,QKC*\ QFE, 2(2): 325-347.

— .

N S DOI:10.3934/QFE.2018.2.325
Received: 31 August 2017
Accepted: 23 April 2018

http://www.aimspress.com/journal/QFE Published: 09 May 2018

Research article

A new variant of estimation approach to asymmetric stochastic volatility
model

Zhongxian Men'* and Tony S. Wirjanto*?

' Quantitative Research, J PMorgan Chase & Co., 277 Park Avenue, New York, USA
2 Department of Statistics and Actuarial Science, University of Waterloo, 200 University Avenue
West, Waterloo, Ontario, Canada

3 School of Accounting and Finance, University of Waterloo, 200 University Avenue West, Waterloo,
Ontario, Canada

Correspondence: Email: Zhongxian.men@jpmchase.com; Tel: +13138981855.

Abstract: This paper proposes a novel simulation-based inference for an asymmetric stochastic
volatility model. An acceptance-rejection Metropolis-Hastings algorithm is developed for the
simulation of latent states of the model. A simple and efficient algorithm is also developed for
estimation of a heavy-tailed stochastic volatility model. Simulation studies show that our proposed
methods give rise to reasonable parameter estimates. Our proposed estimation methods are then used
to analyze a benchmark data set of asset returns.

Keywords: stochastic volatility; leverage effect; Bayesian inference; acceptance-rejection;
Metropolis-Hastings; slice sampler
JEL classification numbers: C10, C11, C13, C15, C22, C58, C53

1. Introduction

In the study of financial econometrics, stochastic volatility (SV) models have been developed to
model the time varying and clustering volatility of asset returns. There are mainly two types of
models studied in the literature. One type of these models includes autoregressive conditional
heteroskedasticity (ARCH) models and generalized autoregressive conditional heteroskedasticity
(GARCH) models and the other includes stochastic volatility (SV) models. The GARCH models,
proposed by Bollerslev (1986), are extensions of the ARCH model studied by Engle (1982), and have
been extended in various directions. In the GARCH-type models, volatility is often defined as a
deterministic function of the previous observed asset returns and volatilities. In the SV models,
initially studied in Taylor (1986), the log volatility of asset returns is often modeled as a latent first
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order stationary autoregressive (AR (1)) process. SV models are more attractive because they are
close to the models often used in financial theory to represent the behaviour of financial prices.
Comparing with the GARCH models, the SV models capture more realistically the main empirical
properties often observed in daily behaviors of financial time series (see, for example, Broto and Ruiz,
2004; Carnero et al., 2003).

In the estimation of the univariate SV models, many methods have been proposed in the literature
as well, such as quasi-maximum likelihood (QML) method by Harvey et al. (1997), numerical
integration method in Kawakatsu (2007), Simulated maximum likelihood (SML) methods by
Dobigeon and Tourneret (2010). Bayesian inference approaches based on Markov Chain Monte Carlo
(MCMC) methods have been proposed in Jacquier et al. (2004); Kim et al. (1998); Omori et al.
(2007); Zhang and King (2008); Men (2012); Men et al. (2017) and Wirjanto et al. (2016) for the SV
models with or without leverage effects. The greatest advantage of the MCMC methodology is that a
large dimensional problem can be divided into several lower dimensional simulation tasks in which
the log volatilities are estimated simultaneously. Broto and Ruiz (2004) claim that MCMC
approaches are more efficient among other estimation methods such as the QML and the generalized
method of moments proposed in Melino and Turnbull (1990). As usual, in the MCMC methods for
the SV models, posterior distributions of parameters and augmented parameters are assumed to be
either known or proportional to some positive functions. These distributions generally can not be
sampled directly and the simulation is usually carried out through the Metropolis-Hastings (MH)
algorithm. It is well known that the performance of the MH algorithm depends critically on the
selection of a proposal distribution. However, choosing an appropriate proposal distribution in general
is difficult and different proposal distributions tend to give different acceptance rates. Due to the high
correlation among the latent states, a careful simulation of the log volatilities is required, which is
discussed in Jacquier et al. (2004). There are two main methods for simulating the latent states. One
is called the single-move simulation method developed in Jacquier et al. (2004); Yu and Meyer
(2006); Zhang and King (2008); Kim et al. (1998); Men et al. (2017) in which the states are simulated
one at a time. The other method, named the block sampling, is introduced by Shephard and Pitt
(1997) and has been employed in Pitt and Shephard (1999a) and Chib et al. (2006). In a block
sampling algorithm, the latent states are divided into random blocks and the blocks are sampled via
the MH algorithm. The proposal distribution is either a multivariate Gaussian as in Shephard and Pitt
(1997) or a multivariate Student-¢ distribution as in Chib et al. (2006), where the modes of these
proposal distributions can be found by use of the Newton-Raphson method. As discussed in Shephard
and Pitt (1997), the Newton-Raphson algorithm may converge slowly, rendering the block sampling
technique to be computationally highly intensive.

