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structure of return correlations is nonlinear and nonstationary across different asset groups. So we
introduce a nonparametric technique to monitor divergence in distributions underlying successive
observations of normalized dominant eigenvalue of the returns. Periods of high divergence imply a
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systemic shocks. An additional parametric analysis is provided as an informal check on the results
obtained in the paper.
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1. Introduction

This paper explores changes in the strength of correlation (or equivalently comovement) between
financial asset returns over time. What can perhaps be most reliably said about this phenomenon is
that correlations between asset returns tend to increase during epsiodes of downturns in the financial
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markets. There is plenty empirical evidence in support of this claim, for example in Ang and Chen
(2002); Bouchaud and Potters (2001); Cizeau et al. (2001); Longin and Solnik (2001); Meric et
al. (2001); Solnik et al. (1996) and the references therein. In this paper we focus our investigation
on return correlations between asset returns in reference to more circumstantial market drawdowns.
Specifically we are interested in correlation dynamics of asset returns in relation to systemic shocks
which occur in financial markets.

Systemic events have a special characteristic of causing drawdowns that are contagious in that they
ultimately propagate to a large number of assets relative to the number of assets immediately affected.
In other words, under certain market conditions, devaluation of some assets can cause devaluation
of some other assets in the financial system. The notion of financial contagion is not new and is
recognized in historic accounts of financial crises dating back several centuries ago. See Reinhart
and Rogoff (2011). Viewed from the perspective of a purely systemic crisis it is intuitive to explain
correlation asymmetry in asset returns simply as a manifestation of financial contagion itself. However
the risk of systemic shocks tends to change over time as the conditions that facilitate contagion are
created. Therefore an important research question posed in this paper is whether an increased systemic
risk is reflected in rising correlations between asset returns be fore the onset of a systemic crisis.

To measure the strength of comovement of asset returns we take an approach based on spectral
analysis. The idea underlying this approach is to transform coordinates of the original multivariate
return data by means of a principle component analysis (PCA), such that the variance along each axis
of the new system is maximized. The values along each axis represent linearly uncorrelated factors,
and have successively decreasing variance (See Appendix A). Recently this PCA has been used to
study changes in correlation between asset returns (Billio et al., 2012; Conlon et al., 2009; Drozdz et
al., 2000; Kritzman et al., 2011; Meng et al., 2014; Pan and Sinha, 2007; Zhang et al., 2015). Since
each eigenvalue equals the variance of the Principle Component (PC) found through its associated
eigenvector, we can define the total risk in the system as the sum of these eigenvalues. Then the
proportion of total variance attributed to a small number of PCs indicates the degree of commonality
between returns on the assets in question. We estimate the proportion of variance explained by a
fixed small number of factors through time and study its fluctuations. A similar statistic is coined an
absorption ratio (AR) in Kawahara et al. (2007), which is in reference to the proportion of variance
absorbed by a few factors. Studies that have taken this approach commonly find that severe downturns
coincide with and are sometimes preceded by increases in the strength of comovement between asset
returns. The explanation provided for this phenomenon is that a higher degree of integration among
financial institutions allows for a ripple effect that characterizes systemic financial crises. However the
literature drawing such a conclusion is mostly based on investigations that are limited to certain asset
classes and over certain time periods. Specifically the Global Financial Crisis of 2008 is by far the
most common case study for this stream of literature and equities are the most common asset class
examined in this regard. The current paper expands the analysis in two important directions : (i) we
examine three episodes of crises of systemic nature: the Global Financial Crisis of 2008 (or simply
the Financial Crisis), the Eurozone Sovereign Debt Crisis of 2009/2010 (or simply the European Debt
Crisis) and the Asian Financial Crisis of 1997 (or simply the Asian Financial Crisis); and (i1) we study
a broad class of assets in this paper including equities, which have been much studied, and bonds,
credit default swaps and currencies,which have been relatively less studied so far.

Strictly speaking sample eigenvalues are random variables. For this reason we are interested in
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distributional aspects of eigenvalue-based statistics (see Appendix B). Results from multivariate
statistical analysis include exact expressions about both joint and marginal eigenvalue distributions of
Wishart matrices (see Muirhead (1982) for examples.) Although Wishart matrices are useful models
of correlation matrices, there are issues in practical applications of exact density representations.
Firstly the true covariance matrix is a required parameter that is usually unknown to investigators.
Secondly for a non-null covariance structure the expressions are usually difficult to evaluate,
especially in a high-dimensional setting. Yet results from random matrix theory (RMT) point to a
convergence of the density of sample eigenvalues to a nonrandom density as matrix dimensions go to
infinity at a fixed aspect ratio. The main result for Wishart matrices has been known since 1967 as the
Marcenko-Pastur law (Marcenko and Pastur, 1967) (See Appendix B.3.). Since then, the limiting
eigenvalue density has been shown to exist for many different matrix structures, including covariance
matrices of time series with temporal dependence (Jin et al., 2009; Yao et al., 2012) or cross-sectional
dependence (Silverstein, 1995). Knowledge that the limiting eigenvalue density exists implies that
second-order stationarity in a series of eigenvalue observations can be a reasonable assumption under
some conditions and this is a desirable property to have for the purpose of statistical inference.
Furthermore the discrepancy between empirical and theoretical eigenvalues points to a deviation of
the actual system covariance structure from what is postulated in theory. For example, if the empirical
largest eigenvalue exceeds the upper support of the Marcenko-Pastur density, then this can serve as
evidence that there is more structure to the data than if the data were generated by a purely
multivariate white-noise process.

Recognizing potential drawbacks of assuming linearity for asset returns relationships in general,
and given evidence of nonstationarity of the correlation structure of asset returns documented in this
paper in particular, we introduce a nonparametric method to gain some insight into change-points in
the correlation of asset returns. The problem of detecting changes in the underlying distribution of a
stochastic process is commonly known as a change-point detection. Its origin can be traced back to as
early as the 1930s in the work on the problem of monitoring the quality of manufacturing processes
(Wetherhill and Brown, 1991). More recently this problem has been studied in a wide array of fields
including econometrics (Andersson et al., 2004, 2006; Andrews, 1996; Berkes et al., 2004; Broemling
and Tsurumi, 1987) and finance (Beibel and Lerche, 2000; Chen and Gupta, 1997; Shiryaev, 2002).
There are many detection procedures, which differ mainly in being offline or online. Offline algorithms
are algorithms that are applied on a sample of historical observations. The purpose of the offline
algorithms is to detect changes in an a posteriori fashion within the sample with the lowest probability
of error. On the other hand online algorithms are designed for real-time monitoring for changes in
a stochastic process. Online detection procedures aim to minimize both the false alarm rate and the
detection delay, as each new sample is assumed to incur a cost. In this paper we take an online approach
to monitor the strength of asset comovements. However, instead of searching for an algorithm with
a decision function on whether change has occurred, we propose to track a measure of divergence
between the distributions of successive observations. This addresses the robustness issues that often
arise in financial applications due to financial data being inherently noisy.

