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Abstract: The role of free radicals can be found in the inflammatory process which is a complex 

process resulting many human diseases. Inflammations are mainly divided into acute and chronic 

inflammation depending on various inflammatory processes and cellular mechanisms. In recent years, 

there has been a great deal of attention to the field of free radical chemistry. Free radicals such as 

reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated by our body by 

various endogenous systems, exposure to different physiochemical conditions or pathological states. 

The purpose of the present review is to mention the role of free radical formation in the most 

common inflammatory processes in animals. Continued oxidative stress can lead to chronic 

inflammation, which in turn could mediate the most chronic diseases including cancer, diabetes, 

cardiovascular, neurological, and pulmonary diseases. ROS and RNS are well recognized for playing 

role as deleterious species. ROS and RNS are normally generated by tightly regulated enzymes, such 

as NO synthase (NOS) and NAD(P)H oxidase isoforms, respectively. The detrimental effect of free 

radicals causing health damages is termed oxidative stress and nitrosative stress. Overproduction of 

ROS results in oxidative stress, a deleterious process that can damage cell structures, including lipids, 

proteins, and DNA. 

Keywords: inflammation; human health; reactive oxygen species; oxidative stress; reactive nitrogen 

species 

 

1. Introduction 

The recent knowledge of free radicals and reactive oxygen species (ROS) and its role in human 

diseases became an important aspect of health and disease management. Oxygen, which is an 
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indispensable element for life, has deleterious effects on the human body under certain situations. 

The harmful effects of oxygen are due to the formation and activity of a number of chemical 

compounds, known as ROS. Free radicals are atoms or molecules having one or more unpaired 

electrons and capable of independent existence. Free radicals have pivotal role in diverse range of 

degenerative diseases like atherosclerosis, cancer, inflammatory joint disease, asthma, diabetes, 

kidney diseases, and degenerative eye disease [1–5]. Most ROS is generated in cells by the 

mitochondrial respiratory chain [6]. Mitochondrial ROS production is modulated largely by the rate 

of electron flow [7,8] through respiratory chain complexes [9]. In the mammalian cell, the electron 

transport chain of mitochondria is the main source of ATP which is essential for life. During energy 

transduction, some electrons prematurely leak to oxygen resulting in formation of oxygen free 

radical superoxide [7,8]. Superoxide anion, arising from metabolic processes is considered as 

primary ROS which can generate secondary ROS by further interacting with other molecules directly 

or through enzyme- or metal-catalysed processes [10,34]. Recently, it has become clear that, under 

hypoxic conditions, the mitochondrial respiratory chain also produces nitric oxide (NO), which can 

generate other reactive nitrogen species (RNS). Although excess ROS and RNS can lead to oxidative 

and nitrosative stress, moderate to low levels of both function in cellular signaling  

pathways [11,12,13]. Especially important are the roles of these mitochondrially generated free 

radicals in hypoxic signaling pathways, which have important implications for cancer, inflammation 

and a variety of other diseases [4,5]. Table 1 shows list of ROS and RNS. 

Free radicals are the products of normal cellular metabolism. An atom or molecule having one 

or more unpaired electrons in valence shell or outer orbit is considered as free radical [11]. Free 

radicals are unstable, short lived and highly reactive because of its odd number of electron(s). 

Because of their high reactivity, they can abstract electrons from other compounds. Thus the attacked 

molecule loses its electron and becomes a free radical itself. Finally, a chain reaction begins which 

damages the living cell [9,14,15].  

Oxygen plays a fundamental role in both organismal survival and death. Its role in survival is 

linked to its high redox potential, which makes it an excellent oxidizing agent, capable of accepting 

electrons easily from reduced substrates. These partially reduced reactive oxygen species include 

superoxide, hydrogen peroxide and the hydroxyl radical. Ironically, the mitochondrial respiratory 

chain, responsible for most of the oxygen reduction and energy produced in cells, is also responsible 

for generating the most cellular ROS. Indeed, ROS has often been thought of as toxic byproducts of 

respiratory metabolism. It has been known for some time that excess ROS can oxidize and damage 

proteins, nucleic acids, polysaccharides and lipids [12,16]. 

