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Abstract: A systemically important firm could be too-connected-to-fail and/or too-important-to-fail,
two properties which centrality measures and community detection methods can capture respectively.
This paper examines the performance of these measures in a variance decomposition global financial
network. Too-connected-to-fail risk and vulnerability rankings are quite robust to the choice of
centrality measure. The PageRank centrality measure, however, does not seem as suitable for assessing
vulnerabilities. Two community identification methods, edge betweenness and the map equation
(Infomap) were used to identify systemic communities, which in turn capture the too-important-to-
fail dimension of systemic risk. The first method appears more robust to different weighting schemes
but tends to isolate too many firms. The second method exhibits the opposite characteristics. Overall,
the analysis suggests that centrality measures and community identification methods complement each
other for assessing systemic risk in financial networks.
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1. Introduction

Systemic risk could be defined as the risk that problems affecting one institution could spill over
and threaten other firms. Systemic risk, hence, could be mapped into different dimensions. One is
too-connected-to-fail risk, where the failure of a highly interconnected firm could pose risks to its
counterparties. A second one is too-important-to-fail, where the failure of a firm have a large impact
within a group of firms even if the system-wide impact is not large. Finally, another dimension of
systemic risk is too-big-to-fail, where the firm may account for a large share of the system or financial
activities.∗

In systemic risk assessment, financial networks have rapidly become important visualization and
∗See Chan-Lau (2013) for a textbook treatment.
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analytical tools in the policy making community. They are useful for examining interconnectedness
and systemic risk in the financial system. When extended to include important non-financial firms,
networks also serve for assessing linkages between firms in the financial sector and the real economy.
Network analysis is far from a theoretical exercise. It guides macroprudential surveillance by
evaluating how shocks could propagate across the financial system and by identifying what firms
contribute the most to financial contagion.

To cite some examples, the Financial Stability Board (FSB) has recommended policy measures to
address the risks posed by systemically important financial institutions (FSB, 2011). The systemic
importance of a financial firm depends partly on the level of connectedness of the institution to the
financial system (BCBS, 2013). Some of the measures the FSB recommended aim to reduce the risk
spillovers arising from connectedness. The Office of Financial Research of the U.S. Treasury, when
monitoring financial system vulnerabilities, assesses cross-institution contagion risk and cross-border
contagion risk (McLaughlin et al., 2018). Finally, the International Monetary Fund determines what
jurisdictions are covered by its mandatory financial sector assessment applying a community detection
method to a hybrid financial network (see next section).

To place the methodological contribution presented here in context, this article briefly reviews the
main types of networks policy makers typically use when examining financial stability. Then it argues
that systemic risk assessment requires the evaluation of node centrality and the identification of
communities within networks. The article also explains how to modify community detection methods
to accommodate the too-big-to-fail dimension of systemic risk.

1.1. Counterparty exposure vs. market-based networks

In policy applications, networks typically fall into one of two categories depending on how
connections between firms are modeled. In balance-sheet or direct exposure networks, counterparty
exposures connect different firms. Simulation techniques, first advanced by Eisenberg and Noe
(2001), help to quantify the impact the failure of a single firm or set of firms has on the network.†

Examples of these networks, calibrated using interbank market data for individual firms, include
Upper and Worms (2002), Battiston et al. (2012), Ho (2012), Chan-Lau (2010), Cont et al. (2013),
and Sun and Chan-Lau (2017). Central banks, such as Banco de Mexico (2016), routinely monitor
these networks to assess the stability of their countries’ financial systems.

For analysts sitting outside major government and supervisory agencies it is difficult to gather
counterparty exposure data on a timely basis. Besides, counterparty exposure may not explain
spillovers across firms arising from exposures to similar asset classes, market sentiment, and
similarity in business models. Market-based networks address some of these shortcomings. In these
networks, the connections between firms correspond to some dependence measure constructed using
the market prices of securities or financial contracts. Arguably, prices capture all information relevant
to the risk of a firm, and the risk it poses to other firms.

Examples of market-based networks include the equity return correlation network of Mantegna
(1999); the Granger causality network of Billio et al. (2012), which Chen et al. (2015) extended to
incorporate tail risk; the variance decomposition network of Diebold and Yilmaz (2014), based on
generalized impulse response functions, or that of Chan-Lau (2016), based on generalized forecast
errors; and the forward-looking partial default correlation network, as in Chan-Lau et al. (2016),

†See Upper (2011) for more details on simulation methods and related work.
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periodically updated and maintained by the Credit Research Initiative of the Risk Management
Institute, National University of Singapore.‡

Networks could combine information from both counterparty exposure and market-based data. For
example, the analysis of a hybrid network helped the International Monetary Fund to determine what
financial jurisdictions should undertake a periodical mandatory assessment of their financial sector.
The strength of the connections between the jurisdictions depended on their bilateral banking
exposures, country allocations in equity and fixed income portfolios, and the pairwise return
correlation of national stock indices. The application of the clique-percolation detection method then
served to identify the community of systemically important jurisdictions, which were then placed
under a more strict surveillance regime (Demekas et al., 2013).

1.2. Centrality and communities: two complementary views on systemic risk

Policy applications, especially of market-based financial networks, typically associate the systemic
importance of a firm or node with its centrality.§ Centrality measures look at the number of connections
the firm has, whether the connections link it to other systemic firms, and whether the firm serves
as a connecting bridge between any two other firms. As explained in detail below, centrality-based
measures capture closely the too-connected-to-fail dimension of systemic risk and serve to construct
connectedness-based risk rankings.

By switching the focus from centrality to the concept of community, it becomes possible to bring
on board the too-important-to-fail dimension of systemic risk in the analysis of financial networks. A
community is a subset of firms in the network sharing common connections among themselves. The
community does not need to be fully connected, i.e. all firms within it do not need to be connected to
each other. Regardless of whether the community and its firms are central nodes in the network,
intuition suggest that some or several of them could be systemic within the community. These firms,
hence, are too-important-to-fail within the local context of the community and belong in the
systemically important set.

In the remainder of the paper, section 2 examines the economic intuition underlying the notions
of systemic centrality and systemic communities. Section 3 provides a non-technical overview of
different centrality and community detection methods that are applicable to directed, weighted financial
networks. Section 4 illustrates the use of these algorithms in a global variance decomposition equity
return network, based on earlier analysis in Chan-Lau (2016). Section 5 examines the core-periphery
structure that characterize the largest community in the network, and section 6 presents the conclusions
of the study. During the discussion, the terms firm and node are used interchangeably, as well as the
terms connections, edges, links, and ties.

2. Systemic importance in financial networks

In any network, there are nodes linked to a large number of nodes, i.e. central nodes; and sets of
neighboring nodes with strong links among themselves, i.e. community nodes. A systemic node can

‡Monthly updates of global, regional, and country-specific systemic risk rankings of financial institutions are available at http:
//rmicri.org

§See, among others, Martinez-Jaramillo et al. (2014), who analyzed the Mexican banking system; Leon and Perez (2014) who
examined the financial market infrastructure in Colombia; and Kuzubas, Omercikoglu, and Saltoglu (2013), who assessed systemic risk
in the Turkish interbank market during a financial crisis period.
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belong in either of these two categories, or belong simultaneously in both. The existence of power
laws governing the distribution of the number of edges connected to a node, i.e. its degree, suggests
that only a few nodes are both central nodes and community nodes. A comprehensive assessment of
systemic risk, hence, needs to look at central nodes and communities separately since there may not be
substantial overlaps among both sets of nodes.