This paper contributes to the literature on financial systemic crises in a number of ways. Firstly we
conduct an empirical investigation into the connection between changes in correlation and systemic
risk in three notable financial crises: the Financial Crisis, the European Debt Crisis, and the Asian
Financial Crisis. It is important to stress from the outset that, in this paper, we do not explore any
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potential linkages that may exist among the three crises, in particular between the Financial Crisis and
the European Debt Crisis.

To measure correlation between asset returns, we adapt a variant of the AR, which is computed
from the eigenvalues of the sample return correlation matrix. Such a spectral analysis of correlation
has been previously used in studies of equities during the Financial Crisis. We expand this analysis by
investigating three episodes of systemic crises using a broad class of assets. We find that the
relationship between correlation in asset returns and extreme drawdowns is more general than what
has been reported so far in the extant literature. In particular, whereas extreme drawdowns have been
linked to an increasing comovement in asset returns in the Financial Crisis, consistent with the
findings reported in the literature, we find that, in other episodes of systemic crisis studied in this
paper, a systemic shock actually results in a decoupling of asset returns, so that systemic crises are
associated more with a general breakdown of the correlation structure of asset returns. In addition,
given evidence of nonlinearity and nonstationarity in correlation structure of asset returns, we also
conduct a change-point analysis on the correlation structure of asset returns by using a nonparametric
technique. By estimating the divergence in the distributions of successive groups of samples through
time, we identify time periods that are associated with shifts in the correlation structure of asset
returns. We find that the divergence score increases either before or coincidentally with systemic
financial shocks.

The organization of the remaining parts of this paper is as follows. Section 2 discusses systemic
risk and its connection with correlation of asset returns, and provides a selected literature review most
relevant to our study. Section 3 describes the data used in our study and performs an exploratory data
analysis of the correlation dynamics in reference to three financial crises of systemic nature across a
broad range of asset classes. In Sections 4—7 we introduce and use a nonparametric approach based on
statistical change-point detection techniques to study the nonlinearity and nonstationarity of correlation
structure of asset returns. Section 8 provides an additional parametric analysis as a simple and informal
check on the results obtained by using the RMT and the nonparametric approach. Section 9 concludes
the paper. Appendix A provides a brief review on spectral analysis of correlation essential to the
analysis conducted in this paper. Appendix B presents discussion on the distribution of eigenvalues,
focussing on results from the RMT, and, lastly, Appendix C lists stylized properties of eigenvalue-based
time series.

2. Selected literature review

There is a number of studies in the literature that are related to our paper in the use of the spectral
analysis and the RMT to study the level of correlation between asset returns and its implications on
risk management. In particular a recursive PCA scheme has been implemented to gain insight into the
temporal evolution of the interconnectedness of asset returns and its relationship with systemic shocks
(see Billio et al., 2012; Kritzman et al., 2011; Meng et al., 2014, for examples). However, so far,
such an analysis has only been made to illustrate a relationship qualitatively. In this paper we expand
this approach by systematically studying the properties of correlation matrix eigenvalues in empirical
asset-return data, and determining what, if any, can be statistically inferred from the eigenvalue series
of these return data about the systemic risk.

Financial systemic risk is inherently difficult to define and there is no clear consensus in the
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literature on a precise definition of it to this date. However proposed definitions in the literature (e.g.
International Monetary Fund, 2009; Billio et al., 2012; Bijlsma et al., 2010; De Brandt and Hartmann,
2000) tend to share one common thread that, when realized, systemic risk results in a severe
disruption to the financial system. The outcome of the event tends to propagate from local to
system-wide shocks through some amplification mechanism, also known as “contagion”. Systemic
risk is then defined as the probability of such an event occurring. The best recent example of this is
the Financial Crisis, in which defaults by a small initial number of financial institutions cascaded
throughout the entire U.S. financial industry. In this case the amplification mechanism was due to a
high degree of interdependence of institutions’ solvency because of contingent-claims like default
insurance. Vastly common dependence on catalytic factors like the health of the housing market also
played a role (Lewis, 2010) in this crisis. In general it is much easier to recognize systemic risk in an
ex-post sense than to define it an ex-ante sense. Unfortunately its recognition often comes only after
the risk has been realized, imposing a substantial economic cost to the affected financial system
(International Monetary Fund, 2009). Policy makers therefore have a keen interest in detecting an
elevation of systemic risk as early as possible in order to take necessary preventive measures.

The connection between systemic risk and correlation is rooted in a wellknown stylized fact of
financial returns, which asserts that times of crisis are associated with increased asset return
correlations. This relationship has been investigated in a relatively large volume of studies in the
literature, such as (Ang and Chen, 2002; Bouchaud and Potters, 2001; Cizeau et al., 2001; Longin and
Solnik, 2001; Meric et al., 2001; Solnik et al., 1996). In particular the authors in Ang and Chen
(2002) find that, conditional on the negativity of returns in the U.S. equity market, correlations are
11.6% higher than implied by a normal distribution. This is contrasted with correlations that, when
conditioned on positive returns, cannot be statistically distinguished from those implied by a normal
distribution. While it has been extensively documented that correlations increase during volatile
periods, a more interesting question for us is whether a strengthening in correlations between asset
returns precedes widespread shocks in the financial system. That is whether contagion is facilitated by
a state of high degree of interconnectedness that the system evolves to. In this case the extent to which
we can make inference on asset returns and volatility following states of high correlation is of some
interest.

To measure the strength of comovement in returns on a class of assets we apply the PCA to the
sample correlation matrix and obtain the proportion of total variance explained by every PC. If a
relatively small number of PCs explain a relatively large proportion of variance, this is interpreted as a
state of high degree of interconnectedness between the assets’ returns (See Appendix A). This
approach has been used in the past in studies of asset return correlations, including some which
analyzed correlation dynamics in the context of systemic risk (Billio et al., 2012; Conlon et al., 2009;
Drozdz et al., 2000; Kritzman et al., 2011; Meng et al., 2014; Pan and Sinha, 2007). As stated in
Appendix A.4, there are a few important differences between our measure of interconnectedness
between the assets’ returns and the more commonly used Average Pearson Correlation between these
returns. Firstly, the interconnectedness measure accounts for the direction of the strongest variability
in the return co-movement, as such it accounts for the component of the asset return correlations,
which is not captured in a simple average. As a result it is possible for the average correlation of asset
return to decrease over time but for the interconnectedness measure to display an increased value.
Another distinction between these two measures is the ability of the interconnectedness measure to
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measure the proportion of the variability in asset returns captured in specific directions as opposed to
the correlations that capture only bilateral congruence; the interconnectedness measure therefore
captures secondary links between asset returns. Thirdly, the interconnectedness measure reflects
changes arising from co-movement between the asset returns with high variance, while a simple
average correlation between these assets accounts for the levels of volatility implicit in each.