In this article, we focus on developing new MCMC estimation methods for univariate SV models
where the residuals of the measurement equation follow either a univariate standard normal or a
Student-¢ distribution. The non-zero correlation between the innovations of asset returns and the latent
AR(1) process is permitted. The aim of our methods is to consider a simulation-based inference for
the parameters and log volatilities. Our contributions to the literature are two-folds. First, we develop
single-move algorithms for simulating latent states based on the acceptance-rejection
Metropolis-Hastings (ARMH) algorithm introduced in Chib and Greenberg (1995). The proposal
distribution is simulated by the slice sampler introduced in Neal (2003). The second contribution is to
propose a simple but efficient algorithm for computing the heavy-tailed SV model. Comparing with
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the method where a mixture decomposition of the Student-7 distribution (for examples, see Jacquier et
al., 2004; Zhang and King, 2008) is used at each observation time, our method uses the Student-7
distribution directly. As a result, in our approach, we do not need to estimate the extra parameters
from the mixture decomposition. Therefore our proposed ARMH methods are simple and easier to
implement.

The rest of the paper is organized as follows. In Section 2, we propose ARMH approaches for
the SV and heavy-tailed SV models. To asses the goodness of fit, in addition to check the realized
innovations of the measurement equation, we test the so-called probability integral transforms (PITs)
calculated from the density forecast introduced by Diebold et al. (1998). Since it is extremely difficult
to obtain the analytical conditional densities of observed data, we employ the auxiliary particle filter
in Pitt and Shephard (1999b) to evaluate the likelihoods. Section 3 presents simulation studies for the
SV model. In Section 4, we apply our estimation methods for the SV and heavy-tailed SV models
to a benchmark data set of asset returns which has been studied for comparative purposes purposes.
Concluding remarks are drawn in the last section.

2. Estimation of asymmetric stochastic volatility models

2.1. A brief introduction of the acceptance-rejection Metropolis-Hastings method

Suppose that we wish to generate samples from a distribution with the density function m(x) o
f(x)/k, where k is the unknown normalizing constant. Let g(x) be a density function that can be
sampled by a known method, and suppose that there exists a known constant ¢ satisfying f(x) < cg(x)
for any x. Then to generate a random sample from f(x) we use the following acceptance-rejection
(AR) procedure:

1. Generate a candidate y from g(.) and a value u from a uniform distribution U/(0, 1).
2. If u < f(y)/(cg(y)), then return x = y; else go to step 1.

It is easy to see that the expected number of iterations of the AR algorithm to generate a sample point
from f(x) is 1/c, which means that this sampling method can be optimized simply by setting

It seems that the AR method is simple and in most of cases the constant c is easier to find. But if ¢ is
too small, then the AR method would not be efficient as we would have to wait a long time to generate
a sample from f(x). Primarily because of this concern, Metropolis-Hastings (MH) methods have been
widely used in this literature. The typical MH algorithm can be described as the follows. Suppose
that g(x,y) is a candidate density given x. Let a(x,y) be a move probability from x — y. Then the
acceptance probability of a newly generated value from g(x, y) is

4(r.0) :
in {75255 U if 2(0g(x,y) > 0,

otherwise.

amw={T

The procedure of sampling m(x) is the following,

1. Initialize the chain with x(©.
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2. Repeat the following forn = 1, ..., N, where N is a positive integer.

e Generate y from g(x™,y) and u from U(0, 1).
o if u < a(x™,y), then set xX"*V = y; else set x*D = x™ keeping the sampled value from the
last iteration.

3. Return the values x = {x(, x@, ..., x™}.

After discarding the first m generated values from x as a burn in, values {x"*D, x("*2 5™} are
treated as a sample generated from the target density m(x).

It is noticed that the candidate distribution of g(x, y) is usually difficult to find, which may require a
Taylor expansion or the Newton-Raphson method, which is, in some cases, computationally too
costly especially for SV models. In response to this issue, Chib and Greenberg (1995) introduced a
combination of AR and MH methods, which is called, in this paper, an acceptance-rejection
Metropolis-Hastings (ARMH) method described below.

The ARMH algorithm for sampling 7(x)

1. Generate y using the AR algorithm described previously.

2. Let Cy = {f(x) < cg(x)} and C; = {f(y) < cg(»)}-
3. eIfC,=1,thena=1.
o I[fCy =0and C, = 1, then a = cg(x)/ f(x).

e IfC; =0and C, = 0, then a = min{f (g 1}.

f(x)g()’
4. Generate u from U(0, 1). If u < a, then return x = y; else keep x.

2.2. Estimation of asymmetric stochastic volatility model

We will first propose a Bayesian estimation method for an asymmetric stochastic volatility (ASV)
model. There are two types of ASV models, one was proposed in Jacquier et al. (2004) and the other
was formulated in Harvey and Shephard (1996). Yu (2005) studied these two types of ASV models
and showed that the ASV model in Harvey and Shephard (1996) is able to capture the leverage effect
between asset returns and their future volatilities. Two different formulations of leverage effect between
asset returns and the latent volatilities were also studied in Men et al. (2017). Based on this, in this
paper, we focus on estimation of the ASV model proposed by Harvey and Shephard (1996).

