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Abstract: The rational GARCH (RGARCH) model has been proposed as an alternative GARCH
model that captures the asymmetric property of volatility. In addition to the previously proposed
RGARCH model, we propose an alternative RGARCH model called the RGARCH-Exp model that
is more stable when dealing with outliers. We measure the performance of the volatility estimation
by a loss function calculated using realized volatility as a proxy for true volatility and compare the
RGARCH-type models with other asymmetric type models such as the EGARCH and GJR models.
We conduct empirical studies of six stocks on the Tokyo Stock Exchange and find that a volatility
estimation using the RGARCH-type models outperforms the GARCH model and is comparable to
other asymmetric GARCH models.
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1. Introduction

Measuring volatility is of great importance in empirical finance to manage risk, such as portfolio
allocation and to derivative asset pricing. Since volatility is not directly observable in financial
markets, we must rely on some measurement techniques that estimate volatility. One of the
measurement techniques, presumably the most popular, is the autoregressive conditional
heteroscedasticity (ARCH) model (Engle, 1982) and its generalized version, the generalized
autoregressive conditional heteroscedasticity (GARCH) model (Bollerslev, 1986). These
“ARCH-type” models can successfully capture some of stylized facts of asset returns such as
volatility clustering and the fat-tailed nature of return distributions. Researchers proposed numerous
extensions to the ARCH or GARCH models designed to capture more features of asset returns and
with the expectation of estimating more accurate volatilities. The asymmetric GARCH models such
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as the exponential GARCH (EGARCH) (Nelson, 1991) and GJR-GARCH (Glosten, 1993) models
aim to capture the asymmetric property of the volatility process. Certain assets, such as stock prices,
display asymmetric volatility. It is crucial to introduce the asymmetric volatility process in the model
to obtain more accurate estimates for these assets. The rational GARCH (RGARCH) model (Takaishi,
2017) is another asymmetric model that uses a rational form in the volatility process. Most volatility
processes of ARCH-type models are constructed as a polynomial of past volatilities and returns. The
polynomial can be viewed as a Taylor expansion of the yet unknown true volatility process (Sentana,
1995) and the GARCH (1,1) model corresponds to the lowest order Taylor expansion for the
symmetric volatility process. The RGARCH model is based on a rational polynomial or “Padé
approximants,” which could approximate the true volatility process better than Taylor polynomials do.
Various fields use rational polynomials to obtain a better approximate functions. For instance, in
lattice quantum chromodynamics simulations, the power of a fermion matrix is approximated by a
rational function, which is used in the hybrid Monte Carlo method (Clark, 2006, 2007). This then
shows that the rational form is superior to the polynomial version of the hybrid Monte Carlo method
(de Forcrand, 1997; Takaishi, 2001b, 2001c, 2001a, 2002). In finance, some studies applied Padé
approximants to describe return probability distributions (Nuyts, 2001; Alderweireld, 2004) and error
terms of the GARCH model (Takaishi, 2012; Chen, 2013). The RGARCH model has been examined
for stock returns by the goodness of fit test with the deviance information criterion (DIC)
(Spiegelhalter, 2002), and some claim that the RGARCH model can be equally effective with other
asymmetric GARCH models. In this study, we further examine the performance of volatility
estimation with the RGARCH model. We compare the accuracy of volatility estimations by a loss
function using realized volatility (RV) (Andersen, 1998; Barndorff-Nielsen, 2001) as a proxy of true
volatility.

The rest of this paper is organized as follows. Section 2 introduces the RGARCH model and the
other GARCH-type models we use in this study. In Section 3, we describe the Bayesian inference we
use for the parameter estimation of the models and in Section 4, we present the comparative accuracy
results of the volatility estimations. Finally, we conclude in Section 5.

2. Rational GARCH model
The RGARCH model captures volatility asymmetry in a rational form as

2 2
o2 = w+ar,, +,80't_1
! 1 + 51’}_1

ey

where 0',2 and r, is volatility and return at time ¢, respectively, and «,8,w and ¢ are the model
parameters. ¢ introduces asymmetry against r,_; in the volatility process. If ¢ is positive, then the
volatility will be higher for negative returns. For 6 = 0, the RGARCH model reduces to the
well-known symmetric model, that is, the GARCH (1,1) model. The return r, at time ¢ is defined by
r; = 0.6, where €, ~ N(O, 1).