Since the variance explained by each PC is given by the associated eigenvalue, this analysis can
draw on what is known from the RMT regarding the distribution of eigenvalues (See Appendix B.2).
For example differences between the empirical density of eigenvalues and the theoretical density of
eigenvalues (in purely random data) suggest that there is a common “market” factor to the returns
(Laloux et al., 2000). A useful procedure is to compute the proportion of variance explained by a
fixed number of PCs through time using the PCA on a rolling window of sample returns. This results
in a time series of the correlation measure and reveals the temporal dynamics of the degree of
interconnectedness between the assets. Notably (Kritzman et al., 2011) calculate the AR for returns
on the MSCI USA equity index. They find that, between January 1998 and October 2010, all 1%
worst monthly drawdowns are preceded by a one-standard-deviation spike in the AR. In a related
study (Pukthuanthong and Roll, 2009) use an R-square similar to the changes in the AR proposed by
(Kritzman et al., 2011) to provide a measure of integration. They point out that integration is only a
necessary but not sufficient condition for the identification of periods of heightened systemic risk. As
a result (Pukthuanthong and Berger, 2012) extend the integration analysis of (Pukthuanthong and
Roll, 2009) to obtain a time-varying measure of systemic risk within international equity markets.
They find that an increase in their measure of systemic risk leads periods in which the probabilities of
market crashes, and of joint co-exceedances across markets, increase substantially. In an
out-of-sample analysis, conditional on the AR exceeding a certain threshold, stocks with higher
contribution to the risk of the whole system suffered statistically larger losses during the Financial
Crisis (Billio et al., 2012). In Meng et al. (2014) the authors study returns on U.S. real-estate prices in
51 states and use the AR to analyze correlation dynamics. Regarding the question of whether housing
bubbles can be identified in advance the authors point to a gradual increase in the largest eigenvalue
from 1993. More recently the PCA has been applied to returns on volatilities implied from options in
order to assess the systemic importance of various underlying equities (Doris, 2014). Stocks whose
correlation matrix of option-implied volatility returns has relatively large eigenvalues are classified as
systemic and those with relatively small eigenvalues are classified as idiosyncratic. In addition the
authors apply a rolling-window PCA procedure to obtain a time series of the normalized largest
eigenvalue and number of eigenvalues exceeding the Marcenko-Pastur law (See Appendix B.3 for
discussion of this law). Since the limits of the support of the Marcenko-Pastur law are based on the a
white-noise assumption, eigenvalues that exceed the upper bound are considered significant in terms
of the content of their information about the system’s structure. The authors find that, during
high-volatility periods, the largest eigenvalue increases, whereas the number of eigenvalues beyond
the theoretical boundary decreases.

The most important conclusion that is common to studies using the AR to analyze the relationship
between return comovement and crises is that severe downturns are preceded by or, at least, coincide
with increases in the AR. The explanation provided for this phenomenon is that a higher degree of
integration among financial institutions facilitates the ripple effect that typically characterizes
financial crises. However it should be noted that these conclusions have been reached mostly based on
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investigations that are limited to certain asset classes and over certain time periods. Specifically and
as mentioned earlier, the Financial Crisis is by far the most common case study and equities are the
most commonly studied asset class. In this paper we expand the universe of asset classes to include
equities, bonds, currencies and CDS contracts. In addition to the Financial Crisis, we also study two
other crises of systemic nature, namely the European Debt Crisis and the Asian Financial Crisis.

3. Data description and exploratory data analysis

3.1. Data description

In this study we focus on three episodes of systemic crises of notable nature, namely the Financial
Crisis, the European Debt Crisis, and the Asian Financial Crisis. To investigate each crisis we collect
data for groups of assets that potentially have played an important role in its causes and consequences.
We also obtain data on at least one broad-based index to be used as a measure of distress for each crisis.
A summary of asset groups and indices used is given in Table 7.

The NYSE Financial Index (NYK) covers NYSE-listed common stocks that belong to the
Financial Sector according to the Industry Classification Benchmark. Components in the Index
represent eighteen countries globally and several industries including banking, insurance, financial
services and real estate investment. The market capitalization of NYK components represents a
significant portion of the total market capitalization of the Financial Sector in the United States and
globally (NYSE Financial Index, 2014). We obtain daily logarithmic returns between January 1, 2003
and December 31, 2013 (for a total of 2769 observations) on 248 stocks that were components of the
NYK (at the time the data were being collected for this study).

We also obtain spreads for five-year senior-debt Credit Default Swaps (CDS) contracts on major
global financial institutions for the period January 1, 2004-December 31, 2013. The list of entities for
this data set is given in Table 1.

Table 1. Institutions included in data set of Financial Sector CDS spreads.

Financial Institutions in CDS Data

ACE Limited AIG Group The Allstate Corporation
American Express Banco Santander Banco Bilbao Vizcaya Argentaria
Barclays PLC BNP Paribas SA Citigroup Inc

Commerzbank AG Credit Agricole SA Credit Suisse Group AG
Deutsche Bank AG Goldman Sachs Group Inc HSBC Holding PLC

ING Group JP Morgan Chase LCL SA

Lloyds Banking Group Mitsubishi UFJ Financial Group Morgan Stanley
Nomura Holding Inc Royal Bank of Scotland Group ~ UBS AG

Next daily values of the S&P 500 (denoted as SP500) index are collected for the period matching
financial equity and CDS data. We also gather ten-year yields on European Sovereign Debt between
January 1, 2006 and December 31, 2013 on bonds issues by the countries in Table 2. All of these
countries had a significant exposure to the European Debt Crisis due to their mutual economic ties.
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Table 2. Countries included in data set of ten-year bond yields.

Countries Represented in Bond Yield Data

Austria Hungary Portugal
Belgium Ireland Spain

Denmark Italy Sweden

Finland Netherlands Switzerland
France Norway United Kingdom
Germany Poland

We collect five-year CDS spreads between January 1, 2006 and December 31, 2013 on on European
Sovereign Debt issued by the countries in Table 3. Again all of these countries had a significant
exposure to the European Debt Crisis due to their close economic ties.

Table 3. Countries included in data set of five-year CDS spreads for government-issued debt.

Countries Represented in CDS Spread Data

Austria Hungary Slovakia
Belgium Italy Spain
France Poland

Germany Portugal

The Bloomberg European Financial Index (BEFINC) is a cap-weighted index of the most highly
capitalized European companies that belong to the financial sector and trade on European exchanges.
We obtain daily values of the index between January 1, 2006 and December 31, 2013.

We also collect the daily spot exchange rate between the Euro and U.S. dollar (EURUSD) between
January 1, 2006 and December 31, 2013. The exchange rate was commonly viewed as efficient in
responding to events throughout the crisis due to its implications on the stability, and, hence, the
supply-demand balance, of the common currencies (Figure 1).