2.1. Centrality

Borrowing from standard practice in the analysis of social networks, the systemic importance of
a firm in a financial network is generally associated with its centrality. The centrality of a node is a
function of the number and weight of the edges connecting it to other nodes. Several measures are
available, among which the most used is the degree, or number of edges, of the node. In directed
networks, where the direction of the edge matters, the degree can be further refined to in-degree, the
number of edges going into the node, and out-degree, the number of edges coming out of the node.
Degree matters because real world financial networks tend to be scale-free, a property first identified
by Barabasi and Albert (1999) in random networks.¶ That is, only few nodes in the network have a
large number of connections.

Degree, however, is only a local measure: it captures a node’s links with its neighbors but fails
to provide a global view of the node’s connections in relation to the rest of the network. From the
vantage point of financial systems, the degree of a node tells us little about whether shocks originating
elsewhere in the network can reach it.

A number of other centrality measures can fill this gap, including closeness, betweenness, and
eigenvector centrality. Closeness measures how far away a node is from the other nodes based on
the average length of the shortest paths connecting it to them. Betweenness captures the number of
instances in which a node lies in the shortest path connecting a pair of nodes. Eigenvector centrality
measures the importance of a node based on how important the nodes it connects to are.

Social network analysis relies heavily on these centrality measures. In many instances, the
connections between nodes, i.e. people, do not require the edges to be weighted or directed. In
contrast, financial networks could exhibit directed or undirected weighted edges. The direction of the
edge indicates whether one node influences another, and the weight of the edge measures how
important this influence is. If the weighted edge is undirected, the economic assumption is that the
connected nodes influence each other at the same time. By construction, counterparty exposure
networks are directed weighted networks since the ties between nodes correspond to their bilateral
obligations.

Among market-based networks, some examples of networks with undirected weighted edges
include the equity correlation network of Mantegna (1999), the partial equity return correlation
network of Kennett et al. (2010), and the partial default correlation network of Chan-Lau et al.
(2016). Examples of market-based directed weighted networks include the Granger correlation
network of Billio et al. (2012), and the variance decomposition networks of Diebold and Yilmaz
(2014), and Chan-Lau (2016). More generally, directed weighted networks are the natural outcome of
contagion and spillover analyses based on directional dependence measures.

Extending the centrality measures above to weighted undirected and directed networks is possible.
¶Boss et al. (2004), Cont, Santos, and Moussa (2013), and Sun and Chan-Lau (2017) find evidence supportive of the scale-free

property in the Austrian interbank market, the Brazilian banking system, and the Chilean banking system respectively.
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Barrat et al. (2004) generalized the concept of degree to weighted networks, and Newman (2001) did
the same for shortest paths. Opsahl, Agneessens, and Skvoretz (2010) discussed how to factor in both
the weight of the edges and their number in the calculation of centrality. Eigenvector calculations in
weighted directed networks may yield complex solutions if some edges have negative weights due to
the asymmetry of the adjacency matrices. Adding a free parameter, typically associated with the status
of a node, allows extending eigenvector-like centrality measures to directed networks. Commonly used
measures include Katz centrality (Katz, 1953), alpha centrality (Bonacich, 1987; Bonacich and Lloyd,
2001), and PageRank (Page et al, 1999).‖

Another possibility is to transform weighted directed financial networks, to unweighted undirected
network, as in Demekas et al. (2013). If two nodes are connected by two reciprocal directed edges,
both edges can be replaced by a simple average measure, i.e. arithmetic mean, geometric mean, or the
harmonic mean. In some cases, node characteristics could also serve as weights. When the analysis
focuses on the size of the nodes, their sizes could serve as weights in the calculation of the average
measure. The undirected network could also be de-weighted, by setting the value of all the edges to the
same weight, typically one. This simplification may fail to capture the direction and magnitude of the
effects of one node on another. Furthermore, if the distribution of the edges’ weights follow a power
law, it could underweight the impact of heavy edges on the network.

2.2. Communities

Centrality measures help to single out systemic firms in financial networks. But they may overlook
features typically associated with systemic risk. Figure 1, which depicts a very simplified network,
illustrates this.

Figure 1. Centrality and communities.

Node A has a higher centrality than node B, but the latter is more systemic to node C in the community including B and C.

Based on centrality, node A, the one with the highest degree in the network, is the systemic node.
The network has weighted edges and node A, again, is the most systemic from an out-strength
perspective, i.e. the sum of its weighted out-edges, or the weighted equivalent of out-degrees, is the
highest in the network.

‖Battiston et al. (2012) proposed using a modified version of PageRank, DebtRank, to measure systemic risk in financial systems
when bilateral exposure data are available.
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Restricting the analysis to centrality measures would overlook node B. While its external strength is
about half of that of node A, the impact of node B on its only neighbor, node C, is three times as large
as the impact of node A on each of its neighbors. If the directed edges represent repayment obligations
from the node where the edge originates to the node where the edge ends, node B is more important
for node C than node A. Arguably, node B is systemically important in the two-node community of B
and C.

This simple example highlights two dimensions of systemic risk. Centrality measures captures
well characteristics we associate with too-connected-to-fail (TCTF) risk. But they may fail to capture
concentration risks from counterparty exposures which we associate with too-important-to-fail (TITF)
risk. In the latter, the systemically importance of a node does not depend on its number of connections
but rather on the node’s ability to have a substantial impact on its neighbors, even if the impact is
largely contained within a local neighborhood, i.e. a subgraph of the larger graph characterizing the
network. The two risk categories are not mutually exclusive: a node that belongs to the TCTF category
could also be TITF and viceversa.∗∗

TITF is consistent with the empirical distribution of edge weights in financial networks. As it is
the case with centrality measures such as degree or strength, the distribution of the edges’ weights also
appear to follow a power law distribution. That is, most edges have relatively small weights, with only
large weights associated only to a few edges. Hence, only a few firms may have a substantial impact on
their neighbors owing to some few large exposures. For community detection purposes, it is possible
to exploit the power law feature characterizing most financial networks as explained next.

3. Methods

This section describes the methods the numerical example uses to calculate centrality measures and
to identify systemic communities. The description emphasizes concepts and avoids to, the extent which
is possible, the discussion of the underlying mathematics and solution algorithms. Interested readers
can explore them in the references cited in the text.

3.1. Centrality measures††

This section discusses four centrality measures: strength, closeness, eigenvector centrality, and the
PageRank measure.

3.1.1. Strength

The most used centrality measure of a network node is the degree, or number of ties or edges, in the
case of unweighted network, or the strength, which is the degree weighted by the strength (or weight)
of the ties. For a directed network, it is possible to further differentiate the degree by counting only the
edges coming into a node to obtain the in-degree or in-strength, and counting only the edges originating
from a node to obtain the out-degree or out-strength.‡‡

∗∗The Financial Stability Board, in its 2013 assessment methodology of global systemically important banks explicitly incorporates
size and interconnectedness (BCBS, 2013). A simple way to include the size or too big to fail dimension is to weigh the ties between
nodes by the size of the nodes. The community detection analysis performs this weighting in section 4.3.
††Among several useful references on centrality measures, Newman (2001) offers an accessible introduction to non-specialists.
‡‡See Barrat et al. (2004) and Opsahl, Agneessens, and Skvoretz (2010).
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The in-strength and out-strength measures are economically meaningful. In the case of variance
decomposition networks, for instance, Diebold and Yilmaz (2014) propose measuring systemic risk as
the total contribution of the node (or firm) to the variance of other nodes (or firms). This contribution is
equivalent to the out-strength of the node. Similarly, the systemic vulnerability of a node is proportional
to the contribution of other firms to its variance, or in other words, to its in-strength.