Equation (1) is not well-defined when the denominator of Equation (1) is negative. The denominator
will be negative for 1 < —dr,_;. Although we did not experience a negative denominator in this study,
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it may occur for huge r,_; or outliers. To avoid such cases, we also propose an alternative form:

2 2
_wtar,, +,3a't_1

exp(07r,-1)

2
t

2)

We call this model the “RGARCH-Exp” model. For a small 6r,_;, equation (2) reduces to equation (1).
To compare the accuracy of the volatility estimation, we also consider the following GARCH-type
models.

e GARCH model (Bollerslev, 1986)
ol =w+ar, +po . 3)
e Exponential GARCH (EGARCH) model (Nelson, 1991)
Ino} = w+BInor, + 6z + ¥zl = Ez1), “)
where z,_1 = r-1/0-1.
e GJR model (Glosten, 1993)

2 2
) { w+ar,_ +po;, ri-1 =0

e = w+ (a +p)rt2_1 +,80f_1, r—1 < 0. ®)

The GARCH model is the symmetric volatility model and the EGARCH and GJR models correspond
to the asymmetric volatility models.

3. Bayesian inference

In this study, we employ Bayesian inference for the parameter estimation of the models. From the
Bayes theorem, we obtain the posterior density P(6|r) with T observation r = (ry, 12, ..., rr) given by

P(0]r) o< L(r|6)m(6), (6)

where L(y|6) represents the likelihood function and n(6) is the prior density for 6. Here, 6 represents
model parameters such as 8 = (a,f, w) for the GARCH model. We assume that the prior density is
constant. The likelihood function is given by

T 2
_ 21172 i
L(rl6) = D(zm,) exp( 02). (7

t

Using the posterior density P(6|r), we infer the model parameters as the expectation values by

(0) = % f 0P(6|r)de, 8)

where Z = f P(0)r)d6 is the normalization constant.

Generally, we cannot solve equation (8) analytically. Hence, we estimate equation (8) by the
Markov Chain Monte Carlo (MCMC) method using the Metropolis-Hastings (MH) algorithm
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(Hastings, 1970). We generate samples from the probability distribution P(6|r). In the MH algorithm,
starting from 6, we first propose a candidate " from a certain proposal density g(6'|#). Then, we
accept the candidate ¢ with a probability of

€))

A P(O'r)g(616")
Pyy(6'6) = min [1, —P(9|r)g(9’|9) ] .

If the candidate 6’ is rejected, we keep 6.

Following Refs.(Mitsui, 2003; Asai, 2006; Takaishi, 2009a), we use a multivariate Student
t-distribution for the proposal density. The p-dimensional multivariate Student t-distribution is given
by

I((v+p)/2)/T(v/2)
det X1/2(vmr)p/2
L 0= My - M) R

8(01")

X , (10)
14
where 6 and M are column vectors,
0, M,
0 = 6:2 M= A/ZIZ , (11)
0 M,
M; = E(6;), (12)
and p corresponds to the number of model parameters. X is the covariance matrix defined as
VV_Ez = E[(6 - M)(6 - M)']. 13)

v is a parameter to tune the shape of the Student t-distribution. In this study, we choose v = 10
(Takaishi, 2009a). Note that since equation (10) does not depend on the previous value of ', we obtain
8(610") = g(6).

To utilize equation (10) in the MH algorithm, we need to specify the unknown parameters M and X.
We determine M and £ through MCMC simulations( Takaishi, 2009a, 2009b, 2009c¢, 2010). First, we
make a short pilot run using the Metropolis algorithm (Metropolis, 1953) and accumulate some data.
We then estimate M and X by equations (12) and (13). Second, substituting the estimated M and X into
eq.(10), we perform the MH simulation. After accumulating more sample data, we recalculate M and
¥, and update M and X in equation (10).

4. Empirical results

We use daily closing stock price time series data from the Tokyo Stock Exchange from January 5,
2004 to December 30, 2015 for the following six stocks: 1 Japan Tobacco (JT) Inc., 2 Canon Inc., 3
Toray Industries Inc., 4 Panasonic Co., 5 Sumitomo Metal Industries Ltd., and 6 Nippon Steel Co. The

daily return R, is defined by 100 x (InP(t + 1) — InP(t)), where P(¢) is the daily closing price at day r.
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For the RV calculations, we use 1-min high frequency return data for the same period. We evaluate the
performance of the volatility estimate compared to the RV as a proxy of true volatility. To be specific,
we calculate the following QLIKE loss function (Patton, 2011):