The present review provides a brief overview of oxidative stress mediated inflammatory 

diseases. Inflammation includes a long chain of molecular reactions and cellular activity, which are 

designed to restore a tissue from simple skin cut or to repair tissue after giving birth or to cure 

several burn injuries. An inflammatory process of cellular and tissue levels includes a series of 

occasions with dilation of venules and arterioles, enhanced blood vessel permeability, and blood flow 

with percolation of leukocytes into the tissues. An inflammation cascade contributes to organ 

disorder and death. Inflammation is one of the major target research areas among biomedical 

researchers, which includes various cellular processes [17,18]. 

The aim of this review is to mention the role of free radicals in inflammatory diseases.  
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2. Classification of Inflammation 

Free radicals cause inflammation in human by cellular damages. Chronic inflammation 

produces lots of free radicals which ultimately create more inflammation. This continuous vicious 

cycle can damage many systems in the human body. 

2.1. Acute inflammation 

Acute inflammation is a short procedure, lasting from minutes to a few days. The major features 

of acute inflammation are leakage of plasma proteins or fluid and movement of leukocytes into an 

extravascular area. These cellular and vascular reactions are intermediated by chemical factors 

produced from cells or plasma and are responsible for the classic clinical symptoms of inflammation 

such as swelling, redness, pain, warmth, and loss of function. Even though an inflammatory response 

can happen to any injurious stimulus, the characteristic of this process is the reaction of vascularized 

connective tissue [15,19].  

2.2. Chronic inflammation 

Inflammation is a vital response to human immune system. The chronic inflammation can have 

several secondary consequences of biological response associated with enhanced risk of chronic 

diseases and disorders. Chronic inflammation in tissue usually occurs through infections that are not 

resolved either within endogenous protection mechanisms or via some other resistance mechanism 

from host defenses. They can also happen to physical or chemical agents, which cannot be broken 

down, as well as from some kind of genetic susceptibility. Persistence of foreign bodies, continuous 

chemical exposures, recurrent acute inflammation, or specific pathogens is all crucial reasons for 

chronic inflammation. Molecular and cellular process of chronic inflammation depends on the type 

of inflamed cells and organ [20,21,22]. 

3. History of Free Radicals 

Existence of free radical named triphenyl methyl radical (Ph3C
•) in living system was postulated 

in 1900 by Professor Moses Gomberg, University of Michigan, USA [23]. In 1954, Professor 

Gershman stated the cause of oxygen toxicity and proposed that, oxygen can form free radicals [24]. 

In the same year, experiment by Commoner et al. showed that, free radicals occur to animal tissues 

(and in other biological materials), and the report was based on electron spin resonance (ESR) 

studies of frozen-dried samples [25]. In the year 1956, free radical theory of aging was revealed by 

Denham Harman. In 1969, superoxide dismutase was discovered by McCord and Fridovich [9,26]. 

On the other hand, some research groups discovered the involvement of free radicals in combating 

infection as part of the cellular immune response, where ROS and reactive nitrogen species (RNS) 

operate in concert with reactive halogen species to fight invading microorganisms [27,28,29]. In 

1989, Hallliwell and Gutteridge reported that, ROS include both free radical and non-radical 

derivatives of oxygen [30]. 
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Table 1. List of ROS and RNS [9,31,32,33]. 

Reactive Oxygen Species (ROS) Symbols 

Superoxide (very short half-life) O2.
－
 

Hydroxyl (approximately 10
−9

 seconds) OH
.
 

Alkoxyl radical  RO
.
 

Peroxyl radical (about 7 seconds) ROO
.
 

