is available for public use. 

Keywords: interferometric microscopy; digital holographic microscopy; machine learning; particle 
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1. Introduction 

Current techniques for observing bacterial motility are effectively two-dimensional because of 

the small depth of field provided by high numerical aperture objectives. Measurement of 3D 

trajectories is performed by approximating the third dimension from measured 2D trajectories, or by 
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inferring the organisms’ z positions as they travel into and out of focus. This severe limitation gives 

an incomplete image of the motility patterns observed. For example, a bacterium travelling vertically, 

parallel to the optical axis, will appear stationary using conventional techniques. A 2015 paper [1] 

calculated the systematic errors associated with observing bacterial motility when using 

conventional microscopic techniques and found that in addition to the effects of localization errors, 

2D projection of the same volume introduce systematic errors in speed and turning angle 

measurements, compared to the correct speed and turning angle measurements found in 3D 

tracking. Similarly, observations obtained from 2D slicing are constrained to a thin focal plane 

thickness and ignore the vast majority of turning events; a bias against turning angles near 90° is 

also introduced. Finally, the boundaries of the sample chambers required for high-resolution 

imaging constrain motion in the z direction and affect the hydrodynamics of motility and the 

organisms’ possible swimming ranges. Because of this, 2D methods do not capture the entire 

complexity of bacterial motility and shed doubt upon models of motility such as “run and tumble” 

or “flick” [2,3] the swimming patterns of most bacteria in an unconstrained 3D volume remain 

largely unknown. 

Digital Holographic Microscopy (DHM) is based on the technique of holographic 

interferometry. In this technique, two physically separate beams of monochromatic and collimated 

light are used to create interference patterns at the digital detector when recombined at an angle. One 

beam passes through the sample of interest, which encodes its morphology and phase characteristics 

in the curvature of the transmitted light while the second beam remains undisturbed. This beam 

serves as a reference for the plane wave curvature before the light interacted with the sample. The 

digitally recorded hologram can then be reconstructed back into the original object wavefront using 

numerical methods [4]. 

The amplitude and phase distribution in the plane of the real image can be found from the 

hologram by the Fresnel-Kirchhoff integral [4,5]. If a plane wave illuminates the hologram located in 

the plane    , with an amplitude transmittance       , the Fresnel-Kirchhoff integral gives the 

complex wavefront,       , in the plane of the real image. The amplitude,  , in the real image can 

be calculated as the magnitude of the complex wavefront: 

            (1) 

The phase information,  , of the complex wavefront is obtained by: 

 
        (

    

    
) 

(2) 

Where      and      are the imaginary and real parts of the complex wavefront, respectively. 

These methods allow for capture of an entire sample volume in a single hologram, followed by 

plane-by-plane reconstruction. This is ideal for sparse samples moving in three dimensions. Samples 

with multiple scatterers complicate the reconstruction; we have found that bacterial concentrations > 10
8
 

cells per ml are too dense for reconstruction using a Mach-Zehnder style DHM [6]. Reconstructed 

amplitude images correspond to brightfield images in ordinary light microscopy. Phase images have 

no direct counterpart and are an emerging field in and of themselves. Quantitative phase microscopic 

imaging has shown promise in diagnostics, label-free cell biology and more [7]. Because phase is 

recorded as modulo   , the problem of “unwrapping” multiples of    to calculate the true phase 

shift is one of the major challenges in this field. 
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DHM has been used to study distribution and swimming patterns of microorganisms on the 

scale of 10 µm: Algae in the laboratory [8] and plankton in the open ocean [9], to investigate 

dinoflagellate feeding behavior [10,11], to study the motility of algal zoospores [12] and to study 

cultured cells in the laboratory [13]. Nevertheless, papers on DHM imaging of micron-sized bacteria 

are few. We have constructed a DHM specifically for bacterial imaging, with sub-micron resolution, 

and have demonstrated its utility for detection of bacteria in extreme environments [14]. However, 

obtaining automated 3D tracks of bacterial cells with this instrument is still very challenging. Low 