To put it precisely, let A be the network’s adjacency matrix, where the i-th row and the j-th column
entry, Ai j, measures the effect of node i on node j. The in-strength and out-strength of node i are,
respectively, equal to the sum of the entries in column i and the sum of the entries in row i:

in-strength, node i ≡
∑
j,i

A ji, (1)

out-strength, node i ≡
∑
j,i

Ai j (2)

3.1.2. Closeness

The closeness measure is equivalent to the mean distance from a node to the other nodes in the
network. The distance between nodes is the geodesic path, or shortest path joining them. In weighted
directed networks, where the edge weight corresponds to the strength of the interaction between the
nodes, it is necessary to use a modified adjacency matrix, B. In this matrix, the i-th, j-th entry Bi j

should be inversely proportional to the original weight of the edge, Ai j since nodes joined by edges
with higher weights are closer together.

For calculation purposes, we set Bi j = 1/(1 + Ai j), for all i , j and zero otherwise. The mean in-
and out-distance of node i, `i,in and `i,out respectively, are equal to:

mean in-distance ≡ `i,in =
1

n − 1

∑
j,i

B ji, (3)

mean out-distance ≡ `i,out =
1

n − 1

∑
j,i

Bi j, (4)

where n is the number of nodes in the network. The centrality of a node is inversely related to its mean
distance, i.e. lower distances imply higher centrality.

3.1.3. Eigenvector centrality

The eigenvector centrality measure, introduced by Bonacich (1987), defines the centrality of a node
as the weighted sum of the centrality of its neighbors with edges pointing towards the node. For node
i, its centrality xi, is equal to:

xi =
∑
j,i

A jix j. (5)

In the analysis of financial networks eigenvector centrality corresponds to the importance of nodes
as recipients (or sinks) of spillovers, i.e. the systemic vulnerability ranking of the node in the network.
There are several reasons why a node becomes eigenvector-central. It may have incoming links from
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very central nodes, even if the in-degree is low; it may have a large number of incoming links, even
if the connecting nodes are not that important, or it may be because of a combination of both cases
above.

The eigenvector centrality measure, which in vector notation is x, should satisfy the equation:

Ax = κ1x, (6)

where κ1 is the largest eigenvalue of the adjacency matrix A. Although the adjacency matrix may be
asymmetric, all eigenvalues are positive and real if all the matrix elements are positive. The centrality
of a node is a weighted sum of the centrality of other nodes, where the weights are equal to the incoming
edges’ weights.

Using the eigenvector centrality measure to capture systemic risk rather than systemic vulnerability
requires some adjustments. Rather than using the adjacency matrix A to perform the calculations, we
use the transpose of the adjacency matrix, AT . In the latter matrix, the entry AT

i j = A ji. Therefore, the
edges entering into a node are actually the edges leaving the node. In this case, the centrality of the
node depends on its influence on other nodes.

3.1.4. PageRank

As with eigenvector centrality, the PageRank algorithm allows nodes receiving edges from a high
centrality node to benefit from the centrality of the latter. However, the algorithm dilutes the received
centrality in proportion to the strength of the out-edges from the high centrality node. In other words,
the importance of a node on the receiving end may not be substantial if it is only one among many to
which the highly central node points to. Letting x be the centrality vector, its value comes from solving
the equation:

x = D (D − αA)−1 1 (7)

where 1 is the vector (1, 1, 1, ...), and D is a diagonal matrix with diagonal elements equal to the out-
degree of the node if the out-degree is different than zero, or equal to one otherwise. The formula
includes a free parameter, α, which is set equal to 0.85 in the Google search engine. The results
reported in the numerical analysis below correspond to those obtained by setting the parameter to the
default value Google specifies. As a robustness check, we verified that results are mostly unchanged
when the parameter values takes values in the range [0.5, 1).

As in the case of the eigenvector centrality measure, the PageRank centrality of a node captures the
exposure of the node to other nodes in the network, or in other words, its vulnerability. But as in the
case of eigenvector centrality, performing the calculations using the transpose of the adjacency matrix
captures the systemic risk of the node.

3.2. Community detection methods

When looking at networks, it is natural to think about communities within it. Roughly, a community
is a subset of nodes (or subgraph) such that the nodes interact more closely among themselves than
with the rest of the network. This is quite a broad definition, which makes community detection an
ill-defined problem, as noted, for instance, in Fortunato and Hric (2016), and Schaub et al. (2017).
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The identification problem is even more challenging in directed networks, as noted in Malliaros and
Vazirgiannis (2013).

Notwithstanding the ill-defined nature of community detection, Schaub et al. (2017) suggested
four different approaches to community detection able to encompass most existing methods. The
cut-based approach aims at minimizing the number of edges between the nodes, independently of
the intrinsic structure of the network by the successive removal of edges. The clustering approach
attempts to produce densely connected communities such that nodes within a community are “close”
together, and points in different communities are distant from each other.∗ The stochastic equivalence
approach assumes that nodes belong to the same community if they are equally likely to have ties to
similar nodes. The fourth and final approach is to view a network as a dynamic building block, which
associates the concept of community to the role its nodes play in the diffusion of processes through the
network.

The context of the problem should guide the choice of the community detection method. Focus on
the role of edges as the transmission channel of shocks suggest that among the different perspectives,
the relevant ones are the clustering perspective and the dynamical building block perspective. The
methods used here include edge betweenness, a clustering method, and the map equation, or Infomap,
a dynamic method. Both of these methods work for weighted directed networks.

3.2.1. Edge betweeness

For weighted directed networks, Girvan and Newman (2002) generalize the node betweenness
measure of Freeman (1977) to edges. Their algorithm starts by examining the complete graph and
start eliminating, one by one, edges with high centrality in decreasing order. The centrality of an edge
is defined as the number of times it lies in the shortest path between any two nodes in the network.

The intuition behind the method is that just a few edges connect different communities in the
network, and these edges would be highly central since they are in the shortest path between pairs of
nodes such that each one is located in a different community. By removing them, the network
fragments and the community structure emerges. This method is consistent with the classic view that
communities are dense subgraphs separated from each other. Or in other words, the number of
internal edges in the community largely exceeds the number of external edges connecting it to other
communities (Fortunato and Hric, 2016).

Some applications in finance include, among others, Elouaer-Mrizak and Chastand (2013), who
analyzed communities within the French inter-corporate network; and Wang et al. (2016), who apply
the method to identify communities in equity return partial correlation networks.

3.2.2. The map equation (Infomap)

The map equation, introduced by Rosvall and Bergstrom (2008), builds on the coding theory of
Shannon (1948a, b), which looks at the most economical way to compress information flow in the
network. Coding theory serves to examine the constraints the network topology imposes on the the
dynamic behavior of processes taking place there. The dynamics, in turn, identify the network
communities.†

∗Fortunato and Hric (2016) refers to this perspective as the classic view on community identification.
†See Rosvall, Axelsson, and Bergstrom (2010) for a comprehensive discussion of the method.
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While coding theory is likely not familiar to most financial market practitioners, the intuition is
straightforward. Imagine a random walker, or drunk person, moving from one node to another node.
The probability that the random walker would go to a neighboring node is proportional to the strength
of the edge pointing to it. If the number of steps in the walk is large enough, the random walker would
tend to spend more time walking within certain communities, as the internal edges would encourage
moving between community nodes rather than exiting the community. When traversing the network,
the random walker codifies the information implied by each community partition. There are a large
number of paths with associated partitions. The map equation chooses the partition which requires the
minimal information encoding.

There are a number of recent applications of the map equation to financial networks. Among them,
Tumminello et al. (2012), using a database of trading activity of individual investors, identified clusters
of investors characterized by the high synchronization of their trading activities.Vitali and Battiston
(2012) examined the community structure of the global corporate network. Jiang et al. (2014) analyzed
the interactions of different business sectors implied by the sectors’ return correlation network. Bech
et al. (2014) identified changes in lending patterns in the overnight money market, arguably triggered
by the collapse of Lehman Brothers in September 2008; and Alzahrani (2016), using an extension of
Infomap to bipartite networks first proposed by Alzahrani et al. (2014), uncovered the community
structure of the payment transactions system of the Kingdom of Saudi Arabia.