Hydroperoxyl HO2
.
 

Hydrogen peroxide (normally a short-lived substance in the environment but 

half-lives vary greatly depending on the circumstances) H2O2 

Singlet oxygen (exhibits a half-life time in water of ~3.5 μs) 
1
O2 

Ozone (The half-life of ozone in water is a lot shorter than in air) O3 

Organic peroxide  ROOH 

Hypochlorous acid (less than 1 min) HOCl 

Hypobromous acid (few hours depending on the concentration of the solution) HOBr 

Reactive Nitrogen Species (RNS)  

Nitric Oxide (half-life time depends on the environmental medium) 
.
NO 

Nitrogen Dioxide NO2
.
 

Peroxynitrite [The biological half-life of peroxynitrite is low (<0.1 seconds)] ONOO
－

 

Alkyl peroxynitrites ROONO 

Nitrosyl cation NO
+
 

Nitrosyl anion NO
－

 

Dinitrogen trioxide N2O3 

Dinitrogen tetroxide N2O4 

Nitrous acid (the half-life in a typical indoor environment appears to range 

from 2 to 8 h) HNO2 

Peroxynitrous acid ONOOH 

Nitryl chloride NO2Cl 

4. Some Free Radicals 

4.1. Reactive oxygen species (ROS) 

In living system, among the radical species, oxygen derived radicals are most important and it is 

called reactive oxygen species (ROS) [9,34,35,36]. The ROS forms as products of normal 

physiological conditions due to the partial reduction of molecular oxygen [37]. ROS can be produced 

from several endogenous sources, such as xanthine oxidase, cytochrome oxidase, cyclooxygenase, 

mediated unsaturated fatty acid oxidation, oxidation of catecholamines, mitochondrial oxidation, 

inflammation, phagocytosis, ischemic reperfusion injury, exercise activation of leukocyte 

nicotinamide adenine dinucleotide phosphate oxidase, iron release, and reduction-oxidation reaction 

cycling [38–43]. In eukaryotic cell, ROS is generated mostly in electron transport chain of 

mitochondria [44]. Along with endogenous sources, various exogenous sources like smoking of 

cigarette, X-ray exposure, industrial chemicals, ozone, and air pollutants also up regulate ROS 

production [39,45,46,47]. There are two types of ROS, such as oxygen-centered radicals and oxygen-

centered non-radicals [9,32]. Oxygen-centered radicals are superoxide anion (O2
. －

), hydroxyl  
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radical (
·
OH), alkoxyl radical (RO

·
), and peroxyl radical (ROO

·
). Other reactive species are nitrogen 

species such as nitric oxide (
.
NO), nitric dioxide (NO2

·
), and peroxynitrite (OONO

－
). Oxygen 

centered non-radicals are hydrogen peroxide (H2O2) and singlet oxygen (
1
O2), hypochlorous acid and 

ozone [48–51]. ROS can cause tissue damage in various ways like DNA damage; lipid peroxidation 

[through activation of cyclooxygenase (COX) and lipoxygenase pathway]; protein damage including 

gingival hyaluronic acid and proteoglycans; oxidation of important enzymes; stimulate 

proinflammatory cytokine which are released by monocytes and macrophages by depleting 

intracellular thiol compounds and activating nuclear factor kappa beta (NF-κB) [52,53]. 

4.2. Superoxide 

In biological system superoxide ion (O2
.－

) is the most significant widespread ROS [54]. It is 

formed by various enzymatic (autoxidation reaction) and non-enzymatic process (an electron is 

transferred to molecular oxygen) [55]. Superoxide, an anion radical of dioxygen, is the precursor of 

paramagnetic reactive free radicals (hydroxyl radicals) and reactive diamagnetic molecules (hydrogen 

peroxide and peroxynitrite) in biological systems. Superoxide is a radical anion as well as a strong 

nucleophile. It could participate in DNA methylation, histone methylation and acetylation through 

mechanism of nucleophilic substitution and free radical abstraction [56]. 