Let y, denote the observed asset return at time ¢, t < T, where T is the sample size. Without loss of
generality, we assume that the expectation of y; is zero such that E(y;) = 0. Then the ASV model can
be expressed as

v =exp(h/2)e,t=1,..,T, (1)
hl+1 :lu+¢(ht_lu)+0-nl‘+1’t: 1""’T_ 1’ (2)
ho ~ N(u, 0 [(1 = ¢*), 3)

where

)~ 1) @

The two innovations ¢ and 7,.; are assumed to jointly follow an independently and identically
distributed (i.i.d.) bivariate standard normal distribution with a correlation coefficient given by
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p = corr(€,1n.1). In order for the ASV model to be weakly stationary, it is assumed that |¢| < 1. A
priori, the coefficient p is expected to have a negative sign, which means that the returns y, and the
future log volatilities 4, are expected to be negatively correlated. This is often interpreted as
evidence of a leverage effect in time series of asset returns.

To estimate the parameters of the model, we usually perform a Cholesky decomposition on the
correlation matrix in (4), and the ASV model is then transformed to have the following representation

v, =exp(h,/2)e,t=1,..,T, 5
hi1 = p+ ¢(hy — ) + Yy, exp(—hy/2) + Tup, (6)
ho ~ N(u, o /(1 = ¢*)), (7N

where y = op and T = 0 +/(1 — p?). In the derived MCMC algorithm to estimate the parameters,
instead of simply using the posterior distributions of p and o directly, we propose to simulate the
posterior distributions of i and 72, respectively. After these two parameters have been sampled, the
original parameters are then obtained from the two equations: o = /> + 72 and p = ¢//o. Define by
0 = (u, ¢, Y, 1) as the parameter vector of the ASV model. For convenience, we define 'y = (v, ..., y7),
and h = (hy, ..., hr).

The ASV model is completed by specifying the proper prior distributions for the parameters. We
assume that all of the prior distributions of the parameters in the model are mutually independent. The
prior distributions of u and ¢ are u ~ N(0,10), and ¢y ~ N(0,10), respectively. These prior
distributions result in reasonably flat densities over their support regions. All of the above prior
distributions are conjugate which is convenient for the calculation of the posterior distributions. To
impose a weak stationary condition on the latent process, the prior distribution of ¢ is a normal
distribution truncated in the interval (—1,1). The prior distribution of 72 is an inverse Gamma
distribution 72 ~ 7G(5,0.05) as in Pitt and Shephard (1999a).

We present an MCMC algorithm for parameter estimation of the ASV model in Table 1 followed
by a detailed description of the procedure.

Table 1. MCMC algorithm for the ASV model.

Step 0. Initialize h, u, ¢, y and 7.
Step 1. Sample i, t=1,...,T.
Step 2. Sample ¢.

Step 3. sample u, ¥ and 7.

Step 4. Go to Step 1.

Step 0. Initialize h, u, ¢, ¥ and 7. For the start of the MCMC algorithm, the parameters of the latent
Markov process are set as u = —0.5, ¢ = 0.5, ¢ = —0.5 and 7 = 0.5, respectively. The initial values of
h are generated from the latent first order autoregressive process with the above initialized parameters.

Step 1. Sample h. The simulation is conducted via a single-move ARMH algorithm. The full
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conditionals of the latent random variables are expressed as

fhly, ha,0) o< f(yilhy) f(m10) f(hilha, y1,0),
Sy, by, byt ) o filhy) f(alhy—y, yie1, ) f (Bl By, Y1, 0),
fhrly, hr-1,60) o< f(yrlhy) f(hrlhr—1, y7-1,0),

where f(y|h,),t = 1,..., T, are the conditional densities of y, at discrete time points and f(h;|6) is the
density of the latent log volatility Ay, f(h/lh;—1,y:-1,0) and f(hh.1,y;, 6) are the conditional densities of
h, given h,_ and of h, given h,, by the latent equation (6), respectively. Since y7 is the last observation,
the posterior distribution of 47 depends only on yr_jand hz_;.

We only present the full conditionals of A, t = 2,...,T — 1. The full conditionals of 4; and Ay are
easily derived and therefore not provided here.

The full conditional of 4, is

Sy, hi—y, hit, 0)
= 1. f ilhe) f(helhe=y, yie1, O f (hilhysr, i, 0)

hy 2 exp(=h;
= c2texp{ - E}exp{ - )%()}
X ox { [ = ) = pUy = ) = ryis exp(=hyy /2)]2}
P 272
2
wexp - 1ot 720 000~ 1)~y exp(h/ DT ©
272
hy 2 exp(=hy
< c%exp{ - E}GXP{ - )%()}
2
> exp{ _ [(ht ) = d(hy — /J;T—z Yy eXp(—h,_l/Z)] } ©)

where ¢y, and c;, are the two normalizing constants. The inequality sign in (9) holds because the last
part of the right-hand side of equation in (8) is less than 1. Suppose that the dominate distribution can
be sampled by some sophisticated method. Then the full conditional of /4, can be simulated by the
acceptance-rejection method. By looking at the inequality of (9), we notice that ¢,, can be obtained as
follows,

