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Abstract: In this paper we study a corporate bond-pricing model with credit rating migration and a
stochastic interest rate. The volatility of bond price in the model strongly depends on potential credit
rating migration and stochastic change of the interest rate. This new model improves the previous
existing models in which the interest rate is considered to be a constant. The existence, uniqueness
and regularity of the solution for the model are established. Moreover, some properties including
the smoothness of the free boundary are obtained. Furthermore, some numerical computations are
presented to illustrate the theoretical results.
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1. Introduction

1.1. Background

In global financial markets, the pricing of a bond becomes more complicated due to different credit
rating and different interest rate. A change of credit rating or a change of interest rate may cause drastic
swing of bond prices. To manage the complication, one needs to understand how the credit risk impacts
on the bond markets and how it can be measured. There are two types of credit risks: defaults and credit
rating migrations. In the previous researches, the defaults are paid more attentions. However, in the
financial crisis in 2008 and European debt crisis in 2010, the credit rating migrations played a much
more important role in the finance and economics than what people expected. Therefore, the study of
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credit rating migrations becomes significant. Another observed factor in a financial market is that bond
prices strongly depend on the interest rate. This leads to a crucial question of how to price a corporate
bond with credit rating migration risks and interest rate change.

1.2. Literature review

There are many existing research papers on bond pricing models, see examples, Briys and de
Varenne (Briys and Varenne, 1997), Tsiveriotis and Fernandes (Tsiveriotis and Fernandes, 1998).To
measure default risks, there are two basic frameworks: a structure model, and a reduced form one. It is
well-known that the first structure model for credit default proposed by Merton (Merton, 1974) is under
the assumption that the firm’s value follows a geometric Brownian motion process and the corporate
bonds are considered as contingent claims. The default event may only occur at the maturity of the
claim. In 1976, Black and Cox extended Merton’s model to a first-passage-time model by introducing
safety covenants. This extends the original model which gives bondholders the right to recognize a
firm’s value if its asset falls below some exogenously given threshold. In the modified model(Black
and Cox, 1976), the default is allowed to occur any time up to the debt’s maturity. By the reduced
form framework, the credit events are considered to be governed by exogenous reason stochastically,
see (Duffie and Singleton, 1999; Jarrow and Turnbull, 1995; Lando, 1998; Leland and Toft, 1996).

In study of credit rating migration, a major tool is the Markov chain. Most researchers mainly
adopted a transfer intensity matrix. By this approach, the reduced form framework is naturally
developed for the dynamic process of credit rating migrations, see Jarrow et al. (1997), Das and
Tufano (1996), Hurd and Kuznetsov (2007), Lando (1998), Thomas et al. (2002) and so forth.
The transfer intensity matrix usually comes from general statistical data, which do not include any
particulary firm’s information. However, a firm’s own value plays a key role of its credit rating
migration. In this situation, the Markov chain alone cannot fully capture the credit-rating mitigation
for a firm. From the existing literatures, few research took this into account. Liang et al. (2015) in
2015 used a structure model for pricing bonds with credit rating migrations at first time. They gave
a predetermined migration threshold where a firm’s value is divided into high and low rating regions,
under the assumption that the value of the firm follows a stochastic process. By using Feynman-
Kac theorem, these models can be reduced to certain boundary value problems of partial differential
equations. This PDE method is very different from the traditional approaches in the research field of
corporative bond modelling. However, the rating migration boundary is usually not predetermined in
the real financial world. It depends on the proportion of the debt and the value of the firm. From this
point of view, the migration boundary should be a free boundary. Recently, Hu et al. (2015) and liang
et al. (2016) proposed a new model to reflect this fact under the fixed-interest rate. They obtained the
existence and uniqueness for the free boundary problem. Also, they proved that there is a travelling
wave in the problem.

For pricing a bond, interest rate is a sensitive factor. Many stochastic models are used for the
model, see Longstarff and Schwartz (1995) as an example. However, when a stochastic interest rate is
considered, the bond model becomes two dimensions, which is much harder to analyze.

1.3. Result description

So far, all valuations for credit rating migration via pricing a corporate bond by structure model are
assumed a constant interest rate. However, the stochastic interest rate for a bond is essential. So the
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extension for the model to stochastic interest rate is necessary. However, the extension meets a great
difficult that the original free boundary model from one dimension to a higher one. That is the main
contribution and solved problem in this paper.

In the present paper, we follow the ideas from (Hu et al., 2015) to derive a new model for a bond
price in which credit-rating may change and the interest rate follows a stochastic process. To be more
precise, we assume that the interest rate follows a Vasicek’s stochastic process and the bond price
follows a geometric Brownian motion with a different volatility in different credit-rating region. A
coupled system of PDEs is derived. By employing a dimension-reduction technique we are able to
simplify the coupled system to a single equation with a nonlinear jump coefficient in the leading term
of the equation. Under certain conditions, the existence and uniqueness are established for the new
model. We would like to indicate that our approach is different from that in (Hu et al., 2015; Liang
et al., 2016). Moreover, the uniqueness proof in Section 4 is new to our knowledge. The method
is also suitable for n-dimensional problems. Furthermore, the regularity of the free boundary is also
considered. By transforming the problem to a Stefan-like problem, we prove that the free boundary is
smooth. Some numerical results are also illustrated in the present paper. Those numerical results are
well matching the theoretical analysis.