In addition we gather the spot exchange rate of the domestic currency of various countries/regions
in the region of the Asian Financial Crisis versus the U.S. dollar. Included countries/regions are listed
in Table 4. The data is daily, spanning from May 31, 1995 to December 31, 1999.

Table 4. Countries/regions (exchange rate tickers) represented in Asian currency data.

Countries Represented in Currency Data

Australia (AUDUSD) Philippines (PHPUSD)
Burundi (BNDUSD) Singapore (SGDUSD)
Indonesia (IDRUSD) South Korea (KRWUSD)
India (INRUSD) Taiwan (TWDUSD)
Japan (JPYUSD) Thailand (THBUSD)

For each country/region in Table 5, we obtain daily closing prices of a major domestic free-float
equity index between April 15, 1995 and December 31, 1999. The companies represented collectively
in these indices account for the vast majority of economic output in the region directly affected by the
Asian Financial Crisis.
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Figure 1. A time line of major events related to the European Debt Crisis and fluctuations in
the EURUSD rate. Source: Reuters.

Table 5. Countries/regions (equity index tickers) represented in Asian equity data.

Countries Represented in Asian Equity Data

China (SHCOMP) Philippines (PCOMP)
Hong Kong (HSI) Singapore (SGX)
Indonesia (JCI) South Korea (KOSPI)
Japan (NIKKEI) Taiwan (TWSE)
Malaysia (KLCT) Thailand (SET)

Lastly we note that the MSCI AC Asia Pacific Index (MXAS) captures large and mid cap
representation across the 13 countries/regions in the Asia Pacific region as listed in Table 6. With 989
constituents, the index covers approximately 85% of the free float-adjusted market capitalization in
each country/region. Daily closing prices between April 15, 1995 and December 31, 1999 are
collected.

3.2. Exploratory data analysis
3.2.1. Global financial crisis of 2008

The systemic nature of the Financial Crisis is due to links among financial institutions that were
established using contingent claims such as the credit default swap (CDS). The web of contractual
relationships that resulted from a proliferation of claims contingent on defaults across the financial
industry served as a mechanism by which losses would propagate. The interdependence in bank
solvency was so profound that over 270 banks collapsed within two years since September 2008,
when Washington Mutual Inc. became the biggest bank that fell down on record (Smith and Sidel,
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Table 6. Countries/regions represented in MSCI Asia Pacific Index.

Countries/regions Represented in Index for the Asian Financial Crisis

Australia China Philippines
Hong Kong India Taiwan
Japan Indonesia Thailand
New Zealand South Korea

Singapore Malaysia

Table 7. Summary of asset groups and indices used in analyzing each crisis episodes. The
AR is calculated for each asset group and its relationship with the level of distress is studied
using the relevant indices as proxies.

Crisis Assets Indices
Financial Crisis Equities SP500
CDSs
European Debt Crisis Bonds BEFINC
CDSs EURUSD
Asian Financial Crisis Currencies MXAS
Equities

2010). Since these links were formed and strengthened over time, it is plausible that the increased
economic dependence among financial institutions resulted in a stronger comovement in the value of
the assets of these institutions.

The first data set for the financial sector comprises daily logarithmic returns between January 1,
2003 and December 31, 2012 (for a total of 2769 observations) on 248 stocks that were components of
the NYK (as of the time the data were collected). We estimate the correlation matrix by using a rolling
window of 252 trading days and perform a PCA to obtain the AR measures. We plot the AR time series
using different numbers of eigenvalues in Figure 2. The resulting time series exhibit a highly nonlinear
and potentially nonstationary pattern over time. The nonstationarity of these time series is confirmed
by evidence obtained from ADF, PP and KPSS unit-root tests (See Appendix C). This is particularly
the case for the first eigenvalue, whose relative magnitude varies dramatically, with a range from 25%
to 65%. It appears that the comovement in returns has strengthened gradually in the years leading up
to the Financial Crisis and remained relatively elevated since that time. Specifically the average before
September 1, 2008 was 34% and 53% after. Apart from being richly dynamic the estimated AR time
series for the first dominant PC, ¢,, as defined in Appendix A.3., explains a relatively large proportion
of the variance; it is, at its lowest, about 16 times larger than the upper support of the Marcenko-
Pastur distribution with a commensurate aspect ratio parameter. On average, the first PC explains
approximately 44% of the variance. The first 25 PCs, a ten-th of the number of variates, account for
approximately 70% of the variance on average and as much as 80% at the apex of the crisis.

We also analyze 2051 observations of logarithmic returns on CDS spreads for 24 major global
financial institutions. A time series of CDS spreads for some major U.S. financial institutions is plotted
in Figure 3. As with our analysis of financial equity returns we plot the AR time series for CDS data
using a 252-day rolling window in Figure 4. Again the resulting time series appear to be highly
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Absorption Ratio: NYK Component Returns
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Figure 2. Eigenspectrum analysis for returns on components of the NYSE Financial Sector
Index (NYK).

Five-Year CDS Spreads: Selected Major Banks
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Figure 3. Five-year CDS spreads in basis points on selected major banks.

nonlinear and possibly nonstationary. The latter is supported by statistical evidence obtained from
the ADF, PP and KPSS unit-root tests. We also see that correlations have remained strong after the
crisis in CDS spread returns. The relative magnitude of the largest eigenvalue varies approximately
from 17% to 66% and much higher than the upper bound predicted by the RMT. There is a dramatic
spike occurring in June, 2007 that is followed by a steady increase throughout the financial crisis. On
average, ¢, explains 47% of the total variance.

To illustrate the relationship between SP500 and the proportion of variance explained by the first PC
in our data sets we overlay their values in Figure 5. Sharp increases in ¢, are visually evident before
critical events such as major bank failures. This suggests that a systemic risk monitoring scheme based
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Absorption Ratio: CDS Spread Returns for Financial Institutions
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Figure 4. Eigenspectrum analysis for returns on spreads of financial institution CDSs.

on the level of ¢, could potentially raise a red flag before the crisis reached its height. However, if
there is any predictive component to the information content of ¢,, it is certainly mixed with some
coincident response to shocks. For example we observe a dramatic spike in equity correlations in the
summer of 2011, which coincides with the credit rating downgrade of U.S. sovereign debt. However
there is no apparently significant change in the correlation structure prior to this event.
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Figure 5. Proportion of variance explained by first PC in CDS and NYK component (equity)
data, compared with the level of SP500.

Our observations thus far are consistent with the existing work in the literature for the case of
the Financial Crisis; that is periods of turmoil in equity markets appear to have been preceded by or
coincide with increases in correlation of asset returns.

3.2.2. Eurozone sovereign debt crisis of 2009/2010

Importantly the European Debt Crisis is an example of a systemic shock in fixed income assets. It is
similar to the Financial Crisis in that it was characterized by financial contagion. While the cornerstone
of the crisis involved certain members of the currency union, known as peripheral countries, financial
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interlinkages meant that countries that are not necessarily in the eurozone would also be affected,
by virtue of their membership in the European Union, for example. Thus the analysis in the extant
literature and our work so far is consistent with the setting of this crisis. In this paper we extend the
analysis by studying the relationship between correlation and contagion in the European sovereign
credit market.