{ [t =) = ¢l = ) = gy, exp(—ht/z)]z}

= X

hy
As is usually observed, ¢y, is very small meaning that the number of iterations for the acceptance-
rejection method to generate a point from the conditional distribution of /4, is really large. In other
words, if we use the acceptance-rejection algorithm in this way, the algorithm would be very inefficient.
For this reason, we use a modified ARMH procedure described in Chib and Greenberg (1995).
Focusing on the last term of the full conditional of 4,, we define

g(hl.) eXP{ _ %}exp{ _ w}
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[(he = 1) = d(hiy — ) = yiy exp(=hi_1/2)]
xexp - }
ht+ - - ht - ?
% exp { [ #)27 2¢( ) }
and define
C(fl)
Cor = 5P {g<h,|.>}'

(10)

Clearly the function c3;g(h,|.) does not necessarily dominate f(4,|.). We will use the ARMH method
described earlier to sample the full conditional of 4,, where the density g(4,|.) can be sampled by the

slice sampler described in Neal (2003).
Algorithm of the slice sampler for g(%,|.)
It is easy to verify that (10) can be expressed by

Y eXp(—ht)}

g(hy|.) o< exp{ - %} exp{ >

2
x exp{ _ [(ht ) = ¢h-y — ,Ll;T—2 Yy exp(—h,_1/2)] }
[ — p = (e — /91
X exp{ - 27'2/<;>2 }
y; exp(=h) (hy — 1,)?
oceXp{—T}exp{——zc }’
where
c=1/a,
__cuh
==
1 ¢
a = T—Z ?’
p o= Mt ¢y — ) + Yyi-1 exp(=h,_1/2) .\ O — St — 1)
a 2 = )

0. Given hﬁk), the sampled point after the k-iteration of the MCMC algorithm.
1. Draw u; uniformly from the interval (0, 1).

2 ex —h(k)

Let u, = u, exp{ >

y; exp(=h;) }

u2§exp{— 2

Then we have

h, > log(—y?/(21log(uy)), if y, # 0.

(1)

(12)
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2. Draw u3 uniformly from the interval (0O, 1).

I
Let uy = uz exp{ - %} and set

(he = p,)° }

u4<exp{— 5
c

Then we have

e — \=2clog(us) < hy < py + =2¢ log(us). (13)

3. Draw /A, uniformly from the interval determined by the inequalities (12) and (13) such as

hy ~ (u(max{log(—yf/(z log(2)), p — N—2cToglun),  + \=2cTog(us) ) ify, #0,
h; ~ (U(,ut — V=2clog(uyg), w, + —2clog(uy) ) ify, =0.

The advantage of the slice sampler is that it can adapt to the underlying density function, and
therefore is likely to be more efficient. Under some sufficient conditions, Roberts and Rosenthal
(1999) show that the slice algorithm has extremely robust geometric ergodicity properties. Mira and
Tierney (2002) prove that the slice sampler has a smaller second-largest eigenvalue, which ensures
faster convergence to the underlying distribution. The single-move simulation method is popular in
the literature. See for instance, in Jacquier et al. (2004); Zhang and King (2008); Men (2012); Men et
al. (2015); Men et al. (2017), among others.

Compared with other MCMC methods proposed in the literature, our proposed estimation methods
focus on a direct simulation of the laten states based on the density functions. The method proposed by
Jacquier et al. (2004), which is also a single move MCMC algorithm, is based on the approximation of
the posterior distribution. They approximate the log-normal kernel by an inverse gamma with the same
mean and variance. The MCMC method proposed in Omori et al. (2007) is a block sampling method
for latent states. Compared with their method, our method may be a bit slower, but as we implemented
our algorithm in C, the estimation speed is not a serious concern.

We believe that our proposed MCMC estimation methods is flexible enough and can be generalized
to deal with more flexible dynamics. The model proposed in Eraker et al. (2003) introduces Poisson
processes to the measurement and volatility processes, respectively. To fit their model in an MCMC
framework, we need to know proportionally the posterior distribution of each latent state, which can
be derived conditional on other parameters in the model that have been previously simulated. For
example, once we have simulated the two jumps in both the measurement and volatility equations, the
two jumps are treated as constants and the posterior distribution of the corresponding latent state can be
simulated by our proposed methods. Liesenfeld and Richard (2003) introduce a one-factor multivariate
statistic volatility model which is estimated by incorporating an efficient importance sampling scheme
in the Quasi Maximum Likelihood approach. Our proposed methods can be easily applied to such a
model when simulating the latent states of that model. Liesenfeld and Richard (2003) also propose a
two-component SV model obtained by extending the univariate SV model to allow the dynamics of
volatility to be driven by two independent components. Our proposed method can be directly applied
to this model as well. Conditioning on that one element at time ¢ and the two coeflicients of elements
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which have been previously simulated, the posterior distribution of the other element at time ¢ can be
calculated based on a univariate SV model and therefore can be simulated by our proposed method.
Lastly, for the heavy-tailed SV model in Liesenfeld and Richard (2003), we notice that there is no
leverage effect permitted between the two innovation processes of the two equations. Our proposed
estimation method can be applied to that model after a simple modification.