1.4. Paper structure

The paper is organized as follows: In Section 2, a new model with credit-rating migration and
stochastic interest rate is rigorously derived under usual assumptions. In Section 3, we use the
dimension reduction technique to simplify the model to a free boundary problem. In Section 4, we first
use various PDE techniques to derive uniform estimates for the approximate problem. The existence
and uniqueness are then established by using a compactness argument. Uniqueness is proved via
an energy method. In Section 5, further properties of the solution are shown. In Section 6, some
numerical results are presented. Some concluding remarks are given in section 7.

2. The Derivation of the Model

2.1. Basic assumptions

Let (Ω,F , P) be a complete probability space. We assume that the firm issues a corporate bond,
which is a contingent claim of its value on the space F .

Assumption 2.1. Interest rate rt follows Vasicek process:

drt = a(t)(ϑ(t) − rt)dt + σr(t)dWr
t ,

where a(t), ϑ(t) and σr(t) are given positive functions, which are supposed to be positive constants
a, ϑ, σr for the simplification in this paper. Wr

t is the Brownian motion which generates the filtration
{Ft}.

We would like to point out that our model is a big improvement from the assumption of a constant
interest rate to the stochastic one. There are many stochastic models for the interest rate, Vesicek model
is popular one. The advantage point of this model is simply and easily calculable, while the weak point
is the possibility of negative interest rate, which is proved to be very low. We assume that the interest
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rate follows Vesicek model also because that in our dimension reducing technique, only Vesicek model
works.

Assumption 2.2 (the firm asset with credit rating migration). Let S t denote the firm’s value in the risk
neutral world. It satisfies

dS t =

{
rtS tdt + σH(t)S tdWt, in high rating region,
rtS tdt + σL(t)S tdWt, in low rating region,

where rt is the risk free interest rate, and

σH(t) < σL(t) (1)

represent volatilities of the firm under the high and low credit grades, respectively. They are
assumed to be deterministic and differentiable on [0,T ] and have a positive lower bound:

0 < σ̃0 6 σH(t) < σL(t) 6 σ̃1 < ∞, 0 6 t 6 T. (2)

Wt is the Brownian motion which generates the filtration {Ft}, and

Cov(dWt, dWr
t ) = ρdt,

where −1 < ρ < 1 is a constant.

It is reasonable to assume (1), namely, that the volatility in high rating region is lower than the one
in the low rating region. This implies that there is a jump for the volatility when the rating changes.

Assumption 2.3 (the corporate bond). The firm issues only one corporate zero-coupon bond with face
value F. Denote Φt the discount value of the bond at time t, which is also the function of rt. Therefore,
on the maturity time T , an investor can get ΦT = min{S T , F}.

Assumption 2.4 (the credit rating migration time). High and low rating regions are determined by the
proportion of the debt and value. The credit rating migration time τ1 and τ2 are the first moments when
the firm’s grade is downgraded and upgraded, respectively, as follows:

τ1 = inf{t > 0|Φ0/S 0 < γ,Φt/S t > γ}, τ2 = inf{t > 0|Φ0/S 0 > γ,Φt/S t 6 γ},

where Φt = Φt(S t, r, t) is a contingent claim with respect to S t and

0 < γ < 1 (3)

is a positive constant representing the threshold proportion of the debt and value of the firm’s rating.

2.2. Cash flow

Once the credit rating migrates before the maturity T , a virtual substitute termination happens, i.e.,
the bond is virtually terminated and substituted by a new one with a new credit rating. There is a
virtual cash flow of the bond. Denoted by ΦH(y, r, t) and ΦL(y, r, t) the values of the bond in high and
low grades respectively. Then, they are the conditional expectations as follows:
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ΦH(y, r, t) = Ey,t

[
e−

∫ T
t rsds min(S T , F) · 1τ1>T

+ e−
∫ τ1

t rsdsΦL(S τ1 , rt, τ1) · 1t<τ1<T

∣∣∣∣S t = y >
1
γ

ΦH(y, t), rt = r
]
, (4)

ΦL(y, r, t) = Ey,t[e−
∫ T

t rsds min(S T , F) · 1τ2>T

+ e−
∫ τ2

t rsdsΦH(S τ2 , rt, τ2) · 1t<τ2<T

∣∣∣∣S t = y <
1
γ

ΦL(y, t), rt = r
]
, (5)

where 1event =

{
1, if ”event” happens ,
0, otherwise.