contrast does not allow images to be thresholded and the presence of out-of-focus airy rings confuses 

detection algorithms. Amplitude images show a large amount of laser speckle noise, which is inherit 

to any imaging technique using coherent light sources. Some solutions have been presented in the 

literature. One paper successfully tracked bacteria using de-noising algorithms [2,15], but this 

approach is computationally intensive as well as labor-intensive. Holographic microscopy using 

incoherent light can eliminate speckle [16], but at the expense of depth of field, so that it is less 

useful for 3D tracking than coherent DHM. Synthetic aperture techniques can also improve 

resolution [17], but are used to improve images taken through low NA lenses. Operating at the 

diffraction limit makes such techniques difficult. Other super-resolution techniques, such as angular 

or wavelength multiplexing [18,19], require the sample to be stationary. Because studies of live 

bacteria require imaging at the order of the size of the wavelength of illumination light in a large 

volume, and because they move at tens to hundreds of microns per second, identifying and tracking 

them remains a challenge. 

Phase images contain less speckle noise than amplitude images, but are subject to temporal 

phase noise, which results from the uncorrelated noise between the two beams of the interferometer. 

Most importantly, the contrast provided by bacterial cells is low. The contrast in phase images at a 

point       is provided by the spatially averaged phase difference   , which is related to the 

difference in indices of refraction between the medium (  ) and cell (  ) [20]: 

 
   

  

 
                   

(3) 

Where   is the wavelength of illuminating light and   is the thickness of the specimen at      . 

For bacteria, refractive indices differ from water only at the second decimal place (~1.38 vs. 

1.33 for water) [21]. Thus, a typical phase shift for a 1 µm cell imaged at 405 nm is about  /4 or 45°, 

which can be difficult to resolve. The advantage to such small objects is that unwrapping is not 

required since phase shifts do not exceed   . 

Automated particle tracking can generally be divided into two steps: Particle 

identification/detection (the spatial aspect), followed by particle tracking/linking (the temporal 

aspect). In 2014, Chenouard et al. [22] provided an objective comparative study of the most common 

particle tracking methods used in bioimaging. First, the authors identified three main factors that 

affect tracking performance: Dynamics (type of motion), density (number of particles per field of 

view), and signal-to-noise ratio (SNR). Second, they simulated a set of 2D and 3D image data based 

on these different factors. They then sent these image datasets to 14 teams who took up the challenge 

of identifying and tracking the particles using state-of-the-art methods. The teams then sent back 

their results, which showed that no one particle tracking method performed best for all data. The best 

identification methods were based on careful implementation and parameter tuning of any algorithm. 

The best tracking methods were the ones that used multiframe/multitrack optimization instead of the 
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simpler nearest-neighbor linking. In addition, methods that made explicit use of the prior knowledge 

about the particle motion in each scenario were more successful than methods that did not. 

In this work, a high precision machine-learning particle identification/detection algorithm based 

on linear logistic regression [23] is implemented for tracking of two test bacterial strains: Bacillus 

subtilis and Collwellia psychrerythraea. This algorithm is available in MATLAB as part of the 

Statistics and Machine Learning toolbox. This algorithm was used as a proof of concept; other 

machine learning algorithms such as decision tree model, support vector machine, or k-nearest 

neighbor classification model could also be implemented. The strains were chosen to represent 

relative extremes of prokaryotic size and motility. B. subtilis is large (5 µm long) and shows slow 

(~20 µm/s), undulating motility. C. psychrerythraea is a marine psychrophile that is very small  

(<1 µm) and swims at rapid speeds (over 40 µm/s even at subzero temperatures) [24]. 

The algorithm requires an expert user to identify bacteria from a training dataset, which is a 

small subset of the recorded data. Once trained using just a few examples, the algorithm is able to 

automatically detect organisms from the entire dataset. Performance is compared to manual tracking 

and found to give a precision of   91%. Once identified, bacteria may be tracked by the simple nearest-

neighbor Hungarian linking algorithm [25]. This represents the first demonstration of an automated 

algorithm for tracking of bacteria using DHM. While much work on the subject remains to be done, 

this is a promising area of inquiry for anyone studying 3D bacterial motility. 