Step 2. Sample ¢. Given the truncated normal prior distribution ¢ ~ N(a,, ,8;), the full conditional
of ¢ is

T-1 _ 2
F@ly 7)o FIO) | | FUiailie, 6, y) exp - %}
=1 ¢
d 1 21
MG -
where
-+ S -]
c= > + =,
T ﬁ¢
= Bt = (s = = ¢y = ) + Yexp(=hi/2)y)
72 ,8¢’

which is proportional to the product of a univariate normal distribution and a positive function. This
full conditional can also be sampled by the slice sampler.

Step 3. Sample parameters u, ¥ and 7. Instead of sampling 7 directly, we sample 72. Since the
priors for these parameters are conjugate normal and an inverse Gamma distribution, respectively, the
sampling can be done relatively straightforwardly.

2.3. Estimation of the heavy-tailed ASV model

Assuming that the innovations ¢, in the ASV model follow a Student-7 distribution with unknown v
degrees of freedom, the heavy-tailed ASV (ASVt) model is specified as

v = exp(h,/2)e, & ~ 1), (14)
hivy = o+ ¢(hy — p) + 41, u ~ N, 1). (15)

In the literature, the Student- distribution, #(v), is usually decomposed as € = V4,e,, where A, ~
IG(a,pB), an inverse Gamma distribution and e, ~ N (0, 1). See for instance, Jacquier et al. (2004),
and Zhang and King (2008). Instead of using this mixture decomposition, we consider estimating
this ASVt model with the Student-¢ distribution directly. In order to introduce a correlation structure
between y, and the log volatility, we rewrite equation (15) as

hivr = o+ ¢(hy — ) + Yy exp(—hy/2) + Tug. (16)

The correlation between the asset returns and the latent volatilities is captured by a coefficient, denoted
as . Upon our specification, there is only one extra parameter v to be estimated compared with the
ASV model, where in the mixture case we estimate this v and plus 7 augmented parameters A,. Again,
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we propose an ARMH algorithm to fit this heavy-tailed ASV model. Denote by 8 = (u, ¢, ¥, 7,v) the
parameter vector of the ASVt model. We only provide the methods to simulate the latent states 4, and
v, respectively.

e Sample the latent states h;,t = 1,...,7 — 1. The simulation of 4, and A7y are similar. The full
conditionals of h,,t = 2,...,T — 1,18

f(hf|y7 hl—] s ht+1 s 9)
= cifidh) f (i1, Yi1, 0) f (hilBysr s y1, 0)

2 —hy\—vil
<chW11+&i_)2
\%
[(he = 1) = By — ) — Wexp(=hy1 /21 ]
X expy — 272 .

where ¢y, 1s a normalizing constant. Similarly to the previous steps we provided in the estimation of
the ASV model, we define

Cyr = sup exp
hy

{_[UM4—u)—¢Uh—u)—Ww®mG%MDf}

272

Foucsing on the last term of the full conditional of 4,, we define

v+l

e )‘T

g(hy|.) < exp{ - @}(1 +

2 %
{ Km—m—¢w4—m—wn4wm4uumf}
X expy — 7
-
[mmvﬁﬂ—ﬂm—ﬂﬂ?
% exp{ 272
2y vl N2
o1+ 25— exp{——(h’ ) } (17)
% 2¢
where
c=1/a,
__c. b
/’tt - 2 a s
1 ¢?
a=Eta
b, = p+ Gy — ) + gy, exp(—h;1/2) ¢2/~‘ — (M — )
.= + .
T2 72
and define

C3 = Sl;.[p {%}
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It is easy to see that the function c3,(h,|.) does not necessarily dominate f(4,].). We again use the
ARMH method described earlier to sample the full conditional of /,, where the density g(4,|.) can be
sampled by the slice sampler described in Neal (2003).

Based on the full conditionals of A, t = 1, ...., T, we only give the slice sampler for sampling #,.

0. Given hgk), the sampled point after the k-iteration of the MCMC algorithm, we go to the next step.

P s
1. Draw u; ~ U, 1). Let 1> = uy {1 + M} and let
L+1

uzﬁ{l y; exp(— h,)}
1%

If y, # 0 then we have

and then,

> =tog[v{()" - 1)2] (18)

2. Draw usz ~ U(0, 1).
W _
Let uy = usz = exp{ (h—”’)} and let

(hy = )’ }

u4£exp{— 2
T

and then we have,
(h — u)* < =27 log(uy).
Then we have

W — \—2tlog(uy) < hy <y + /-2 log(uy). (19)

3.If y, # 0 draw A**" uniformly from the interval determined by the inequalities (18) and (19),