The enzymes which generate superoxide are xanthine oxidase [26,57,58], lipoxygenase, 

cyclooxygenase [59,60,61] and NADPH dependent oxidase [62,63]. It can be present as O2
•－

 or 

hydroperoxyl radical (HO2) at low pH [64]. It has both reducing and oxidizing properties.  

4.3.  Peroxyl radical (ROO
.
) 

The source of peroxyl radical in living system is oxygen. Perhydroxyl radical (HOO•) is the 

simplest form of peroxyl radical and it is derived by protonation of superoxide [65]. About 0.3% of 

the total O2
•－

 in the cytosol of a typical cell is in the protonated form. It initiates fatty acid 

peroxidation and also can promote tumor development [66]. 

4.4. Hydrogen peroxide (H2O2) 

Hydrogen peroxide is the major oxidant product of xanthine oxidase [67]. Hydrogen peroxide is 

also directly produced by a range of oxidase enzymes including glycollate and monoamine  

oxidases [68,69]. As low as 10 μM of hydrogen peroxide can damage living cell and it can 

potentially inactivate the cellular energy producing enzymes (as glyceraldehyde-3-phosphate 

dehydrogenase are inactivated in higher concentration). It can easily penetrate the biological 

membranes. In the presence of transition metal ions it can damage DNA by producing hydroxyl 

radical (OH) [70]. The major antioxidant enzymes that can eliminate the H2O2 include catalase, 

glutathione peroxidase and peroxiredoxins are important antioxidant enzyme which can protect cell 

from the deleterious effect of hydrogen peroxide [71,72]. 
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5. Mitochondrial ROS Targets-Oxidative Damages to DNA, Lipids and Proteins 

5.1. DNA 

Mitochondrial DNA (mtDNA) is more susceptible to oxidative damage than nuclear  

DNA (nDNA), most probably because it is closer to the site of ROS generation [11]. The hydroxyl 

radical is known to react with all components of the DNA molecule, damaging both the purine and 

pyrimidine bases and also the deoxyribose backbone [73]. 

5.2. Proteins 

A useful measure of protein oxidation caused by ROS is protein carbonylation. Carbonylated 

proteins are easily identified after derivatization with 2,4-dinitrophenylhydrazine. This approach 

demonstrated that, oxidative stress increases transiently in cells exposed to hypoxia/anoxia and 

protein carbonylation levels increased. Some of the carbonylated proteins reside in the 

mitochondrion, whereas others are cytosolic proteins. A shift to anoxia allows a burst of 

mitochondrially generated ROS, which distribute themselves among both mitochondrial and 

cytosolic compartments and carbonylation in response to hypoxia-induced oxidative stress affects 

specific proteins [74]. The side chains of all amino acid residues of proteins, in particular cysteine 

and methionine residues of proteins are susceptible to oxidation by the action of ROS/RNS [75]. 

5.3. Lipids 

Membrane lipids are the third major target of mitochondrial ROS. The OH radical interacts with 

unsaturated bonds in a membrane lipid and starts the process of lipid peroxidation. The end product 

of this reaction is 4-hydroxynonenal, a compound that affects the activity of various membrane 

proteins. 4-Hydroxynonenal is a major inducer of oxidative stress and has been associated with a 

variety of pathophysiological states [76].  

6. Involvement of Free Radicals in Various Diseases 

6.1. Cardiovascular disease 

One of the leading causes of mortality and morbidity worldwide is cardiovascular  

disease (affecting the heart and blood vessels) for men and women [39,77–83]. In the blood vessel 

wall, each layer can produce ROS in pathological conditions [84]. ROS-induced oxidative stress 

plays a role in various cardiovascular diseases such as, ischemic heart disease, atherosclerosis, 

cardiomyopathies hypertension, congestive heart failure and cardiac hypertrophy [3,85,86]. Several 

research groups reported development of cardiac hypertrophy caused by mitochondrial ROS [87–90]. 