2. Materials and methods 

2.1. Design specifications of the Digital Holographic Microscope (DHM) 

The DHM used in this study has been described elsewhere [14]. It is a twin-beam off-axis DHM, 

suitable for extreme environments in terms of mechanical and thermal stress. Specifications of this 

instrument are summarized in Table 1. 

Table 1. Design specifications of the DHM instrument. 

Property Value Unit 

Operating Wavelength 405 nm 

Objective focal length f0 7.6 mm 

Objective Numerical Aperture 0.30  

Relay lens focal length fr 150 mm 

System magnification 19.7  

Lateral resolution 0.7 µm 

CCD pixel size 3.45 × 3.45 µm × µm 

Sample imaging volume 360 × 360 × > 600 µm × µm × µm 

Sampling Rate 15 Frames per second 

Instrument length 400 mm 

2.2. Sample preparation 

Bacillus subtilis was grown to mid-log phase in lysogeny broth (LB) in a shaking incubator at 

30 °C. Cultures were then diluted into motility medium (10 mM potassium phosphate, 10 mM NaCl, 
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0.1 mM EDTA, 0.1 mM glucose, pH 7.0) immediately before being inserted into the sample chamber 

and imaged using the DHM at room temperature. 

Colwellia psychrerythraea was maintained in half-strength 2216 marine broth (Difco) at 6 °C. 

Cultures were then diluted using the same Difco broth immediately before being inserted into the 

sample chamber and imaged using the DHM at room temperature. 

The sample chamber consisted of high optical quality glass etalons separated by a PDMS gasket. 

Sample chamber depth was 800 µm with a total sample volume of 0.25 µL. Bacterial samples were 

pipetted into the chamber and videos were recorded using the commercial software KOALA 

(LynceeTec) [26] at maximum acquisition speed (7–15 frames per second). 

Three separate datasets were acquired and analyzed. The first two consisted of either Bacillus 

subtilis or Colwellia psychrerythraea at low concentrations (on the order of 10
2
 cells per mL), while 

the third consisted of Bacillus subtilis at a much higher concentration (on the order of 10
6
 cells  

per mL). The two low concentration datasets were used to compare to “manually identified gold 

standard” tracks that were obtained by manually tracking each bacterium through           in order 

to quantify the level of error in the algorithm, while the high concentration data set was used to 

investigate its ability to track higher concentration samples. A summary of each dataset’s properties 

are listed in Table 2. 

Table 2. Properties of all three datasets acquired and analyzed. 

Property Dataset 1 Dataset 2 Dataset 3 

Sample Volume [µm
3
] 360 × 360 × 252 360 × 360 × 392 360 × 360 × 500 

Bacteria Species Bacillus subtilis Colwellia 

psychrerythraea 

Bacillus subtilis 

Concentration [cells per mL]   10
2   10

2
  10

6
 

Object Volume and Shape   8 µm
3
, 

elongated 

  2 µm
3
,  

comma-shaped 

  8 µm
3
, 

elongated 

Number of z-planes 201 157 201 

Number of time frames 84 18 85 

Axial Resolution [µm] 1.25 2.5 2.5 

Total Number of Bacteria in FOV 8 6 149 

2.3. Hologram reconstruction 

KOALA (LynceeTec) was used for the holographic reconstruction of all datasets. The 

holograms of all datasets were numerically reconstructed into amplitude and phase images at a z 

spacing of 1.25 µm/slice and 2.50 µm/slice, respectively. Images were saved as 8-bit TIFF files. The 

phase reconstructions were used in the tracking of Dataset 1 and Dataset 2, while Dataset 3 was 

tracked by analyzing images obtained by the multiplication of the amplitude and phase 

reconstructions. By doing so, it was seen to increase contrast, which aids in the automated tracking 

of higher concentration datasets without introducing false positives. 
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2.4. Manual object identification 

All analysis was performed on a custom built desktop computer, with an Intel Core i7-7800x 

CPU @ 3.50 GHz, 32.0 GB of Installed memory (RAM), running Windows 10 Pro and using 

MATLAB R2017b with the Image-Processing Toolbox and the Statistics and Machine Learning 

Toolbox installed. 