3.2.3. Practical issues when dealing with dense networks

Community detection methods work best for sparse networks, i.e. networks where the number of
edges between nodes is substantially lower than the maximum possible amount of edges. This is
typically the case for social networks and biological networks. In contrast, financial networks tend to
be dense networks since they mirror a highly interconnected system. Translated into network analysis
language, financial networks tend to comprise just one single giant component (Bollobas, 2001). This
network characteristic, while intuitive, is of little help for singling out systemic communities. It also
makes continuous monitoring difficult when resources are scarce and the number of nodes large.

There are several ways to reduce network density. Minimum spanning trees (MSTs), first
developed by Kruskal (1956) and Prim (1957) and introduced in financial networks by Mantegna
(1999), reduce the number of edges in a network drastically, yielding a network comprising a subset
of edges connecting all vertices together while minimizing the total weight of the edges. In MST
networks, systemic firms are those that are located more often in the set of shortest paths connecting
any pair of nodes. One shortcoming of this method, however, is that it may yield the opposite
problem, a network which is way too sparse. In these networks, the concept of community no longer
applies.

Too sparse networks could also be a problem in partial correlation networks comprising a large
number of nodes. Straight application of partial correlation analysis could render many nodes
orphans, i.e. completely disconnected from other nodes. This situation, especially in financial
networks, could be counter-intuitive since the common wisdom is that all nodes are connected in a
financial network. An alternative is to use economic intuition to guide what would be otherwise a
purely statistical method. For instance, Chan-Lau et al. (2016) constrain the partial correlation
network by tuning a regularization or cost parameter such that there are no orphans in the resulting
network.
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Finally, a simpler way to reduce the density of a financial network is to use some criteria for
identifying “weak” edges and removing them. We can justify this approach if the focus is on the
extreme connections, or tail connections, between nodes, i.e. extreme spillovers. If the tail distribution
of the edges and/or the edges’ weights follow a power law, the approach is further justified. The easier
implementation is to set a threshold value and to remove all edges with weights below it in case the
weight directly proportional to the strength of the nodes’ connection, or to remove all edges with
values above it if higher edge values imply weaker connections. Once a sparser, transformed financial
network is obtained, it is straightforward to calculate the centrality measures and to apply the
community methods discussed above.

4. Systemic centrality and systemic communities in the global financial system

This section applies centrality and community detection methods to the variance decomposition
financial network in Chan-Lau (2016). By accounting for the overall impact of firms on the equity
return variance of other firms, this method improves on pair-wise correlation methods such as those of
Billio et al. (2012) and Chen et al. (2015). In contrast to the the Pesaran-Shin decomposition used by
Diebold and Yilmaz (2014), the network analyzed here was based on the Lanne-Nyberg
decomposition, which already embeds a unit normalization of the variance decomposition. This
normalization facilitates the comparison of risk ratings and risk contributions at two different points in
time.

4.1. Data and network construction

The construction of the network used weekly equity returns, in U.S. dollars, for a sample of financial
firms during the period January 1, 2001–July 31, 2016. The data sample, comprising 275 financial
firms, included banks, insurance companies, and security brokers and dealers. Bloomberg LLP was
the source of equity prices. Table 1 shows the distribution of firms per country and per type of firm.
About one out of four firms is headquartered in the United States, and four out of ten firms are banks.

After fitting an unrestricted Vector Autoregressive (VAR) model to the equity returns time series,
the value of the directed edge from firm i to firm j is set according to the contribution of firm i to the
Lanne-Nyberg Generalized Forecast Error Variance Decomposition (GFEVD) of firm j over a horizon
of h periods, λi j(h) (Lanne and Nyberg, 2016):

λi j(h) =

∑h
k=0 GI(h, δ jt,Ωt−1)∑n

j=1
∑h

k=0 GI(h, δ jt,Ωt−1)
, (8)

where n is the number of firms in the network, Ωt−1 is the information up to period t − 1, and GI is the
generalized impulse response function of Pesaran and Shin (1998):

GI(h, δ jt,Ωt−1) = AhΣejσ
−1
j j δ j (9)

In the above equation, ej is a n × 1 vector with all entries set to zero, except for the j−th entry, and
Aj and Σ are the coefficient matrix corresponding to the h lag and the covariance matrix of the error
terms in the moving average representation of the VAR system respectively. In the adjacency matrix of
the global financial network, A, the i-th row, j-th column entry, Ai j, simply corresponds to λi j(h), with
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Table 1. Financial firms: country and sector distribution.

Country Ba
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un
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Australia 4 1 3 1 9
Austria 1 2 3
Belgium 2 1 3
Bermuda 6 6
Brazil 3 3
Canada 6 6 3 15
China 3 1 4
Denmark 2 2 4
Finland 1 1 2
France 4 3 1 8
Germany 2 5 1 8
Greece 4 1 5
Hong Kong SAR 2 2 1 5
India 6 1 7
Indonesia 1 2 1 4
Ireland 2 1 2 5
Italy 5 3 3 11
Japan 11 2 13
Mexico 1 1
The Netherlands 1 1 2
New Zealand 2 2
Norway 1 1 2
Portugal 2 2
Russian Federation 1 1
Singapore 3 2 1 6
South Africa 4 3 4 1 12
Spain 4 1 1 6
Sweden 4 4
Switzerland 3 4 2 9
Taiwan POC 1 3 4 8
Turkey 5 2 4 11
United Kingdom 5 4 5 14
United States 18 10 50 2 80

Total 112 60 96 7 275
Note: Source: Bloomberg LLP and author’s calculations.
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h set equal to one hundred periods. The resulting network, calculated using a VAR specification with
eight lags, is dense and fully connected, as the adjacency matrix does not have any entry with a zero
value.‡

4.2. Centrality measures

We calculated the centrality of each node using four different measures: strength, closeness,
eigenvector centrality, and Pagerank. As described in the methods section, the calculations used the
appropriate adjacency matrices. The centrality measures then served to construct ordinal risk and
vulnerability rankings. Following Diebold and Yilmaz (2014), riskier firms contribute more to the
variance decomposition of other firms. Similarly, firms to whom other firms contribute the most are
the most vulnerable. Diebold and Yilmaz concepts of risk and vulnerability map directly into the
strength measures.

Table 2 summarize the systemic risk rankings. They are quite similar regardless of the centrality
measures used. Their Kendall τ and Spearman ρS rank correlations are well above 90 percent.
Consistently, all the centrality measures yield similar risk rankings and identify the same set of firms
among the top 10, 25, 50 and 100 riskiest firms in the system. It is safe to conclude that, for systemic
risk identification, all four centrality measures are equally useful and that the rankings are robust to
the choice of methodology.

Table 2. Systemic risk rankings: number of overlapping firms and rank correlation.
The cell entries show the number of overlapping firms or rank correlations between two different centrality-based rankings. For example,
a comparison of the top 50 systemic firms in the closeness and eigenvector rankings show that 48 firms appear in both rankings. The
Kendall τ and Spearman ρS rank correlation between both rankings, calculated for the full sample of 275 firms, are 0.947 and 0.996
respectively.