In particular we focus on the information contained in returns on sovereign bond yields and CDS
spreads of countries in the EU". The first data set is comprised of daily logarithmic returns on ten-year
yields for government debt issued by the countries listed in Table 2. The second data set consists of
daily logarithmic returns on five-year CDS spreads on sovereign debt issued by the countries in Table
3.

It should be pointed out that the variates in the system ought to be temporally homogeneous in
order to preserve comparability and the power of inferential analysis. A missing value in one variate
would require filling or else the time point would need to be discarded altogether. Therefore we have
excluded certain countries from the analysis due to limited data availability. For example Greece stands
out as the country that had endured the most significant rise in its cost of borrowing, as well as CDS
spreads reflecting expectations of near certain default. Greece indeed practically defaulted on its debt
as it had undergone restructuring, with private bondholders accepting deep haircuts, and a downgrade
of its debt to ‘Restricted Default’ rating (Fitch cuts Greeces issuer default ratings to RD, 2012). As
a result, data on bond yields and CDS spreads was not available after March 9, 2012 and September
16, 2011, respectively.” Comparing results using samples with and without data on Greek debt for
available time periods we find that, despite Greece’s prominent role in the crisis, the results are not
materially different. For this reason we exclude data on Greek debt from our analysis.

The cost of debt and its insurance would reach historically high levels for multiple countries,
particularly Greece, Ireland, Italy, Portugal and Spain. A time series plot of yields for selected
eurozone countries is presented Figure 6. A similar plot of CDS spreads is presented in Figure 7. It
can be seen both in yield and CDS spread data, which are related to sovereign creditworthiness in the
eurozone, started to rise in 2009.

In calculating the AR we again keep the size of our rolling estimation window at 252 trading days.
Figure 8 plots the temporal evolution of the AR for bonds in this system. The correlation structure
of this time series are nonlinear and nonstationary. This visual pattern of nonstationarity is further
supported by statistical evidence obtained from the ADF, PP and KPSS unit-root tests. However we
observe that the correlation dynamics in this case are very different from our results for the Financial
Crisis. There is a notable decline in the AR of a small number of eigenvectors through the crisis.
Returns on sovereign bond yields in Europe were highly correlated before the Financial Crisis, with ¢,
explaining approximately 80% of the variance. Interestingly, near the end of 2008, when the Financial
Crisis was at its peak, the strength of comovement began to decrease steadily. There was also a sharp
shift in the structure at the start of May 2010, when the first PC decreased in dominance compared
with the rest. The aspect ratio is 0.0675 and the Marcenko-Pastur density with this parameter has an
upper support of 1.58, so that the limiting theoretical (normalized) maximum of the largest eigenvalue,
assuming white-noise data, is approximately 9.3% or about 7 times smaller than what we observe on

*The vast majority of the countries were de jure EU members (at the time when the data are being collected for a preliminary study in
August of 2014), although we also study countries who have adopted provisions in order to participate in the EU single market without
membership.

"Greek bond yield data is missing for approximately one year.

Quantitative Finance and Economics Volume 2, Issue 2, 413-467.



426

average.

Ten-Year Bond Yields: Select Eurozone Countries
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Figure 6. Ten-year yields on sovereign debt issued by selected eurozone member states.

Five-Year CDS Spreads: Select Eurozone Countries
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Figure 7. Five-year CDS spreads in basis points on selected eurozone member states.

Absorption Ratio: Sovereign Bonds Yields
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Figure 8. Eigenspectrum analysis for returns on eurozone sovereign bond yields.

Quantitative Finance and Economics Volume 2, Issue 2, 413-467.



427

It can also be seen that ¢, began to increase through the year of 2013, as yields and CDS spreads
have come down in response to improving economic conditions. Our results suggest that the
comovement in bond yields is found to be weakened during the period of the crisis due to flight to
quality. Said otherwise bond yield fluctuations have diverged as bonds of certain countries became an
alternate, safer, source of yield vis-a-vis those experiencing fiscal distress. For example, German,
French and Austrian bond yields were decreasing, while Portuguese, Italian, Irish and Spanish yields
were rising for certain periods (see Figure 6). This is interesting because decreasing yields should
reflect an improvement in the issuing entity’s creditworthiness. Analysis of the creditworthiness of
countries is beyond the scope of this work. However, when we construct ARs for the subset of
sovereign bonds of the core and peripheral countries separately,” we find a discernibly increasing risk
of default among core countries, due not least to uncertainties regarding the stability of the euro
currency. The mere exposure of core country governments and banks to distressed debt put, ceteris
paribus, an upward pressure on core country yields as well. Thus the divergence in yield fluctuations
is in contrast to the fundamental risk-return relationship.

Next we consider the AR for the CDS spreads, plotted in Figure 9. The correlation dynamics
for sovereign debt CDS spread fluctuations resemble their analogue for debt issued by our sample of
financial institution in Section 3.2.1. We see a gradual increase in the AR starting in the latter half
of 2008 and continuing through the year of 2009. In this shift ¢, rises from about 23% to near 60%.
This implies a significant increase in the strength of comovement between CDS spreads. We also find
that comovement has begun a gradual yet significant weakening starting in late 2012. Based on a
comparison with results from the RMT, as before there is evidence of non-random structure since the
largest eigenvalue is, on average, about 4 times greater than the theoretical upper bound.

Absorption Ratio: Sovereign CDS Spreads
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Figure 9. Eigenspectrum analysis for returns on eurozone sovereign CDS spreads.

There are notably different comovement dynamics on the sovereign CDS and the underlying bond
market during the European Debt Crisis.” Briefly our results suggest an inverse relationship where
bond yield fluctuations diverged during market distress and converged in times of relative tranquility.
On the other hand CDS spreads returns converged in times of distress and diverged otherwise, in broad
agreement with what we have observed when analyzing correlations during the Financial Crisis. These

*We thank one of the referees for this suggestion.
$We thank one of the anonymous referees for making this point.
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relationships are visualized in Figure 10, where the largest eigenvalue of each asset class is compared
with BEFINC, and likewise in Figure 11 for the EURUSD rate.

BEFINC and Variance Explained by First PC
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Figure 10. Proportion of variance explained by first PC in CDS and bond yield data,
compared with the level of BEFINC.
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Figure 11. Proportion of variance explained by first PC in CDS and bond yield data,
compared with the level of EURUSD.