Prior to the automated tracking of Datasets 1 and Datasets 2, manual tracks were compiled in 

order to quantify the performance of the automated tracking routine. Manual tracking was 

accomplished in two stages, both involving a human observer that would individually identify 

bacteria. In the first stage, raw holograms are analyzed by the observer. Because this is done before 

any numerical reconstruction, the raw holograms only provide         locations for a particular 

bacterium. The open source data visualization software FIJI (is just imageJ) was used with the 

“Manual Tracking” plugin [27]. Once these         coordinates are recorded, KOALA was used to 

numerically reconstruct the holograms at various focal planes. By knowing the         locations of 

bacteria, their respective   location can be found by cycling through the reconstructed focal planes 

and identifying the z-plane where a particular bacterium is in focus. With           coordinates for 

the bacteria in Datasets 1 and 2 compiled manually, quantifying the performance of the automated 

tracking routine is possible. 

2.5. Validation metrics 

To quantify the performance of the automated tracking algorithm, the manual tracks of Datasets 

1 and 2 were used in order to calculate an    score (F-score). The F-score is defined as: 

 
   

        

     
 

(4) 

Where   is a weighting factor,   is the statistical precision, and   is the statistical recall. Statistical 

precision is defined as: 

 
  

  

     
 

(5) 

And statistical recall is defined as: 

 
  

  

     
 

(6) 

Where    is the number of true positives,    is the number of false positives, and    is the number of 

false negatives. 

The motivations that led to the development of this algorithm were to be able to extract 

statistically relevant motility characteristics of bacteria from a given dataset and not necessarily 

identify all bacteria present in the field of view. For this reason, precision is weighted higher than 

recall by defining      . 
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2.6. Automated particle identification and tracking 

2.6.1. Pre-processing 

All images that were analyzed with the automated tracking routine were subject to a pre-

processing step in order to reduce noise in the image as well as normalize average pixel values from 

image to image. De-noising included calculating the mean image for a time sequence of images and 

subtracted that image from all images in that time sequence. By subtracting a temporally averaged 

image, all stationary artifacts of an image (e.g. speckle noise) are removed. Next, these mean 

subtracted images were band-pass filtered. This band-pass filtering was done by multiplying the 

Fourier Transform of an image with a binary mask matrix. The DHM used has been shown to 

operate at diffraction limited resolution, and so this absolute resolution limit was used as the upper 

cut-off frequency of the band pass filter, while the lower cut-off frequency was set to eliminate zero-

frequency artifacts. For Dataset 3, the pre-processed amplitude and phase images were then multiplied 

together in order to further increase contrast. 

2.6.2. Training 

The linear logistic regression pixel classifier is a supervised learning algorithm that was 

implemented using MATLAB’s Statistics and Machine Learning Toolbox. In order to train this 

classifier, a sample dataset is used to generate a classifier       as well as a pixel features matrix   . 

The pixel features that are used to construct    are summarized in Table 3. 

Table 3. Pixel features used to train the classifier. 

Importance (descending order) Pixel Feature 

1 Absolute difference of pixel values     ̅  
2 Local image gradient 

3 Local standard deviation 

4 Absolute difference of pixel values (in z) 

5 Local neighborhood median value 

6 Total image standard deviation 

For a given sample dataset           coordinates are provided to the algorithm corresponding 

to the location of particles of interest. Pixel feature matrices are constructed near these coordinates 

along with a binary probability matrix   , where         . Because absolute particle coordinates are 

known, this probability matrix contains zeros everywhere except for the pixels where a particle is 

located. Both the pixel feature matrix and the binary probability matrix are used to calculate the 

classifier, which is defined as: 

       (     
)
  

 (7) 

Where    is the transpose of a linear weighting matrix. There is no closed form solution for   and 

as a result a gradient descent iterative minimization approach is used such that: 
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     ∑(       

       )   

 

   

 (8) 

Where     
  is the      th

 element of the  th
 iteration of the linear weighting matrix and   is 

gradient descent learning parameter. This learning parameter must be predefined and was chosen as 

      . 