Number of overlapping firms Rank correlation

St
re

ng
th

C
lo

se
ne

ss

E
ig

en
ve

ct
or

Pa
ge

R
an

k

St
re

ng
th

C
lo

se
ne

ss

E
ig

en
ve

ct
or

Pa
ge

R
an

k

St
re

ng
th

C
lo

se
ne

ss

E
ig

en
ve

ct
or

Pa
ge

R
an

k

Top 10 firms Top 25 firms Kendall τ

Strength 10 8 9 25 20 21 0.999 0.947 0.955
Closeness 50 8 9 100 20 21 0.999 0.947 0.955
Eigenvector 48 48 9 96 97 24 0.996 0.996 0.992
PageRank 48 48 50 96 97 99 0.997 0.997 0.999

Top 50 firms Top 100 firms Spearman ρS

Note: Source: Bloomberg LLP and author’s calculations.

Excluding the PageRank rankings, the results for the systemic vulnerability rankings are quite
similar to those for their risk counterparts (Table 3). The rank correlations exceed 90 percent and

‡Due to the high dimensionality of the VAR system, it is necessary to estimate the system using regularization techniques. The
structure of the financial network remains mostly unchanged regardless of the number of lags in the VAR specification. See Chan-Lau
(2016) for details.
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there are substantial overlaps among the 10, 25, 50, and 100 most vulnerable firms identified by each
method. The notable exception is the PageRank ranking, which differs substantially from the other
rankings.

Table 3. Systemic vulnerability rankings: number of overlapping firms and rank correlation.
The cell entries show the number of overlapping firms or rank correlations between two different centrality-based rankings. For example,
a comparison of the top 50 systemic firms in the closeness and eigenvector rankings show that 48 firms appear in both rankings. The
Kendall τ and Spearman ρ rank correlation between both rankings, calculated for the full sample of 275 firms, are 0.922 and 0.978
respectively.
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Top 10 firms Top 25 firms Kendall τ

Strength 10 10 2 24 23 3 0.918 0.957 0.177
Closeness 48 10 2 94 24 3 0.980 0.922 0.163
Eigenvector 49 48 2 98 95 3 0.996 0.978 0.195
PageRank 18 17 19 57 54 57 0.256 0.229 0.279

Top 50 firms Top 100 firms Spearman ρS

Note: Source: Bloomberg LLP and author’s calculations.

Figure 2. Nodes’ out-strength and in-strength distributions.

The out-strength distribution is relatively uniform compared with the in-strength distribution. The latter concentrates most
of the mass in a narrow range of values. The left tail of the distribution can be characterized by a power law. Source:
author’s calculations.

The nodes’ in-strength distribution, shown in Figure 2, may explain why the PageRank rankings
are so different. Compared with the out-strength distribution (left panel), which is relatively uniform,
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the in-strength distribution is highly skewed to the left, with the in-strength of most nodes clustered
within a narrow range of values. The PageRank algorithm would tend to treat most nodes as equally
important, blurring node differences.

Table 4 expands on the results in Tables 2 and 3. It shows the top ten riskiest and most vulnerable
firms. Again, systemic risk rankings seem robust to the choice of centrality-based measure. This is
also the case for systemic vulnerability rankings provided we exclude the PageRank centrality ranking.
Note that the riskiest firms comprise a mix of large banks and insurance companies, most of them with
a large international presence. The most vulnerable firms, in contrast, are relatively large players in
domestic markets. These results are consistent with the in-strength and out-strength results in Chan-
Lau (2016), which presents more detailed results on a regional basis.

Table 4. Systemic risk and vulnerability rankings: top ten firms.
The table shows the top ten firms, in descending order, in the risk and vulnerability rankings for each centrality measure

Strength Closeness Eigenvector PageRank

Panel A: Top ten riskiest firms

XL Group XL Group XL Group XL Group
Bank of America Bank of America Morgan Stanley Morgan Stanley

AFG AFG Bank of America Bank of America
Torchmark Torchmark AFG AFG

Deutsche Bank Deutsche Bank Suntrust Torchmark
ING ING Torchmark Deutsche Bank
AXA AXA Deutsche Bank ING

Barclays Barclays Barclays Barclays
RBS RBS RBS RBS

MetLife MetLife MetLife ING
Panel B: Top ten vulnerable firms

Fairfax Financial Fairfax Financial Fairfax Financial Hallmark
Nishi-Nippon Nishi-Nippon Nishi-Nippon UTG

State Bank of India State Bank of India State Bank of India Insurance Australia
Banorte Banorte Banorte Hachijuni Bank

China Life Insurance China Life Insurance China Life Insurance Zurich Insurance
Bank of India Bank of India Bank of India Nishi-Nippon

Bank of Baroda Bank of Baroda Bank of Baroda Banco Comercial Portugues
Sberbank Sberbank Sberbank Sberbank

Aviva Sigorta Aviva Sigorta Aviva Sigorta Anadolu Anonim Turk Sigorta
First Insurance First Insurance First Insurance China Minsheng

Note: Abbreviations: AFG, American Financial Group; RBS, Royal Bank of Scotland; Source: Author’s calculations.

4.3. Community detection

The density of the network does not present problems for the calculation of the centrality
measures. This is not the case for community detection. Fortunately, the distribution of the weights of
the edges, or the GFEVD contributions of a firm to other firms’ long term variance, follows a power
law distribution. This justifies trimming the number of edges by discarding edges falling below a
certain threshold.

4.3.1. Power law distribution of edge weights

A casual examination of the histogram of the edge weights suggest that the number of edges
representing a high GFEVD contribution, or return spillovers between firms, decreases rapidly. The
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histogram suggests that a power law distribution could capture the distribution of edge weights
reliably. That is, the fraction of edges in the network, P(k), with a weight exceeding the value k
declines exponentially as k increases: P(k) ∼ k−α, where α is a scaling parameter.

The estimation of the power law distribution parameters follows the methods suggested by Clauset
et al. (2009). Maximum likelihood estimation allows recovering the empirical estimate of the scaling
parameter, α, given the value of a lower bound, xmin, above which the observations follow the power
law:

α̂ = 1 + n
[ n∑

i=1

ln
xi

xmin

]−1
, xi ≥ xmin. (10)

The estimate of the lower bound,x̂min, minimizes the Kolmogorov-Smirnov statistics, or maximum
distance between the cumulative distribution functions (CDFs) of the data and the fitted power law
model:

arg min
xmin

D = arg min
xmin

[
max
x≥xmin

|S (x) − P(x)|
]
, (11)

where S (x) is the empirical CDF for observations with values greater or equal to xmin, and P(x) is the
CDF for the power law model that best fits the data in the region x ≥ xmin.

For the Lanne-Nyberg variance decomposition network, the log-log plot in Figure 3 shows that the
power law fits the data well. The estimated scaling parameter of the power law distribution, α, is 4.33,
clearly indicating the presence of heavy tails in the data. The lower bound, xmin, 0.0109, corresponds
to the upper 99.3 percentile of the observed edge weights, and it is about 40 times higher than the mean
value of the edge weights, 0.0036.

Figure 3. Edge weights: empirical and fitted power law
cumulative distributions.

The circles show edge weight observations exceeding the xmin = 0.0109 lower bound, the dotted straight line the fitted
power law distribution with a scaling parameter α = 4.33. The observations fall neatly along the straight line, suggesting
that tail of the distribution follows a power law. Source: author’s calculations.
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4.3.2. Network density reduction and the tail spillover network

Based on the evidence supporting the existence of a power law distribution, it was sensible to reduce
the density of the network by removing all edges with a weight below the lower bound xmin. Compared
to the original, fully connected network, which has a density of one hundred percent, the trimmed
network has a density of just one percent. After removing the weak links, a number of nodes became
orphan, and were removed from the network. The final number of nodes, however, is 262, just slightly
below the 275 nodes in the original network. Since values above the lower bound fall in the tail of the
edge weight distribution, the trimmed network is equivalent to a tail spillover network.