1 < RV,a
OLIKE(A) = 72(1“‘7!2 -5, (14)

=1 t

where RV, 4 1s the RV at time 7 calculated at the sampling frequency A. The RV, 4 1s defined by the sum

of the squared intraday returns,
n(A)

RVia = ) rlina (15)
i=1
where 7, 4 1s an intraday return sampled at the frequency of A at 7 and n(A) is the number of intraday
returns in a day. We use RV, at A = 1,2, ...,40. Thus, there are 40 RVs in total at various sampling
frequencies. In ideal circumstances, equation (15) goes to the true volatility in the limit of A — O.
However, in practice, due to the microstructure noise and non-trading hours, the actual RV is biased.
We modify the RV using the bias correction factor introduced by Hansen and Lunde (Hansen, 2005)
given by
Sii(RP — RPY?
Y1 RVia

Cyh= , (16)
where RP is the daily return, RP is the average of the daily returns, and 7 is the number of daily returns.
Using Cj,, the modified RV, we obtain RVt” A using RV; A = CaRVia.

We estimate the model parameters with the Bayesian inference described in Section 3. We perform
the Bayesian inference using the MH algorithm with a multi-dimensional Student t proposal density.
First, we estimate the parameters of the proposal density with the Metropolis algorithm as a pilot run,
and then switch to the MH algorithm. We recalculate the parameters of the proposal density every
1,000 Monte Carlo (MC) updates using all of the MC data. After the 5000 repetition burn-in process,
we collect 30,000 data points for analysis. Figure 1 shows the acceptance of the MH algorithm every
1,000 MC updates for the RGARCH-Exp model with JT stock data. The initial acceptance is low since
the parameters of the proposal density are still not estimated accurately. Then, as the MC run proceeds,
the acceptance increases quickly to about 70%. We obtain similar results for other cases.

Figure 2 represents daily return time series of JT, the volatility o estimated by the MCMC
simulation with the RGARCH-Exp model and the modified RV at A = 1min as representative. The
estimated volatility is obtained by an average over the MC samples and its accuracy compared to the
RV is examined by the loss function.

Table 1 summarizes the results for the model parameters and the QLIKE loss function. We provide
the QLIKE values as an average over 40 values of QLIKE(A) at A = 1,2, ...,40. The values in square
parentheses indicate the ranking based on QLIKE. Since the ranking varies depending on the stock
price, we also give an average over six stocks in square parentheses in the first column at QLIKE. The
average QLIKEs for all asymmetric GARCH-type models are less than that of the GARCH model,
which indicates that for the stock price time series, introducing asymmetry in the volatility process is
crucial to obtaining accurate volatilities. According to the average QLIKE, the RGARCH-Exp model
should rank first. However, for individual stocks, the other symmetric GARCH-type models can take
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Table 1. Model parameters and QLIKE results. Values in round parentheses denote the
standard deviation of the data sampled with the MCMC method. The values in square
parentheses indicate the ranking results. The values in square parentheses in the first column

show averages of ranking over six stocks.