Recent research stated that, fructose induced cardiac hypertrophy caused by total ROS and 

mitochondrial H2O2. [91,92,93]. Other studies demonstrated that, ROS generated by smoking plays 

an important role to develop cardiovascular injury [94–97]. ROS causes remodeling through 

proliferation of smooth muscle cell and increased inflammation [98].  
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6.2. Diabetes 

Diabetes mellitus is a chronic metabolic disorder, characterized by hyperglycemia, dyslipidemia 

and insufficient production of insulin [99–102]. ROS production increases in chronic hyperglycemia 

of uncontrolled diabetes as well as decreases enzymatic antioxidant defenses leads to retinopathy and 

cataract formation [103]. Oxidative stress is one of the major causes of diabetes mellitus [99,104–107]. 

In hyperglycemic condition both mitochondrial and non-mitochondrial ROS production increases 

significantly to induce oxidative tissue damage. Superoxide radicals and NO both play major role to 

induce complication under hyperglycemic condition [108,109]. A serious complication of diabetes 

mellitus is diabetic nephropathy which is caused by oxidative stress and inflammation. Oxidative 

stress changes the structure and function of proteins and lipids, and induces glycoxidation and 

peroxidation in chronic hyperglycemia [110,111,112]. Previous studies also reported the link between 

oxidative stress and diabetes [113,114].  

6.3. Inflammatory bowel diseases 

Inflammatory Bowel Diseases (IBD) is a chronic disorder of the gastrointestinal (GI) tract. It is 

characterized by body weight loss, hemorrhage, lower abdominal pain and diarrhea [115,116]. 

Ulcerative colitis (UC) and Crohn’s Disease (CD) are two forms of IBD. In IBD, granulocytes and 

monocytes/macrophages are accumulated at site of the inflammation and produce reactive  

oxygen [117]. Recent research revealed that, ROS related diseases like IBD might be ameliorated by 

inhibiting xanthine oxidase [118]. Oxidative stress (major etiological factors in Crohn's disease) 

resulted due to imbalance between ROS production and antioxidant elements [119–122]. 

Concentration of nitric oxide also plays a vital role in IBD [116,123]. Several clinical studies also 

supported the deleterious role of NO in IBD patients [124–128]. Recent studies demonstrated that, 

anti-oxidative therapy might be a good approach to ameliorate IBD by scavenging free  

radicals [116,129,130]. 

6.4. Asthma 

Free radicals are responsible for several various respiratory diseases such as chronic bronchitis, 

respiratory distress syndrome, chronic obstructive pulmonary diseases (COPD), asthma [131,132]. 

Asthma is one of the important global health problems [133] and is characterized by chronic disorder 

of the airways, airway inflammation, hyper responsiveness, variable airflow obstruction and airway 

remodeling [134,135,136]. Free radicals and oxidative stress play significant role in airways 

inflammation [136,137,138]. In lung, reactive oxygen species are produced by lung parenchymal cell 

and lung macrophages and this ROS provoked airway inflammation by inducing diverse 

proinflammatory mediators [139]. ROS helps in overexpression of oxidative stress sensitive 

transcription of NFκB by various chemokine and cytokine over production in bronchial epithelial 

cells [140]. Several research works demonstrated that, oxygen free radicals, superoxide radical (O2
－
) 

production significantly increased in asthma patients [141,142,143]. Recent work reported that, 

oxidative stress induced by free radical generation is linked with asthma [144,145,146]. Among the 

nitrogen free radicals, nitric oxide is the principle free radical produce in lung [147]. NO is 

endogenously produced in mammalian airways by Nitric oxide synthase (NOS). NO modulates 
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airway and vascular smooth muscle and regulate various aspects of asthma in human. Increased 

production of airway NO is the key factor in the development of airway hyper responsiveness [148]. 