Figure 4. Nodes’ out-degree and in-degree distribution.

Out-degree and in-degree distributions of the trimmed network after removing all edges with values below xmin = 0.0109,
the lower bound of the power law distribution governing the right tail of the edge weights in the original network. Source:
author’s calculations.

Figure 4 shows the out-degree and in-degree distributions in the trimmed network. Four out of ten
nodes have an out-degree of zero, that is, they have no spillovers to other nodes in the tail spillover
network. The out-degree distribution also exhibits a right fat tail, with only a few nodes with degree
greater than ten, i.e. tail spillovers to ten or more firms. The in-degree distribution shows that most
nodes tend to receive spillovers from five nodes or less.

4.3.3. Edge betweenness communities

As in the case of the original network, the entries in the adjacency matrix A of the trimmed
network, Ai j, correspond to the Lanne-Nyberg contribution of the node, λi j(h), calculated according to
equation (8). The adjacency matrix A characterizes an edge-weighted network, which captures the
too-important-to-fail dimension of systemic risk. But the ongoing policy discussion on the
designation of systemically important financial institutions also emphasizes the too-big-to-fail
dimension. To explore this in detail, the analysis also looks at two additional edge weighting schemes.

The first weighting scheme associates the too-big-to-fail dimension with the asset size of the firms.
To this end, it constructs an alternative adjacency matrix, B. In B, there is a link between two nodes if
such a link exists in matrix A. But the weight of the link is unrelated to the Lanne-Nyberg contribution
of the source node. Rather, for a source node i, the weight of the link to its outgoing nodes or children
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nodes, Bi j, is set equal to the share of the outgoing node on the total assets of the system:

Bi j =
a j∑

all nodes k ak
, (12)

where a j denotes the total assets of node j. In this node-weighted network, the magnitude of the
spillover from node i to node j does not matter. What matters, instead, is whether j is a large node or
not.

The second scheme factors in both the size of the children nodes and the magnitude of the spillovers.
In the node and edge weighted-network, the adjacency matrix, C, has entries Ci j equal to:

Ci j =
a j∑

all nodes k ak
× Ai j, (13)

Table 5 shows, for each of the three weighted networks, the number of communities and their sizes
identified by the edge betweenness method. The calculations use networks generated by adjacency
matrices with entries Yi j = 1/(1 + Xi j), X = A, B,C forXi j > 0 since stronger links imply a smaller
distance between nodes.

Table 5. Edge betweenness communities by network type.
The table shows the number of communities and their sizes for different weighted networks. In the third column, for a given

community size, the numbers in parentheses show the number of existent communities.

Type of Number of Size of communities
network communities

Edge-weighted 141 1(127) 2(5) 3(3) 4(1) 6(1) 8(2) 39(1) 51(1)
Node-weighted 136 1(123) 2(5) 3(2) 4(1) 5(1) 8(1) 17(1) 34(1) 55(1)

Node and edge-weighted 139 1(125) 2(5) 3(2) 4(1) 5(1) 6(1) 8(1) 11(1) 31(1) 56(1)
Note: Source: Author’s calculations.

Regardless of the weighting scheme, we can observe that edge-betweenness generates two large
communities with about fifty and thirty communities each. Also, almost half of the nodes are orphans,
i.e. isolated nodes that do not belong to any community; and about one out of four nodes belong to
small communities of size ten or lower. The overlap of the two largest communities identified under the
different weighting schemes is substantial (Table 6). This finding seems to imply a close association
between the too-important-to-fail and too-large-to-fail dimensions of systemic risk.

Table 6. Number of overlapping firms in the two largest communities across different
networks.

The upper (lower) triangular matrix, third to fifth columns, shows the number of overlapping firms in the first (second) largest
community across different weighted networks.

Number of firms, Edge- Node- Node and Number of firms,
first largest weighted weighted edge- second largest
community weighted community

First largest community
Edge-weighted 51 49 50 39
Node-weighted 51 32 51 34
Node and edge-weighted 56 29 31 31

Second largest community
Note: Source: Author’s calculations.
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Table 7. Largest edge-betweenness community properties, by network type.
For each network, the table shows the total number of nodes, the number of nodes with outgoing and incoming links for the largest community in each network.

The top ten riskiest and vulnerable firms are listed in descending order, based on their degree and strength. For the risky (vulnerable) firms, the degree and strength
correspond to the in-degree (out-degree) and in-strength (out-strength) respectively.

Edge-weighted Node-weighted Node and edge
network network weighted network

Nodes, total 51 55 56
outgoing links 11 13 13
incoming links 50 52 53

degree strength degree strength degree strength

Top RBS RBS RBS RBS RBS RBS
riskiest Lloyds Lloyds Lloyds Lloyds Lloyds Lloyds
firms Fifth Third Fifth Third Fifth Third Fifth Third Fifth Third Fifth Third

US Bancorp BPDER UBS Group UBS Group UBS Group UBS Group
Old Republic Aviva Indequity Indequity Indequity Indequity
Zions BNP Paribas US Bancorp US Bancorp US Bancorp BPDER
BNP Paribas Permanent TSB Old Republic Permanent TSB Old Republic Aviva
ING ING Zions BPDER Zions BNP Paribas
Aviva Zions BNP Paribas ING BNP Paribas Permanent TSB
BPDER US Bancorp ING BNP Paribas ING ING

Top Sun Life Sun Life Sun Life Sun Life Sun Life Sun Life
vulnerable Fifth Third Bank of Ireland Fifth Third Fifth Third Fifth Third Bank of Ireland
firms US Bancorp US Bancorp US Bancorp Reliance US Bancorp US Bancorp

Universal Reliance Universal Federated Universal Fifth Third
Bank of Ireland Federated Bank of Ireland Universal Bank of Ireland Reliance
Federated Health Net Federated Bank of Ireland Federated Federated
Reliance Fifth Third Reliance US Bancorp Reliance Health Net
Radian JPMorgan Chase Radian KCLI Radian JPMorgan Chase
JPMorgan Chase Huntington JPMorgan Chase Health Net JPMorgan Chase Huntington
Health Net National Western Health Net Radian Health Net Humana

Note: Abbreviations: BDPER, Banca Popolare Dell’ Emilia Romagna ;KCLI, Kansas City Life Insurance Corp; Source: Author’s calculations.

Within a community subgraph, it is feasible to identify the “riskiest” firms in the community by
ranking the nodes in descending order by their out-degree or out-strength in the community subgraph.
In other words, after applying the community detection method, we can rank nodes in each community
using any of the centrality measures described earlier. Similarly, the in-degree and the in-strength serve
to identify the most vulnerable firms in the community. Since the trimmed networks are sparse, it is
not adequate to use either the eigenvector centrality or PageRank methods. Table 7 lists the top ten
riskiest and most vulnerable firms in the largest community for each of the weighted networks.

The list of the riskiest firms is similar across networks, reflecting the fact that only a few nodes have
outgoing links, e.g. they are sources of shocks. There are just eleven such nodes in the edge-weighted
network, and thirteen in the other two networks. In contrast, most of the nodes in the largest community
in each network are shock recipients. We could argue that the largest community resembles somewhat
a core-periphery community, with a few nodes originating most of the spillovers. As in the case of the
centrality-based rankings, the top riskiest firms include both large banks and insurance companies with
large international operations. This class of firms is also present among the the most vulnerable firms
but to a lesser extent.