It is important to reiterate that, in this paper, we study the European Debt Crisis as a separate
crisis despite its clear connection with the events associated with the Financial Crisis. This is because
our interest in this paper is in the correlation dynamics of a basket of assets that were central to the
sovereign debt crisis and their relationship with a broader measure of the system’s economic stability.
Before a recognition of fiscal trouble in the eurozone, such measures reflect distress from the Financial
Crisis that is independent from the effects of what is now deemed as a loss of confidence in the ability of
multiple countries to make good on loans. Therefore, in studying the connection between correlations
and market turmoil as per a broad, observable indicator, our period of study for this crisis begins on
March 9, 2009."

TMajor equity indices in the U.S. have reached their low on this date and it has been used as a starting point for a post crisis analysis
in reference to the Financial Crisis (Daniel and Moskowitz, 2016).
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3.2.3. Asian Financial Crisis of 1997

In 1997 the global financial system experienced the ripples of a systemic shock to the economies of
a few countries in East Asia. In particular in late 1996 and early 1997 Thailand’s currency, the baht,
was subject to speculative attacks from traders. Short sellers had begun to recognize the weakness
of the baht in terms of its relatively low demand compared to the U.S. dollar, which was required to
service debt, and a diminishing ability of the government to defend it with (still depleting) foreign
currency reserves. In July 1997, when the Thai government was no longer able to defend the baht,
it was allowed to float freely. The result was an immediate sharp decrease in its value. The baht
continued to depreciate through the year, making the debt burden of Thai companies increasingly
difficult to manage to the point that many of them were forced into bankruptcy. At the same time
these events were coupled with a significant decline in the Stock Exchange of Thailand. Panic spread
to neighbouring countries as various Asian currencies experienced similar speculative attacks. Within
two months depleting foreign exchange reserves forced Malaysia, Singapore and Indonesia to drop the
peg of their currencies to the U.S. dollar. In each case the move was met with a sharp devaluation
of the local currency and equities. The shock would significantly affect South Korea, Japan, Taiwan,
Philippines, Laos. This can be seen in Figure 12 and Figure 13, where we plot the returns currencies
and equity indices of several Asian countries/regions. Other countries/regions were affected to a lesser
extent, such as China, which saw reduced growth rates following the crisis.

Return on Currencies: Select Asian Countries/Regions
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Figure 12. Returns on currencies of Asian countries/regions affected by the Asian Financial
Crisis.

The developments in this particular crisis make it a compelling subject of investigation in our study
due to the spectacular contagion effect. We again seek to gain insight into the correlation dynamics
of tradable assets and potential relationships with returns in times of distress. The assets that we
investigate are a basket of currencies of Asian countries/regions and a basket of major stock indices. It
is important to note that for the period that a given currency is pegged, the price discovery process is
critically altered by government intervention. This affects any conclusions drawn about the dynamics
of the AR prior to the crisis. However the returns of pegged currencies are not identically zero as can
be seen in Figure 14. The currencies fluctuate within a narrow band under normal conditions. During
an unusual trading activity, such as speculative attacks, fixed exchange rate bands can be breached.
Therefore there is still useful information content in currency returns even under a fixed exchange-rate
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Returns on Stock Indices: Select Asian Countries/Regions
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Figure 13. Returns on equities of Asian countries/regions affected by the Asian Financial
Crisis.

regime.

Return on Currencies: Select Asian Countries/Regions, Pre-Crisis
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Figure 14. Returns on currencies of select Asian countries/regions before local currency
pegs to the US dollar were dropped by affected countries.

As in the previous analysis we maintain the size of our rolling estimation window for the AR at 252
trading days. Figure 15 plots its the temporal evolution for returns on Asian currencies versus the U.S.
dollar. Importantly the correlation structure of the returns appears to be highly nonlinear and possibly
also nonstationary. The latter is further reinforced by statistical evidence obtained from ADF, PP and
KPSS unit-root tests. We observe a strengthening in correlation beginning in mid to late 1997. Similar
features are present in equity data which we use to generate the AR series In Figure 16. The aspect

ratio of the correlation matrices for both asset baskets is y = 750" Nevertheless the distribution of

eigenvalues differs with equity returns being more tightly coupled as @, is higher in equities for each k.
In particular ¢, is 31% for equities and 21% higher on average over the same period. With the aspect
ratio at hand the upper support of the Marcenko-Pastur density is 14%.

Both equities and currencies appear to have increasingly correlated returns in times of crisis. An
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Absorption Ratio: Asian Currency Returns
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Figure 15. Eigenspectrum analysis for returns on currencies of countries/regions in Asia that
were significantly affected by the Asian Financial Crisis.

Absorption Ratio: Asian Equity Index Returns
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Figure 16. Eigenspectrum analysis for returns on major stock indices of countries/regions in
Asia that were significantly affected by the Asian Financial Crisis.

inverse relationship between the AR and the MXAS index can be seen in Figure 17. For equities, this
reinforces our earlier findings from Section 3.2.1. It should be pointed out that currencies have been
relatively unexplored in this type of study. Apart from the directional relationship there is the important
question of whether correlations tend to strengthen before crisis episodes and, thereby, foster the type
of contagion that characterizes systemic events. Figure 17 provides evidence to the contrary. Returns
on equities and currencies in the region had been decoupling from mid 1996 until the onset of the crisis.

Plotting a time series of the AR provides a visual summary of the strength of comovement in the
data variates. In this section we found some evidence for a relationship between the AR and the level
of distress in the system as measured by a broad index during various crises. We found that returns
on stocks and CDS spreads of financial institutions appeared to have an inverse relationship with the
NYSE Financial Sector Index during the Financial Crisis. Furthermore correlations in these assets had
been increasing before the crisis attained its peak. Returns on CDS spreads of European sovereign
debt had a similar behaviour around the Eurozone Sovereign Debt Crisis. However returns on yields
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MXAS and AR of first PC: Asian Financial Crisis
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Figure 17. Proportion of variance explained by first PC in currency and equity yield data,
compared with the level of MXAS.

of bonds issued by these countries had become less correlated. Finally higher correlation in stock
and currency returns around the Asian Financial Crisis appears to be associated with higher levels of
distress.

The AR time series are obtained through the PCA on return observations using the covariance
method in a rolling-window fashion. That the AR series is dynamic suggests that individual asset data
is not second-order stationary. This supports a known stylized fact that financial data exhibits a pattern
of nonstationarity, which greatly impedes the robustness of models fitted to historical samples using
standard methods.