2.6.3. Particle identification 

With the classifier trained, arbitrary datasets can be used to construct pixel feature matrices ( ). 

These matrices are then subsequently multiplied by the classifier to yield the probability matrix: 

          (9) 

Where       the values of this matrix correspond to the probability that a particular pixel 

contains a particle of interest. A minimum probability threshold is then employed to decide whether 

or not a pixel is indeed a particle of interest. 

2.6.4. Particle tracking 

With           coordinates found for all particles of interest in the dataset, a “nearest neighbor” 

particle tracking algorithm is employed to identify identical particles across time sequences [25]. 

This algorithm requires inputs of spatial locations of particles at each time point to be analyzed. The 

tracking algorithm then operates in two stages. First, the algorithm compares the coordinates of 

particles in time point   to the coordinates in time point     ) and defines two coordinates as 

belonging to the same particle as the points with the smallest Euclidean distance between them 

across   and      . The second step involves dealing with gaps. These gaps arise when a particle 

was not successfully identified in one or multiple frames, but reappears in subsequent frames. This 

stage is an iterative loop that identifies the location where trajectories end and searches subsequent 

time points for trajectories that begin near where the other ended. If the function is able to find a 

close enough pair of trajectories, then the two tracks become stitched together and the locations of 

the particle within the gap are calculated as a linear interpolation between the two known locations. 

3. Results and discussion 

With the manually tracked bacteria in Datasets 1 and 2, calculating an F-score was possible to 

quantify the performance of the automated tracking algorithm discussed in this work. For Dataset 1, 

the tracking algorithm yielded a precision of 98.9%, a recall of 57.1% and an F-score of 0.863. For 

Dataset 2, the tracking algorithm yielded a precision of 91.5%, a recall of 76.5% and an F-score of 

0.880. The statistical performance of the automated tracking routine is summarized in Table 4. 
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Table 4. Performance statistics of automated tracking algorithm. 

 Dataset 1 Dataset 2 

Total number of points 324 98 

Total number of points identified 187 82 

True positives 185 75 

False positives 2 7 

False negatives 139 23 

Precision 98.8% 91.5% 

Recall 57.1% 76.5% 

F-score 0.863 0.880 

Of the bacteria that were identified in Datasets 1 and 2, the localization errors were quantified 

as the absolute Euclidean distance between the coordinates found by the algorithm and the 

coordinates obtained by manual tracking. The root-mean-squared (RMS) localization error of Dataset 

1 was found to be 7 µm and 6 µm for Dataset 2. Figure 1 shows the histogram of localization errors 

from (a) Dataset 1 and (b) Dataset 2. 

 

Figure 1. Localization error of the automated tracking algorithm of (a) Dataset 1 and (b) 

Dataset 2. 

The tracking algorithm was also employed to track a dataset with a higher concentration of 

Bacillus subtilis (on the order of 10
6
 cells per mL). At such a concentration, there are expected to be 

a range of 100 to 200 cells in the field of view of the DHM instrument at any one time. The tracking 

algorithm was able to identify 149 unique bacteria in this dataset, while a human observer was only 

able to identify 127 bacteria. The remaining 22 bacteria were noticed by the human observer only 

after they knew there were bacteria there. Figure 2 shows a three-dimensional plot of the trajectories 

extracted from the tracking algorithm of this dense sample. The trajectories are color coded with 

respect to time. 

(a) (b) 
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Figure 2. Three-dimensional trajectories of Bacillus subtilis from Dataset 3. 