The structure of the second largest community, which includes slightly more than thirty nodes,
differs largely from the largest community. The number of nodes with outgoing links is similar to the
number of nodes with incoming links, suggesting that nodes in the community are closely connected
to each other (Table 8). Most of the firms in the second largest community are insurance companies,
suggesting they naturally belong to a different segment of the global financial system. This result
supports applying different regulatory and supervisory approaches to firms in each community.
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Table 8. Second largest edge-betweenness community properties, by network type.
For each network, the table shows the total number of nodes, the number of nodes with outgoing and incoming links for the second largest community in each

network. The top ten riskiest and vulnerable firms are listed in descending order, based on their degree and strength. For the risky (vulnerable) firms, the degree
and strength correspond to the in-degree (out-degree) and in-strength (out-strength) respectively.

Edge-weighted Node-weighted Node and edge
network network weighted network

Nodes, total 39 34 31
outgoing links 22 21 20
incoming links 31 26 23

degree strength degree strength degree strength

Top Everest Re Novae Group Everest Re Everest Re Everest Re Novae Group
riskiest Travelers Amlin Travelers Novae Group Novae Group Amlin
firms Amlin Sberbank Novae Group Travelers Arch Capital ltd Everest Re

Arch Capital Everest Re Arch Capital Amlin Amlin Arch Capital
Novae Group Travelers Amlin Arch Capital CFC CFC
CFC Arch Capital ltd CFC CFC Travelers Travelers
Sberbank CFC Hiscox Hiscox Hiscox Hiscox
Hiscox Hiscox HMEC TIB HMEC HMEC
HMEC HMEC TIB TGB TIB AHEM
TIB AHEM TGB HMEC TGB TIB

Top Mediolanum Mediolanum Mediolanum Mediolanum Mediolanum Mediolanum
vulnerable Argo Group Hiscox Argo Group Novae Group Argo Group Scor
firms HCC Scor HCC Argo Group HCC Hiscox

Hanover Novae Group Hanover HCC Novae Group Novae Group
Novae Group Argo Group Novae Group Hanover BL Argo Group
BL W &W BL BL HMEC Amlin
HMEC Amlin HMEC State Auto State Auto HCC
State Auto HCC State Auto HMEC Partnerre QBE
Partnerre QBE Partnerre Partnerre Hanover Zurich
Zurich Hanover Scor Scor Scor HMEC

Note: Abbreviations: AHEM, Anadolu Hayat Emeklilik; BL, Baldwin & Lyons; CFC, Cincinnati Financial Corp.;
HMEC, Horace Mann Educators Corp.; TGB, Turkiye Garanti Bankasi; TIB, Turkiye Is Bankasi;
W&W, Wuestenrot & Wuerttembergische Aktienges
Source: Author’s calculations.

4.3.4. Infomap communities

The analysis focuses now on the communities identified using the Infomap algorithm. To detect
the systemic communities, the Infomap algorithm assumes that the probability that a random walker,
or shock, in economic parlance, moves from one node to another (teleportation) is proportional to the
weight of the outgoing links. In an edge-weighted network, the weights correspond to the entries in
the adjacency matrix A. As in the previous section, the analysis can factor in the size of the nodes of
the network to incorporate the too-big-to-fail dimension of systemic risk. To accomplish this, there are
two options.

The first option is to make the probability of teleportation proportional to the weights (or size) of
the outgoing nodes, neglecting the weight of the links. In other words, given the weight of the node,
ω, the communities in the node weighted network belong to the network defined by the adjacency
matrix B:

Bi j =
ω j∑

k∈V−i
ωk
, (14)

where V−i is the set of outgoing, or children, nodes of i. In this network, what matters is whether shocks
spill over to large nodes rather than the magnitude of the impact the node has on other nodes.

The second option is to find the communities in the transformed node and edge weighted network
C, where the adjacency matrix is equal to:
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Ci j =
ω j × Ai j∑

k∈V−i
ωk × Aik

, (15)

where Ai j are the weighted edges in the original network. In this case, the analysis takes into account
both the size of the recipient nodes and the magnitude of the spillover.

Mimicking the analysis of the edge-betweenness communities, we look at the number of
communities and their size generated by the Infomap algorithm (Table 9).

Table 9. Infomap communities by network type.
The table shows the number of communities and their sizes for different weighted networks. In the third column, for a given

community size, the numbers in parentheses show the number of existent communities.

Type of Number of Size of communities
network communities

Edge-weighted 28 2(7) 3(4) 4(3) 5(1) 6(4) 7(3) 8(2) 9(1) 14(1) 15(1) 121(1)

Node-weighted 33 1(2) 2(9) 3(2) 4(3) 5(1) 6(3) 7(3) 8(3) 10(1) 12(1) 13(1)
14(1) 15(1) 23(1) 70(1)

Node and 32 2(10) 3(2) 4(3) 5(1) 6(3) 7(3) 8(3) 10(1) 12(1) 13(1) 14(1)
edge-weighted 15(1) 23(1) 70(1)
Note: Source: Author’s calculations.

Compared with the edge-betweenness methods, the infomap algorithm seldom generates orphan
nodes. It yields, however, just one big, dominant community surrounded by a large number of smaller
communities. The Infomap dominant community, especially for the edge-weighted network, is larger
than the ones generated using the edge-betweenness method. In the case of the edge-weighted network,
the largest community encompasses almost half of the financial firms, and in the other two networks,
one quarter of them. This pattern is also evident in Figure 5, which for comparison purposes shows the
graphics corresponding to the edge betweenness communities.

An examination of the results show that, except for communities of two nodes or less, the Infomap
algorithm generates exactly the same communities in the node-weighted and node and edge-weighted
networks. This result suggests that when using the Infomap method, too-big-to-fail risk dominates
too-important-to-fail risk. Further evidence of the sensitivity of the Infomap method to the weighting
scheme used comes from the communities identified in the edge-weighted network. In this case, the
largest systemic community comprises more than one hundred firms compared with only seventy firms
in the other two networks. While the Infomap community structures are more sensitive to the weighting
scheme used than the edge-betweennes communities, the former communities are better connected and
there are almost no orphan nodes.

Quantitative Finance and Economics Volume 2, Issue 2, 468–496.



489

Figure 5. Edge betweenness and Infomap communities.

The edge betweenness algorithm identifies two to three large communities, a large number of smaller communities, and a
myriad number of orphans or isolated nodes (first row charts). The Infomap algorithm generates one sizable community,
larger than those identified in the edge betweenness communities but it avoids generating orphans (second row charts).
Source: author’s calculations.

The largest systemic community comprises a large number of nodes but only a few nodes are sources
of spillovers, i.e. they have outgoing edges to other nodes. The first panel in Table 10 shows that if size
is not accounted for, only four out of ten nodes have outgoing links. In contrast, almost all the nodes
in the community receive links from the spillover nodes. Once size is factored in, the ratio of spillover
nodes falls to three out of ten. Therefore, the largest community in the networks are characterized by a
core-periphery structure, a finding also supported by the edge-betweenness results.

The second panel and third panels in Table 10 list the ten riskier and most vulnerable firms
respectively. Among the riskiest firms, there is almost an equal split between large banks and
insurance companies, some of which with a global footprint. Among the most vulnerable firms, the
majority are insurance companies. There are some notable exceptions, however, such as JPMorgan
Chase, Morgan Stanley, and Nordea Bank.

In contrast to the results obtained using the edge-betweenness method, there are a number of firms
that are both important spillover sources (risky firms) and the recipient of shocks (vulnerable firms).
Among them we have insurance firms Alleghany, Allstate, American Financial Group, Metlife,
Torchmark, and XL Group. The community detection methods do not seem to generate similar risk
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and vulnerability rankings, as there is little overlap between the rankings generated by the
edge-betweenness and Infomap methods.