4. Change-point analysis

Change-point detection is a process of identifying abrupt temporal changes in a stochastic process
(Basserville and Nikiforov, 1993). Change is determined in terms of distributional properties of an
underlying process. The problem of detecting abrupt changes in the statistical behavior of an observed
signal or time series is a classical one, whose provenance dates back at least to the work in the 1930s
on the problem of monitoring the quality of manufacturing processes (Wetherhill and Brown, 1991).
More recently this problem has been studied in a wide array of fields including econometrics
(Andersson et al., 2004, 2006; Andrews et al., 1996; Berkes et al., 2004; Broemling and Tsurumi,
1987), environmental science (Petterson, 1998), finance (Beibel and Lerche, 2000; Chen and Gupta,
1997; Shiryaev, 2002), image analysis (Trivedi and Chandramouli, 2005), medical diagnosis (Petzold
et al., 2004) and network security (Tartakovsky et al., 2006; Thottan and Ji, 2003), among others.
Change-detection serves a broad range of purposes and detection procedures are commensurately
diverse. Perhaps, at the most basic level, they differ in being offline or online. Offline algorithms are
algorithms which are applied to a sample of historical observations. The purpose of this tool is to
detect changes in an a posteriori fashion within the sample with the smallest probability of error. In
particular online algorithms are designed for real-time monitoring for changes in a stochastic process.
Online detection procedures aim to minimize both the false alarm rate and the detection delay, as each
new sample is assumed to incur a cost. We will briefly discuss the online change-detection here.
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Consider a sequence {X,} of 1.i.d. observations and an associated minimal filtration {#,}. Suppose
that X, obeys one of the following hypotheses:

Hy: X,~P, t=12... (1
H: X~0Q t=12... )

where P and Q are two distinct distributions with probability density functions p and g, respectively.

Let L(X) = & be the likelihood ratio and define

pX)
S, = > log L(X)). 3)
i=1

Since S, =S, ; + log L(X,), for > 1 we have

E[S 7] = E[S, | +log LX)IF, ] )
=S, +E[log LX)IF; ] 5)
=S, +E[log L(X,)]. (©6)

where the second equation holds because §,_; is F,_;-measurable and third equation holds because
log L(X,) is independent of F,_;. Now, under some probability measure F' with density f, we have

Er [log L(X))] = f log (x))f( ) dx (7
* q(x) f(x)
= | 1
L, o p(x)f(x))f (0 dx ®)
:f log f(x))f()dx f (f( ))f()d ©

Under H, we have F = P, so that the first term becomes zero and we are left with

E, [log L(X,)] :—f lo (pé ;)p(x)dx (10)
= =Dy (P O), (1)

where Dy, (P || Q) denotes the Kullback-Liebler divergence between P and Q. On the other hand,
under H,, we have F = Q and

E,, [log L(X,)] = f log(qi ;)q(x) dx (12)
= Dy (Q || P). (13)

Recall that Dg; (A || B) > O for any distributions A and B, with strict equality for A = B. Thus
in equation (6) we have that E[log L(X,)] < O under H, and E [log L(X,)] > O under H,. It then
follows that, under H,, E[S,|F,] = S, VY I < k, so {S,,F,} is a submartingale. Similarly under H,,,
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E[-S.|F] = -S, VI <k, so{S,,F,}is a supermartingale. In fact, in both cases, we have almost sure
divergence [70] with

as. | —oo under H,
S — { oo under H, ° (14
If we consider the situation that
P t<k
X,~{Q o (15)

i.e., there is a change-point in the distribution of X, at time k < oo, then this change will be reflected as a
change in the sign of the mean value of the log-likelihood ratio. In the setting described by expression
(15), a typical objective of an online monitoring scheme is to detect the change while minimizing
both the time delay in raising an alarm after the change and the rate of false alarms. Of course there
is a tradeoff between the two performance criteria and studies in the area of stochastic control have
sought to optimize it. For instance Shiryaev (1978) adopted a Bayesian approach whereby the change
point is a random variable with a prior distribution. Lorden (1971) formulated the problem with a
deterministic change point and sought to minimize the worst-case detection delay subject to a lower-
bound on the mean time between false alarms. In both cases the authors arrive at optimal solutions.
The cumulative sum (CUSUM) procedure (Page, 1954), which was originally proposed for continuous
inspection schemes, was also proved to be optimal for Lorden’s formulation by Moustakides (1986).
The CUSUM statistic is defined as

g =max(§,—§;) (16)
O<k<t

=S, - mins, (17)

= max (g,_, + log L(X,),0), (18)

where S, = 0 and S, is the log-likelihood ratio defined in equation (3). The stopping rule is

T:inf{tzl:St—gn_inSJZb}, (19)
<J<n

with b > 0 representing an alarm threshold. From equation (17) it becomes clear that fact that the
expectation of the log-likelihood ratio changes signs under different distributions is a key statistical
property. It guarantees the almost sure divergence of g, so that the threshold b will be crossed after the
change-point. The effectiveness of the algorithm depends on the size of that change, i.e.,

D(P |l Q) = Eg [log L(X))] — Ep [log L(X))] (20)

=Dy (Pl Q) + Dg(Q | P) 2D

which is noted to also be the symmetrized Kullback-Liebler divergence between P and Q. A larger
value of D indicates greater dissimilarity between the distributions. That it is symmetric implies

D(P|| Q) = D(Q|l P), so the statistic can be thought of as a distance more intuitively than the
asymmetric Kullback-Liebler divergence.
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There are a couple of challenges that are common in change-point detection procedures. Firstly
information about the distribution of the series — either before the change, after the change or both —
is assumed to be known in parametric methods. In many practical cases this is not the case and, so,
assumptions about the underlying distribution need to be made. Secondly the use of thresholds in the
decision function introduces subjectivity and threshold parameters likely need to be tuned periodically
and between different applications. When one or both of the distributions P and Q are unknown, we
can resort to nonparametric methods of change-point detections. This approach is often undertaken
due to its practicality, even when optimality cannot be established formally (see Kawahara et al., 2007;
Liu et al., 2013; Yamada et al., 2013, for examples). To alleviate robustness issues in dealing with
procedures that involve a binary decision on whether change has occurred, we suggest to monitor
the symmetrized divergence statistic D (P || Q). As stated before this statistic represents the degree
of dissimilarity between two distributions. Many detection procedures rely on the change of sign of
the expected log-likelihood ratio after a change-point. This statistic, which is equal to the difference
between E [log L(X)] before and after the change, has therefore been used as a detectability index. Here
detectability can be defined in terms of the performance of change-point detection procedures. For
example the average number of samples taken before a decision can be made in some online detection
procedures is proportional to the Kullback-Liebler divergence (Basserville and Nikiforov, 1993). In
the following section we introduce a nonparametric approach for estimating D (P || Q).

5. Nonparametric monitoring procedure

We adapt a nonparametric estimation method for multivariate stochastic processes in Liu et al.
(2013). Let x, € R be a d-dimensional time-series and let X, = [x/,x/.,....x..,_,]" € R% be a batch
sequence of k observations of x,. Note that (-)" indicates transposition, so x, is a time-varying vector
of length dk. In what follows, instead of using a single observation of x, as a sample instance, X,
is treated as a sample instance in order to capture the temporal correlation that empirical data tends
to exhibit. To detect a change in the underlying distribution a measure of dissimilarity is computed
between two groups of temporally-spaced samples as follows. Let X, = {X,,X,,,,....X,,,_;}and X,,,, =
(X, Xiins s X140, } and suppose that X, ~ P and X,,,, ~ Q. Denote with D, (P || Q) the Kullback-
Liebler divergence between two distributions P and Q with densities p(X) and ¢(X) respectively. Then
we are interested in the quantity

D(P || Q) = Dg (P || Q) + Dy, (Q || P) (22)

with Y
Dy (Pl Q) = fp(X) log (M) dX. (23)

q(X)

Figure 18 illustrates the structure of the samples, where the two groups used to estimate divergence
are comprised of n samples, each of which is a batch of length .