Various studies reported that, higher NO levels are directly associated with higher risk factor of 

asthma and its severity [147,149,150].  

6.5. Arthritis 

Rheumatoid arthritis (RA) is a systemic disease characterized by progressive, erosive, and 

chronic polyarthritis. Cellular proliferation of the synoviocytes and neo-angiogenesis leads to 

formation of pannus which destroys the articular cartilage and the bone [151]. RA is a systemic 

autoimmune disorder resulting in an unchecked synovial inflammation [152,153,154]. It has been 

found that, isoprostanes and prostaglandins level increased in serum and synovial fluid due to free 

radical injury in various RA [34]. ROS as well as RNS can directly or indirectly damage basic 

articular constituents and lead to the clinical expression of the inflammatory arthritis. Chronic 

inflammation exerts its cellular side effects mainly through excessive production of free radicals and 

depletion of antioxidant defense in the body. 

6.6. Burn 

Burn injuries are the major cause for human suffering and a major global public health crisis. 

Along with high mortality and morbidity, it also deprives the quality of life [155,156]. It is a 

traumatic injury which damages local tissue as well as systemic mediator-induced response. 

Upregulation of free radical activity and lipid peroxidation are manifested as a result [156]. 

Pathophysiology of burn injury is very complex. Severe burn injury develops hypovolemic shock 

and very rapid increase of various chemokines and cytokines which initiates inflammatory  

cascade [157]. Thermal injury leads to hyper metabolism which in turn increases the production of 

proinflammatory cytokines and various ROS and RNS [158]. Burn injury activates intravascular 

neutrophil granulocyte, which leads to increased ROS production [159]. Lipid peroxidation plays 

vital role in burn injury [160–164]. Severe lipid peroxidation in burn injury leads to burn related 

organ failure and burn shock [165,166,167]. After thermal injury, tissue ATP level falls down slowly 

and increased AMP is converted to hypoxanthine which supplies substrate for xanthine oxidase [168]. 

These complex events help to produce deleterious free radicals, superoxide and hydrogen  

peroxide [168,169]. Same explanation also stated previously that, in case of skin burn, xanthine 

oxidase activity increases which is an important source of free radicals in serum of burn  

patients [170]. Thermal injury also results in prolonged and profound hyper metabolism that involves 

increased production of proinflammatory cytokines, as well as the formation of ROS and  

RNS [158,169]. 

6.7. Cancer 

Cellular DNA can be damaged by reactive oxygen species lead to genetic changes and as a 

result, uncontrolled regulation of oncogenes and tumour suppressor genes finally contributes to 

carcinogenesis [171,172,173]. Various oxygen free radicals generated from activated leucocytes and 

these activated neutrophils can stimulate mutagenesis in vitro. Oxidative stress from chronic 
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inflammation upregulates cancer development in various organs and it has been postulated that, one 

third of the World’s cancer come from chronic inflammation. Oxygen free radicals also responsible 

for cancer caused by tobacco smoking [174,175]. Carcinogens present in tobacco smoke induces 

tumour by OFR stimulate the metabolism of benzo(a)pyrene (aromatic hydrocarbon present in 

tobacco) to diol-epoxides that initiate tumours through the formation of DNA adducts.  

6.8. β-thalassemia and sickle cell disease 

Sickle cell disease and β-thalassemia are inherited autosomal recessive red cell disorders. It is 

one of the major causes of morbidity and mortality worldwide [176]. In Sickle cell disease, glutamic 

acid is replaced by valine at position 6 of the β-globin protein of haemoglobin and as a result, sickle 

haemoglobin (HbS) forms. In micro environment, HbS  tends to polymerize under low oxygen and 

this in turn lead to erythrocytes deformation and impairment of oxygen delivery capacity of 

erythrocytes to tissues occurs which in turn impact the oxidative environment both intracellularly 

and extracellularly. A subsequent series of complications, such as pain crises, pulmonary 

hypertension and heart failure, comprise the characteristic symptoms of the disease.  