Table 10. Largest Infomap community properties, by network type.
For each network, the table shows the total number of nodes, the number of nodes with outgoing and incoming links for the largest community in each network,
and the top ten riskiest and vulnerable firms are listed in descending order, based on their degree and strength. For the risky (vulnerable) firms, the degree and

strength correspond to the in-degree (out-degree) and in-strength (out-strength) respectively.

Edge-weighted Node-weighted Node and edge
network network weighted network

Nodes, total 121 70 70
outgoing links 49 21 21
incoming links 117 67 67

degree strength degree strength degree strength

Top RBS RBS RBS RBS RBS RBS
riskiest XL Group XL Group Barclays Barclays Barclays Barclays
firms Barclays Barclays Lloyds Lloyds Lloyds Lloyds

Morgan Stanley Markel Morgan Stanley Morgan Stanley Morgan Stanley Morgan Stanley
Lloyds Morgan Stanley Bank of America Markel Bank of America Markel
Markel Lloyds Hartford Hartford Hartford Hartford
AFG ProAssurance Markel Bank of America Markel Bank of America
Alleghany Alleghany Torchmark Torchmark Torchmark Torchmark
Suntrust AIG CNA CNA CNA CNA
AIG AFG MetLife MetLife MetLife MetLife

Top HME HME MGIC MGIC MGIC MGIC
vulnerable HME MGIC VIG Health Net VIG Health Net
firms BL AFG Nordea JPMorgan Chase Nordea JPMorgan Chase

AFG BL Radian VIG Radian VIG
CFC CFC JPMorgan Chase Nordea JPMorgan Chase Nordea
Allstate Aflac Health Net Unum Group Health Net Unum Group
Aflac Allstate KCLI MetLife KCLI MetLife
Alleghany XL Group Lincoln KCLI Lincoln KCLI
Fifth Third Fifth Third Old Republic Torchmark Old Republic Torchmark
Morgan Stanley CNA Unum Group Radian Unum Group Radian

Note: Abbreviations: AFG, American Financial Group; AIG, American International Group; BL, Baldwin & Lyons; CFC, Cincinnati
Financial Corp.; HME, Horace Mann Educators Corp.; KCLI, Kansas City Life Insurance Corp.; RBS, Royal Bank of Scotland;
and VIG, Vienna Insurance Group.
Source: Author’s calculations.

5. The core-periphery structure in the largest community: a clique percolation verification

The edge betweenness and Infomap algorithms generate non-overlapping communities, with nodes
belonging either to one community or another. Arguably, some communities may overlap and shared
some nodes. One popular algorithm used to detect overlapping communities is the k-clique percolation
method introduced by Palla et al. (2005). The algorithm finds k-cliques, that is, group of k nodes
fully connected to each other. If two k cliques share k − 1 adjacent nodes, they belong to the same
community.

Palla et al. (2007) show we can apply the k-clique percolation method to directed graphs after
specifying a hierarchical ordering of the nodes that sets the parent-child mapping of the network.
Assuming such ordering is not feasible ex ante, however, the application of the method to an undirected,
unweighted version of the network serves to provide an upper bound to the number of communities
and their member nodes. We can exploit then this structure to verify that the largest communities have
a core-periphery structure.

To see this, notice that a clique in the undirected network may not exist once we account for the edge
direction, since the nodes in the clique may cease to be fully connected. The fact that the largest edge
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betweenness and Infomap communities have very few nodes with outgoing edges suggest that cliques,
if existent, may be located in the smaller communities. The structure of the large community, therefore,
would be consistent with a core-periphery model, with periphery nodes only loosely connected to each
other. Clique percolation communities may also inherit this structure.

Table 11. Clique percolation communities.

Clique size
k = 4 k = 5 k = 6

(24 firms) (15 firms) (9 firms)
Aflac Aflac Alleghany

Alleghany Alleghany American Financial Group
American Financial Group American Financial Group Baldwin & Lyons

Arch Capital Group Baldwin & Lyons Chubb
Baldwin & Lyons Chubb Cincinnati Financial Corp.
Banco Bradesco Cincinnati Financial Corp. Everest Re

Berkley Everest Re HCC Insurance Holdings
Chubb HCC Insurance Holdings Horace Mann Educators

Cincinnati Financial Corp Horace Mann Educators Proassurance
Credit Suisse Markel
Everest Re Proassurance

HCC Insurance Holdings State Auto Financial
Horace Mann Educators Travelers

Markel XL Group
Novae Group Zurich Insurance
Proassurance

Regions Financial
Reinsurance Group America

Standard Chartered
State Auto Financial

Travelers
Wells fargo
XL Group

Zurich Insurance

Note: Source: Author’s calculations.

Indeed, this seems to be the case as Table 11 illustrates. The table shows the largest k-clique
community for clique sizes of four, five, and six, where the latest value is the maximal clique size in
the trimmed tail spillover network. The firms in the cliques overlap with those contained in the second
largest community identified using the edge-betweenness method. Also, about one third to one half of
the firms in the 5-clique and 6-clique communities fall within the top riskiest firms Infomap identifies,
suggesting the presence of a small core in the largest Infomap community.
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6. Conclusions

Centrality measures and community identification methods are useful for assessing systemic risk in
the financial system. Centrality measures are suitable to capture the too-connected-to-fail dimension
of systemic risk, while community identification methods serve to single out groups of firms where
some of them may play a too-important-to-fail role. Moreover, the last set of methods is also able to
accommodate the too-big-to-fail characteristics of certain firms by weighting the links between firms
by a measure of the firms’ sizes.

To illustrate the applicability of these concepts, I conducted a systemic risk analysis of a global
financial network where firms are linked by their contribution to the variance decomposition of equity
returns of other firms. This is a dense, weighted and directed financial network. Systemic risk rankings
were quite similar regardless of the choice of centrality measure. For systemic vulnerability rankings,
strength, closeness, and eigenvector centrality measures performed similarly. The exception was the
PageRank centrality measures, which yielded rankings weakly correlated with those of other measures.
This finding may be due to the existence of a power law distribution affecting the left tail of the in-
strength distribution of the nodes in the network.

Community identification methods may not perform well in a fully connected network. Taking
advantage of the fact that the distribution of the strength of the edges follows a power law, it was
possible to reduce the density of the network by preserving only those edges with values above the
power law minimum value. The trimmed network is equivalent to a tail spillover network, which
focuses solely on major spillovers. Edge betweenness, a classical method, generates a consistent group
of communities regardless of the edge and/or size weighting scheme used, but it leaves many nodes
orphan. The map equation, or Infomap, a random walk-based method, is sensitive to the weighting
scheme but generates fewer communities than edge betweenness. Under both methods, the largest
community has only a few nodes with outgoing links, while most nodes have incoming links. This
suggests that the largest community has a core-periphery or hub and spoke structure, which is further
verified using clique percolation methods.

Arguing whether one community detection method is superior to other does not seem justified.
Research in community detection methods has yet to agree on a dominant method for the simple
reason that the choice of method depends on the objective of the analysts. Edge betweenness is
appropriate if the analysis focuses on whether a specific node appears often in the shock transmission
path. When the analysis focuses on whether shocks tend to be contained within a specific group of
firms, then Infomap offers a better approach. Moreover, some of these findings may be inherent only
to the variance decomposition network analyzed here. Other networks may have different
characteristics, and discovering them may require using a variety of methods, as done in this article.

While the article focuses on methodology rather than policy making it is important to remark that
the former could have a substantial impact on the latter, as it has been reflected in policy work at
central banks and multilateral institutions. For instance, the two largest communities identified by the
edge-betweenness method contain two different types of firm. This suggests that regulatory and
supervisory approaches should be customized to each community. From a strictly surveillance
perspective, monitoring how the communities composition evolves over time could serve to identify
changes in the financial sector landscape and could point towards financial industry developments
worth examining in detail.
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