1\
Iy ~ ﬂ(max{ ~log [v((u—Z) - 1)/y,2], He— N=2rTog(up) |, i+ =27 Tog(us) )
otherwise,

hy ~ (u(ut — 2t loglus), i+ V-2t logus) )

e Sample v, the degrees of freedom of the Student-¢ distribution. The full conditional of v is given
by

FOly,hp, ¢, 0%) « f(ylh, v)f(v)
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T

v/2
= fo [ | S n et D2 4 2 exp-y 12, 0)
t=1

T(v/2)[(1/2)

where f(v) is a prior density of v. In the literature, there are several ways to specify this prior
distribution. For instance, Jacquier et al. (2004) propose a discrete prior distribution U[3, 40] from
which the full conditional can be sampled directly from a multinomial distribution. Geweke (1993)
suggests @ exp(—av) with @ = 0.2 as an alternative, while Zhang and King (2008) choose a normal
distribution v ~ N(20,25). Bauwens and Lubrano (1998) use a Cauchy prior proportional to
1/(1 +v?*). In our procedure we use a normal prior proposed in Zhang and King (2008). Since this full
conditional is an unknown distribution, we use a random-walk Metropolis-Hastings algorithm, in
which the proposal density is a standard Gaussian density and the acceptance probability is computed
using equation (20).

2.4. Associated particle filter

In the literature of stochastic volatility models, model comparison is usually based on AIC and
BIC criteria, which needs the calculation of model likelihood. For ASV and ASVt models, model
likelihood is infeasible to compute because of the non-linear structure of the model, which requires that
we integrate out the latent states. In this paper we employ an auxiliary particle filter (APF) proposed in
Shephard and Pitt (1997) to perform this task, which is a recursive efficient algorithm to approximate
the filter and one-step ahead predication distributions of the latent states of the model. The likelihood
of the specific ASV model via the successive conditional decomposition is

T
010 = fe110) | | feidz0,0), (21)
=2

where 7, = (yy, ..., y;) is the information known at time ¢. The conditional density of y,,; given 6 and
7, has the following expression

f(yz+1|fz, 9) = ff(1t+l|ht+la 9)dF(h,+1|f,, 9)

= ff(YtthtHa e)f(ht+1|hta e)dF(htl-Z—ta 9)- (22)

In general it is impossible to have an analytical solution for (22), instead numerical methods such as
the APF method have to be employed. Suppose that we have a particle sample {hf),i =1,...N}of h
from the filtered distribution of (4|7, 6) with weights {nii),i = 1,...,, N} such that Zfil ﬂﬁi) = 1. Upon
this sample, the one-step ahead predictive density of A, is

N
FlhalL,0) ~ > 7 e, 6). (23)
i=1

Then the one-step ahead prediction distribution of 4,,; can be sampled and the conditional density (22)
can be evaluated numerically by

N
FOulLn0) = Y 2l fnlhll,, 0), (24)
i=1
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where h()1 are particles from the prediction distribution of (h,.1|%;,60). For the assumption for the
above evaluations (23) and (24) to be valid, the prediction density of 4,,; must be known or at least
approximately. This assumption is satisfied by our procedure since from the latent AR (1) process A,
has a conditional normal distribution A, ~ N(u + ¢(h, — ) + Yy, exp(h,/2), 7?), which can also be
used for volatility forecast.

Now the question is how to sample (h,.1|Z,.1,6) given that we have a particle sample from the
filter distribution of (h,|Z,,6). We present an algorithm for the ASV and ASVt models based on the
procedure in Chib et al. (2006).

Step 1. Given a sample {hf),i = 1,..,N} from (h]¥;,60), we calculate the expectation
' = E(hyy h”) and

t+1

7 = flh,0),i=1,...,N. (25)

t+1°

Sample N times with replacement the integers of 1, ..., N with probability #'” = 7'’/ ¥ 7. Define
the sampled indexes ny, ..., ny and associate these w1th particles {hg'”), . hg””)}.

#(1) #(N)
Step 2. For each value n; from Step 1, sample the values {A ., ..., h "} from
RO = u+ ¢h™ — )+ yexp(=h" [2)y, + Tver,i = 1, .., N (26)
where v, ~ N(O, 1).
. x(1) *(N)
Step 3. Calculate the weights of the values {h 7, ..., h,, "} as
h*(l),
g 2 SOl 0 @27

t M
Fmli.6)
and resample the values {h;‘frll), ves hffr]]v )} N times with replacement using these weights to obtain a fair
sample {A'), ..., ")} with weights 1/N from the filter distribution of (A1 741, 6).
In our experience N = 3000 is sufficient for our simulation studies and the real stock returns data

that we use to illustrate our estimation methods.

2.5. Diagnostics

There are many statistical tools that can be used to check the overall fit of the ASV and ASVt
models. One such tool is the Kolmogorov-Smirnov (KS) test which assesses whether the realized
observation errors come from the correspondingly assumed distribution. An alternative way is to
calculate the probability transform integrals (PITs) proposed by Diebold et al. (1998).