6.9. Alzheimer’s disease 

Alzheimer’s disease (AD) is a neurodegenerative condition characterized by the formation of 

amyloid-β plaques, aggregated and hyperphosphorylated tau protein, activated microglia and 

neuronal cell death, ultimately leading to progressive dementia [177,178]. Reactive oxygen species 

are very important factor of early behavioural changes in Alzheimer’s diseases. Evidences suggest, 

ROS play an early role in the behavioural deficits observed in AD [179]. Recent research also 

supported that, oxidative stress is an important factor of AD and ascorbic acid reduced 

neurodegenerative processes and behavioural alterations in AD patients [180]. 

7. Discussion 

The harmful effect of free radicals causing potential biological damage is termed oxidative 

stress and nitrosative stress [181,182,183]. In biological systems this detrimental effects occurs due 

to the overproduction of ROS and RNS. The oxidative stress result from the metabolic reactions 

represents a disturbance in the biological equilibrium status in living organisms. The excess ROS can 

fully destroy lipids, proteins, or DNA inside the cell and inhibit their normal function ultimately 

causing a number of human diseases [2,184].  

Exposure to free radicals from a variety of sources has led organisms to develop a series of 

defense mechanisms [185]. Such defense mechanisms against oxidative stress are repairing 

mechanisms, preventative mechanisms, and antioxidant defenses. Enzymatic antioxidant defenses 

include superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase. Non-enzymatic 

antioxidants are represented by ascorbic acid, vitamin E, glutathione, carotenoids, and flavonoids. 

Under normal conditions, there is a balance between enzymatic antioxidant defense and non-

enzymatic antioxidant defense. This balance is essential for the survival of organisms and their health.  

Reactive oxygen species and free radicals are thought to act indirectly as cellular messengers 

and elicit an inflammatory response. ROS and free radicals also activate a series of enzyme systems, 
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including protein kinases, protein phosphatases, transcription factors and heat shock proteins. ROS 

are also critical for gene expression which encodes inflammatory proteins e.g. proteinases involved 

in tissue destruction such as collagenases and gelatinases. In the case of rheumatoid arthritis, 

rheumatoid factor binds IgG when it is exposed to free radicals and ultimately stimulates the 

production of more free radicals and then attacks the cartilage matrix. 

ROS and RNS are products of normal cellular metabolism and are known to act as secondary 

messengers controlling different normal physiological functions of the organism. Overproduction of 

ROS, either by excessive stimulation of NAD(P)H by cytokines, or by the mitochondrial electron 

transport chain and xanthine oxidase result in oxidative stress which ultimately destroy the cell 

structures.  

8. Conclusion 

A balance between free radicals and antioxidants is necessary for proper physiological function 

in the body. Cellular damage by free radicals contributes to the etiology of many chronic health 

problems. Antioxidant prevents free radical induced tissue damage by preventing the formation of 

radicals, scavenging them, or by promoting their decomposition. Many factors regulate the 

production of free radicals by the mitochondrial respiratory chain. In general, these factors alter the 

inner mitochondrial membrane potential and the rate of electron transport. Oxygen concentration 

plays an important role in determining which free radicals are generated. Although evidence points to 

a role in these mitochondrial free radicals in intracellular signaling pathways, the challenge is to 

determine which free radicals are involved and the precise mechanisms by which they alter the 

activity of components of these signaling pathways. ROS and RNS are known to act as secondary 

messengers controlling various normal physiological functions of the organism. Oxidative stress is a 

harmful process and can damage cell structures which ultimately can develop inflammatory diseases. 

In the near future, development of effective and economical nonsteroidal anti-inflammatory drugs 

with minimal or no gastrointestinal side effects will be an area of importance of drug discovery 

pharmaceutical industry. 
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