The densities p(X) and g(X) are unknown and must be estimated in a nonparametric fashion. A
naive approach would be to estimate each of them separately and then compute the ratio. However since
knowing p(X) and ¢(X) implies knowing their ratio but not vice-versa, estimating the ratio directly is
an easier task. In particular a method proposed in Sugiyama et al. (2008) to estimate the density ratio
is employed in this paper.
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Z: 1 d-dimensional time series observation
X batch of observations, treated as a sample instance
X = K Kprys ooy Kopgupa } comparison group

Figure 18. Structure of samples used to calculate Dy, (P || Q).

6. Direct density-ratio estimation

pX)
q(X)

Let us model the density ratio by

2(X;0) = > OK(X, X)),

i=1
where 6 = (0,, ...,0,)" is a scaling vector parameter and K is the Gaussian kernel

1x-x"11?

KX, X)=e >,

(24)

(25)

where the kernel width, o > 0, is to be determined by cross-validation. The parameters 6 are to be
learned from the data as those that minimize the Kullback-Liebler divergence between the distributions

with densities p(X) and g(X; @)g(X). That is,

5_ : pX)
0 = arg;nln f p(X)log (—g(X; 0)q(X)) dX
=snggin | e ({55 )x - [ roostscxion
= argmin pX)log| —|dX — | p(X)log(g(X;@))dX
0 q(X)

= argmax fp(X) log (g(X;0))dX
0

n

= argmax {% JZ; log (; 0.K(X j,X,.)] ; % > Z 0.KX;,X)=1,6>0

j=1 i=1

(26)

(27)

(28)

(29)

where in (29) the integral is approximated by the empirical estimate and the constraints are added to
respect that g(X; 8)g(X) is a probability density function. Since the problem in (29) is convex, there
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exists a global optimum that can be obtained using a gradient-projection method, among others. Then
the density ratio can be estimated as

X = ) 6KX,X) (30)
i=1

and an estimate of Dy, (P || Q) is given by

— 1 © _
Dy (P11 Q) = - > logg(X)). (31)
o
As a simple test of convergence we estimate Dy, for two batches y, = [v;,...,Yy;,] and
¥, = [Va15- - - ¥a,] Of n observations simulated independently from the processes Y;, = 6,Y,,_, + €, with

Gaussian white noise. Table 8 shows that when 6, = 6, the estimate converges to zero, its true value,
as n grows large. If 6, # 6, then D, > 0 and Dy, converges to a positive constant as n grows albeit at
a slow rate (see Table 9.)

Table 8. Estimate of the divergence score between two samples of observations
yi =[] and ¥y, = [yyys- .., ¥,,] for different values of n, where Y;, = 0.7Y;,_, + €,
and ¢, are independent Gaussian white noise series fori = 1, 2.

Convergence test for equal distributions

n Dy (p(Y) |l g(Y3))
500 0.0286
1000 0.0189
2000 0.0076
4000 0.0051
8000 0.0008

Table 9. Estimate of the divergence score between two samples of observations y, =
[Vi1s--->y1,] and y, = [yy15...,p,] for different values of n. The processes are
Y,=6Y, ,+¢€, where 6, = 0.7,6, = 0.3 and ¢, are independent Gaussian white noise
series fori = 1, 2.

Convergence test for unequal distributions

n Dy (p(Y)) | g(Y3))
500 0.0652
1000 0.0620
2000 0.0597
4000 0.0628
8000 0.0605

This method is completely nonparametric and has the advantage of estimating the density ratio
directly, and not the pre- and post-change densities independently. However its slow rate of
convergence may introduce some bias in the results given the finite sample size in practice. The
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kernel width and scaling vector are chosen systematically, whereas the parameters which determine
the sliding window shape, n and k, are not. These latter two parameters control the size of the rolling
windows X, and X,,, and, thus, act as smoothing parameters as well. The estimated statistic
D (P || Q) is to be interpreted as a measure of the distance between P and Q.

7. Changes in correlation structure

In this section we relate the concept of statistical change-point detection to the structure of
correlations in asset returns. In previous sections we have described the structure of correlations in
terms of the strength of comovement as captured by the relative magnitude of the eigenvalues of the
sample correlation matrix. As discussed in Appendix A the eigenvalue density of certain models of
random matrices tends to a non-random density in the limit that the matrix dimensions grow to
infinity. If these densities are known exactly, then parametric change-detection techniques can be
applied in an online fashion, such that a trade-off between the detection delay and false alarm rate is
optimized. In practice this is most often not the case, but, assuming that a limiting density exists, we
can attempt to estimate points of high divergence in an online fashion using the nonparametric
procedure discussed in the previous section.

Let us briefly revisit the absorption ratio (AR) time series {¢,(f)} used in Section 3.2. For purely
random, independently generated Wishart matrices, we expect that observed instances of the first
(normalized) eigenvalue would form a stationary series. In fact we would expect this to be true in the
limit as the matrix dimensions grow to infinity (with a constant aspect ratio) in all cases where a
limiting spectral density exists. In testing the level of the AR for stationarity, we find repeatedly for
different assets and markets that the series is nonstationary, even over relatively short periods of time.
This is entirely consistent with the notion that financial crises are associated with a breaking
correlation structure. However nonstationarity in the level of the AR may lead change-detection
procedures to produce noisy results. On the other hand the series A¢, have more desirable properties
in the sense that nonstationarity due to noise becomes less influential. Increasing divergence between
successive observations of the first-differenced series also maintains the intuitive interpretation of
emerging trends in the AR. We shall use the procedure in Sections 4-6 to investigate abrupt changes in
correlation structure associated with financial crises.

We compute A¢, for each of the asset groups studied to this point. We use values of n = k = 30
in computing divergence for all cases' and plot A¢, and the divergence score D (P || Q). We also
overlay a plot of the relevant index to compare the divergence score with market conditions. The
divergence score increased sharply for financial sector equities and CDS spreads in 2007 (see Figure
19 and Figure 20). These spikes follow larger, positive values of A¢,, representing strengthening of
correlations which occurred well before the S&P 500 index reached its crisis lows.

During the European Debt crisis the divergence score increased sharply in response to downward
shifts in the AR. We find that these shifts are not reflected in the divergence score in bond yield data
until the crisis has reached a very developed state (see Figure 21). With CDS spreads, based on our
data, there is greater potential in detecting a changing correlation structure in an online manner before
large drawdowns. This can be observed in Figure 22 where a large drawdown in EURUSD starting in

IFollowing 