RGARCH JT Canon Toray Panasonic ~ Sumitomo Nippon
o 0.095(21)  0.099(22)  0.091(22) 0.127(30) 0.091(22)  0.142(28)
B 0.838(31)  0.881(24)  0.891(27) 0.854(31) 0.867(31)  0.818(33)
w 0.35(11) 0.109(44)  0.089(49) 0.117(49) 0.28(12) 0.28(11)
0 0.033(8) 0.023(6) 0.017(8) 0.022(8) 0.026(6) 0.028(8)
QLIKE [2.50] 2.7808 [2] 2.8542[4] 2.4777[1] 2.7213[3] 3.1344[1] 3.0084 [4]
DIC [2.83] 3860.89 [2] 3843.59[4] 3680.66 [2] 3727.13[4] 4134.67[3] 4015.94 [2]
RGARCH-Exp
o 0.100(22)  0.096(22)  0.090(22) 0.123(30) 0.088(21)  0.144(28)
B 0.847(30)  0.889(23)  0.894(27) 0.861(31) 0.880(27)  0.825(32)
w 0.31(10) 0.094(4) 0.084(47) 0.105(47) 0.230(97)  0.252(98)
0 0.0384(96)  0.028(8) 0.01909) 0.028(10) 0.032(5) 0.034(9)
QLIKE [1.83] 2.7798 [1] 2.8509[2] 2.4779[2] 2.77209[2] 3.1345[2] 3.0058 [2]
DIC [1.67] 3860.16 [1] 3841.63 [3] 3680.08 [1] 3725.60[3] 4131.31[1] 4014.06[1]
EGARCH
vy 0.209(39)  0.167(38)  0.198(34) 0.189(47) 0.187(35)  0.307(47)
B 0.951(17)  0.9826(67) 0.978(89) 0.984(78) 0.969(11)  0.952(15)
w 0.089(29)  0.029(12)  0.037(15) 0.026(14) 0.063(22)  0.092(30)
o -0.079(23)  -0.89(19)  -0.028(20)  -0.076(22)  -0.079(20)  -0.071(25)
QLIKE [3.00] 2.7822[3] 2.8487[1] 2.4843[S] 2.77242[S] 3.1347[3] 2.9998[1]
DIC [2.50] 3872.42[4] 3833.53[1] 3683.09[3] 3714.88[1] 4133.73[2] 4021.71 [4]
GJR
o 0.053(22)  0.035(21)  0.084(23) 0.042(29) 0.052(22)  0.102(30)
B 0.838(30)  0.897(21)  0.883(25) 0.890(29) 0.871(30)  0.808(34)
w 0.32(10) 0.075(34)  0.091(43) 0.066(36) 0.23(11) 0.27(10)
p 0.126(37)  0.123(29)  0.037(27) 0.123(33) 0.107(34)  0.130(48)
QLIKE [3.17] 2.7843[S] 2.8540([3] 2.4795[3] 2.7188[1] 3.1384[4] 3.0073[3]
DIC [3.17] 3863.33 [3] 3835.64[2] 3683.77[5] 3720.09[2] 4139.65[4] 4020.40 [3]
GARCH
o 0.116(22)  0.121(21)  0.100(22) 0.130(37) 0.114(24)  0.155(28)
B 0.839(30)  0.866(25)  0.885(26) 0.854(44) 0.863(31)  0.824(31)
w 0.30(11) 0.116(24)  0.093(46) 0.113(76) 0.23(11) 0.218(90)
QLIKE [4.50] 2.7842[4] 2.8615[5] 2.4802[4] 2.7217[4] 3.1410[S5] 3.0162[5]
DIC [4.83] 3875.20 [5] 3852.15[S] 3683.10[4] 373591[5] 4151.33[5] 4026.62 [5]

Quantitative Finance and Economics

Volume 2, Issue 1, 127-136.



133

Acceptance

|
25000 30000

| |
15000 20000

MC update

Figure 1. MH algorithm acceptance for the RGARCH-Exp model with JT stock data as a
function of the MC update.
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the rank first. For instance, the RGARCH, EGARCH, and GJR models rank first for Toray, Canon, and,
Panasonic respectively. Thus, we conclude that all asymmetric GARCH-type models examined in this
study perform equally well. In Table 1, we also provide the DIC (Spiegelhalter, 2002) which measures
the goodness-of-fit of the models. The values in square parentheses indicate the ranking results based
on DIC. We find that the DIC results show the similar ranking to the QLIKE loss function. Namley all
asymmetric GARCH-type models are superior to the GARCH model and the RGARCH-Exp model
ranks first.

5. Conclusions

We introduce the RGARCH model as an alternative GARCH model that can capture the asymmetric
property of volatility. In addition to the RGARCH model, we propose a model called the RGARCH-
Exp model that is more stable for outliers. We examine the performance of the volatility estimation
of the RGARCH and RGARCH-Exp models with the QLIKE loss function using realized volatility
to proxy for true volatility. We compare the performance of these models with that of the EGARCH,
GJR, and GARCH models. We conduct empirical analyses for stock price time series for six stocks
listed on the Tokyo Stock Exchange. Based on the QLIKE loss function, we find that the RGARCH,
RGARCH-Exp, and other asymmetric GARCH-type models have superior performance in terms of
volatility estimation compared to the GARCH model. This indicates that it is crucial to include the
asymmetric volatility process in a model for accurate volatility estimations. Since our ranking varies
depending on individual stock prices, and all of the asymmetric volatility models we use in this study
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Figure 2. Return time series, volatility estimated using the MCMC simulation with the
RGARCH-Exp model and the modified RV at A = 1min.

Quantitative Finance and Economics Volume 2, Issue 1, 127-136.



135

rank first for different stocks, we conclude that performance of the RGARCH and RGARCH-Exp
models are comparable to that of the asymmetric GARCH-type models.
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