Swimming speeds of the tracked dataset were calculated as the root-sum-squared (RSS) of the 

    and   component velocities, such that: 
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Where   
     is the  -component velocity at time   of the  th

 bacterium and      is the absolute 

swimming speed of the  th
 bacterium. A histogram of the results is shown in Figure 3. The mean 
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swimming speed was 23 ± 17 µm/s (standard deviation, n = 149) and the median swimming speed 

was 10 µm/s. 

This shows that there were a considerable number of outliers, which is consistent with the 

experimental data. There were multiple very fast swimmers that shifted the mean. These values are 

in agreement with the literature on wild-type B. subtilis [28]. 

 

Figure 3. Distribution of swimming speeds of Bacillus subtilis from Dataset 3. 

The motivations behind the development of this algorithm were to extract statistically 

significant motility characteristics of bacteria from a dataset in an automated manner. In doing so it 

was clear that statistical precision is more important than recall because in order to extract statistics 

from a dataset, not all bacteria need to necessarily be tracked, only a sufficient number of them to 

form an acceptable sample size. This reason justifies the relatively high number of false negatives in 

Datasets 1 and 2. Furthermore, although DHM allows three-dimensional imaging in real-time, it is 

susceptible to sources of noise that result in low signal to noise (SNR) ratios. The low SNR 

associated with DHM also helps explain the false negatives. 

In the quantification of localization errors of this algorithm, it was found that there are RMS 

errors of 7 µm and 6 µm for Datasets 1 and 2, respectively. Because these errors were calculated 

relative to manual tracks, they are susceptible to human error as well. Any error in the centroid 

identification during manual tracking will affect the RMS error reported here. 

Errors associated with Dataset 3 were not explicitly quantified, but rather are inferred upon by 

the error analysis conducted on the Dataset 1. This assumption is valid because Dataset 1 and 3 are 

identical other than the fact that Dataset 3 is at a higher bacterial concentration. It has been found 

that the average SNR obtained in DHM reconstructions is in fact a function of sample concentration, 
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but the degradation of SNR from the concentration of Dataset 1 to Dataset 3 was found to be 

negligible [29]. 

A large hindrance of three-dimensional particle tracking is the data volumes associated with it. 

In the particular setup used in this work, 4 megapixel holograms (roughly 4 MB per hologram) were 

acquired at roughly 10 frames per second. Each hologram was then reconstructed into about 200 

separate focal planes in both amplitude and phase. This results in a 400× increase in data size after 

numerical reconstruction (e.g. Dataset 3 was over 100 GB in size). Non-trivial software techniques 

must be employed in order to be able to analyze this volume of data with a modest computer. The 

algorithm described in this work employs these techniques in order to only occupy 8 GB of RAM at 

any one given time throughout the tracking process. 

4. Conclusions 

This work presents and validates a machine-learning identification algorithm based on linear 

logistic regressions that can identify microorganisms within DHM image reconstructions, with a 

precision of over 90% and localization error of roughly 7 µm. Identification was validated using 

two species of microorganisms of different sizes, without the use of any chemical contrast 

enhancement (e.g. fluorescent dyes). 

The theoretical and mathematical foundation of this algorithm was introduced and discussed as 

well as the method in which it was implemented as a MATLAB routine. 

A total of three datasets were analyzed using this algorithm consisting of Bacillus subtilis and 

Colwellia psychrerythraea. Two of the three datasets contained low concentrations of bacteria in 

order to allow for the quantization of error, while the third dataset contained a much higher 

concentration to illustrate its usefulness in practical biological imaging applications. 

Although the data sizes associated with high spatial and temporal resolution three dimensional 

imaging are cumbersome, the algorithm developed in this work is able to track particles in arbitrarily 

large datasets (>100 GB) while only occupying 8 GB of RAM and modest CPU requirements. A 

fully annotated version of the software developed and used throughout this work is available for 

public use at: https://github.com/mbedross/MachineLearningObjectTracking. 
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