Suppose that {f(y,|Z,-1)}_, is the sequence of conditional densities that guides the time series of y;,
and let {p(y,|7,-1)}", be the corresponding sequence of one-step ahead density forecasts. The PIT of
v, is defined as

Vi
u(t) = f p,-1)dz. (28)

o0

Under the null hypothesis that the sequence {p(y,|Z,- 1)}t , coincides with { f(y,|Z,- 1)}t ,» the sequence
{u(t)} _, i1s an i.i.d. Uniform (0, 1). In our ASV model, the PITs can be calculated by the following
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equations
1Y ™o —hﬁi) y[z eXp(—htz(i))
. R L 29
u(t) N;Immexp{ > }exp{ . }z 09)
In our ASVt model, the PITs can be calculated by the following equations
1 & WERT((v + 1)/2) i
1)~ — + —h —(v+l)/2d _ 30
M( ) N ; Ioo F(V/Z)F(l/z) (V Z eXp( t)) z ( )

In the computation of u(z), hﬁi) are particles from the corresponding predictive distribution of A, with
weights set equal to 1/N.

3. Simulation studies for the ASV model

In this section, we conduct simulation studies only for the ASV model. To generate asset returns,
we make a Cholesky transformation to the two innovations of the ASV model and obtain

yr = exp(he/2)p(hysr — i — ¢(hy — )/ No + exp(h/2) 1 = p?v,, 31
By = p+ ¢(hy — ) + ‘/EUHI, (32)

where v, and 1,,; are independent and i.i.d. with v, ~ N(0,1) and n,,; ~ N(0,1). For given 6, the
following equations will be used to generate h and y.

By ~ N(u + ¢(h, — p), o), (33)
ye ~ N(exp(he/2)p(hey — p = ¢(hy — )/ Vo, exp(h)(1 - p*)), (34)

where h; ~ N(u, /(1 — ¢*)) and yr ~ N(0, exp(hr)).

The parameters used to generate the asset returns are reported in the second column of Table 2. We
generated 2000 observations from the ASV model. Our proposed estimation algorithm was iterated
50,000 iterations and the first 10,000 sampled points were discarded as the burn in prior to conducting
a Bayesian inference. Figure 1 includes the histograms and time series of simulated values from the
conditional posterior distributions of the parameters of the ASV model. These time series converge
very fast indicating that a very short burn in period is necessary prior to conducting Bayesian
estimation. In Figure 2 we compare the absolute returns with the estimated volatilities of the returns,
while in Figure 3 we check the assumption of the model by analyzing the PITs of the fitted ASV
model. We plot the scatter plot of the PITs and histogram plot of u(¢#) which depicts the empirical
distributions of the PITs. The solid lines represent the 95% confidence intervals of the uniformity,
which calculation was detailed in Diebold et al. (1998). In Figure 4 we compare the cumulative
distribution function (CDF) of PITs with the theoretical CDF of a uniform distribution over the
interval (0,1). The KS test statistic is 0.0204 with the corresponding p-value 0.3716; so we can not
reject the null hypothesis that the fitted ASV model agrees with the artificially generated asset returns.
Table 2 includes summaries in terms of standard errors and Bayesian highest probability density
(HPD) confidence intervals for the estimated parameters. The estimated parameters are close to their
true values with relatively small standard errors.
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Table 2. True and estimated parameters of the ASV model based on the simulated returns

data.
Parameter True Est. Std. HPD CI(95%)
u -10.45 -10.7423 0.2749 (-11.2547, -10.1877)
1) 0.98 0.9820 0.0053 (0.9713, 0.9921)
Je -041 -0.4138 0.0759  (-0.5706, -0.2660)
o 0.19 0.2096 0.0198 (0.1667, 0.2440)

Histogram of p Sample path of n
4000 . : 9 . . . . . : :
2000{ ‘ J i
—101.5 -1 -10.5 -10 0.5 1 1.5 2 25 3 3.5 4
x 10*
Histogram of ¢ Sample path of ¢

5000

0 . . . . . . .
0965 0.97 0975 098 0.985 099 0.995 1 0.5 1 1.5 2 25 3 3.5 4

Histogram of p
5000 T T T T T
0
Histogram of ¢

5000 T T T T
0

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.5 1 1.5 2 25 3 3.5 4

Figure 1. Histogram and time series of simulated values from the conditional posterior
distributions of the parameters of the ASV model.

Time series of the absolute values of artifically generated asset returns
T T T T T T T T T

Estimated volatilities
0.12 ‘ \ \
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Figure 2. Comparison between the absolute returns and the estimated volatilities of the ASV
model based on the generated asset returns data.
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Overall the simulation studies performed in this section show that our proposed estimation methods
work quite well in terms of parameter and volatility estimations of asymmetric stochastic volatility
models.

ek o S R

200 400 600 800 1000 1200 1400 1600 1800 2000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3. Analysis of the PITs from the fitted ASV model based on the simulated data.
Top Panel: scatter plot of u(¢). Bottom Panel: histogram plot of u(¢#) which depicts the
empirical distributions of the PITs. The solid lines represent the 95% confidence intervals of
the uniformity, which calculation was detailed in Diebold et al. (1998).
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Figure 4. Comparison between the theoretical uniform CDF and the empirical CDF of the
PITs from generated returns data.

4. Empirical analysis

In this section, we present empirical results of the proposed estimation methods of ASV and ASVt
models to a benchmark data set of asset returns. The data set includes the daily returns of the Australian
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All Ordinaries stock index.” There are totally 1508 observations covering the period from January 2,
2000 to December 30, 2005, excluding weekends and holidays. This data set is called AUX data
hereafter.

4.1. Analysis of the AUX data based on the ASV model

Table 3 reports the estimated parameters from the ASV models for the the AUX data. The
correlation between the two innovations of the ASV model is found to be statistically significant with
o = —0.6417 indicating that there is a strong leverage between asset returns and the latent volatilities
of the returns.

Table 3. Estimated parameters of the ASV models based on the AUX data.

Parameter Est. Std. HPD CI(95%)
u -0.6297 0.1115 (-0.8421, -0.4014)
1) 0.9621 0.0101 (0.9411, 0.9796)
o -0.6417 0.0725 (-0.7747, -0.4915)
o 0.1907 0.0254 (0.1420, 0.2406)

To assess the goodness-of-fit of the ASV model to the data set, we calculate the PITs originated
from the fitted model. Figure 5 provides scatter and histogram plots of the PITs, while in Figure 6 we
compare the CDF of PITs with the theoretical CDF of a uniform distribution over the interval (0,1).
The KS test statistic is 0.0235 with the corresponding p-value 0.3711. We can not reject the null
hypothesis that the PITs obtained from the fitted ASV model follow a uniform distribution over the
interval (0,1). Figure 7 compares the absolute values of asset returns with the estimated volatilities of
the returns based on the ASV model.

xRk x ol Wttt X x PR ok X e %
200 400 600 800 1000 1200 1400

0.5 = L

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5. Goodness-of-fit test via the scatter plot (top) and the histogram (bottom) of the
PITs produced by the fitted ASV model based on the AUX data. The two horizontal lines
in the histogram plot are the 95% confidence intervals of the uniformity, constructed under
the normal approximation of a binomial distribution, the calculation of which is detailed in
Diebold et al. (1998).

*We thank Professor Xibin Zhang for kindly providing us this data set, which was analyzed in Zhang and King (2008).
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CDF comparison
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Figure 6. Comparison between the empirical CDF of the PITS produced by the fitted ASV
model and the theoretical CDF of a uniform distribution over the interval (0,1) based on the
AUX data.

Time series of the absolute values of asset returns
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Figure 7. Comparison between the absolute returns and the estimated volatilities under the
ASV model based on the AUX data.
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4.2. Analysis of the AUX data based on the ASVt model

Table 4 reports the estimated parameters from the ASVt model for the AUX data. The correlation
between the returns and the log volatilities is captured by ¢ = —0.7214, which again indicates that
there is a significant leverage effect between the asset return and the future volatility of the returns.
Similar to the empirical analysis of the ASV model, to assess the goodness-of-fit of the ASVt models
for this data set, we calculate the PITs originated from the fitted model. Figure 8 provides scatter and
histogram plots of the PITs, while in Figure 9 we compare the CDF of PITs with the theoretical CDF
of a uniform distribution over the interval (0,1). The KS test statistic is 0.0304 with the corresponding
p-value 0.12. We can not reject the non hypothesis that the PITs obtained from the fitted ASVt model
follow a uniform distribution over the interval (0,1). Figure 10 compares the absolute values of asset
returns with the estimated volatilities of the returns based on the ASVt model.

Table 4. Estimated parameters of the ASVt models based on the AUX data.

Parameter Est. Std. HPD CI(95%)
-0.7532 0.1147 (-0.8531, -0.4104)
0.9670 0.0102  (0.9429, 0.9818)
-0.7214 0.0774 (-0.7868, -0.4893)
0.1547 0.0265 (0.1456, 0.2433)
19.1603 4.4612 (10.9462, 27.9079)
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Figure 8. Goodness-of-fit test via the scatter plot (top) and the histogram (bottom) of the
PITs produced by the fitted ASVt model based on the AUX data. The two horizontal lines
in the histogram plot are the 95% confidence intervals of the uniformity, constructed under

the normal approximation of a binomial distribution, the calculation of which is detailed in
Diebold et al. (1998).
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CDF comparison
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Figure 9. Comparison between the empirical CDF of the PITS produced by the fitted ASVt
model and the theoretical CDF of a uniform distribution over the interval (0,1) based on the
AUX data.
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Figure 10. Comparison between the absolute returns and the estimated volatilities under the
ASVt model based on the AUX data.
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5. Conclusions

In this paper we have proposed using an acceptance-rejection Metrologies-Hastings method to fit
asymmetric stochastic volatility models either with or without allowing for heavy tails in the return
distribution. The proposal distributions are simulated by using the slice sampler. Simulation studies
and empirical analysis show that our proposed estimation methods work reasonably quite well for
parameter and volatility estimations of the stochastic volatility models studied in this paper.
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