2.3. Mathematical model

By Feynman-Kac formula (Dixit and Pindyck, 1994), it is not difficult to drive that ΦH and ΦL are
the function of the firm value S , interest rate r and time t. They satisfy the following partial differential
equations in their regions:

∂ΦH

∂t
+

1
2
σ2

HS 2∂
2ΦH

∂S 2 + σrσHρS
∂2ΦH

∂S ∂r
+

1
2
σ2

r
∂2ΦH

∂r2 + rS
∂ΦH

∂S

+a(ϑ − r)
∂ΦH

∂r
− rΦH = 0, S >

1
γ

ΦH, 0 < t < T, (6)

∂ΦL

∂t
+

1
2
σ2

LS 2∂
2ΦL

∂S 2 + σrσLρS
∂2ΦL

∂S ∂r
+

1
2
σ2

r
∂2ΦL

∂r2 + rS
∂ΦL

∂S

+a(ϑ − r)
∂ΦL

∂r
− rΦL = 0, S <

1
γ

ΦL, 0 < t < T, (7)

with the terminal condition:

ΦH(S ,T ) = ΦL(S ,T ) = min{S , F}. (8)

(4) and (5) imply that the value of the bond is continuous when it passes the rating threshold, i.e.,

ΦH = ΦL = γS on the rating migration boundary. (9)

Also, as in (Hu et al., 2015; Jin et al., 2016), we have

∂ΦH

∂S
=
∂ΦL

∂S
on the rating migration boundary. (10)

This is a two-dimensional free boundary problem of an terminate value parabolic problem with
discontinuous leading coefficient.
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3. A PDE Problem

3.1. Reduction of dimension

The equations (6) and (7) are two-dimensional. For the purpose of simplifying the problem, we
could use a technique to reduce the dimension.

Denote P(rt, t : T ) to be the value of a zero-coupon bond faced 1 at time T . So that, it satisfies

∂P
∂t

+
1
2
σ2

r
∂2P
∂r2 + a(ϑ − r)

∂P
∂r
− rP = 0, (11)

which admits a unique solution (Hall, 1989)

P(r, t : T ) = A(t)e−rB(t), (12)

where
A(t) = e{

1
a2 [B2(t)−(T−t)](a2ϑ−

σ2
r

2 )−σ
2

4a B2(t)}, B(t) =
1
a

(1 − e−a(T−t)).

Now make a transform by

y =
S

P(r, t; T )
, VH(y, t) =

ΦH(S , r, t)
P(r, t; T )

, VL(y, t) =
ΦL(S , r, t)
P(r, t; T )

.

Then V(y, t) satisfies

∂VH

∂t
+

1
2
σ̂2

Hy2∂
2VH

∂y2 = 0, y >
1
γ

VH, 0 < t < T, (13)

∂VL

∂t
+

1
2
σ̂2

Ly2∂
2VL

∂y2 = 0, y <
1
γ

VL, 0 < t < T, (14)

VH(y,T ) = VL(y,T ) = min{y, F}, (15)

where
σ̂i =

√
σ2

i + 2ρσiσrB(t) + σ2
r B2(t), i = H, L. (16)

And on credit rating migration boundary, there holds

VH(y, t) = VL(y, t) = γy,
∂VH

∂y
=
∂VL

∂y
. (17)

3.2. A free boundary problem

Using the standard change of variables x = log y and renaming T − t as t, and defining

φ(x, t) =

{
VH(ex,T − t) in high rating region,
VL(ex,T − t) in low rating region,

using also (9) and (10), we then derive the following equation from (6), (7):

∂φ

∂t
−

1
2
σ2∂

2φ

∂x2 +
1
2
σ2∂φ

∂x
= 0, (x, t) ∈ QT\ΓT (18)

Quantitative Finance and Economics Volume 1, Issue 3, 300–319



306

where
QT = (−∞,+∞) × (0,T ], ΓT = {(x, t)|φ(x, t) = γex} (19)

and σ is a function of φ and (x, t), i.e.,

σ = σ(φ, x, t) =

{
σ̂H if φ < γex,

σ̂L if φ > γex.
(20)

The constant γ is defined in (3), and σ̂H, σ̂L are defined in (16). There exist constants σ0, σ1, such that

0 < σ0 6 σ̂H, σ̂L 6 σ1 < ∞. (21)

Without loss of generality, we assume F = 1. Equation (18) is supplemented with the initial condition
(derived from (8))

φ(x, 0) = φ0(x) = min{ex, 1}, −∞ < x < ∞. (22)

The domain will be divided into the high rating region QH
T where φ < γex and a low rating region QL

T
where φ > γex. We shall prove that these two domains will be separated by a free boundary x = s(t),
and

QH
T = {x > s(t), 0 < t < T }, QL

T = {x < s(t), 0 < t < T }. (23)

In another word, s(t) is apriorily unknown since it should be the solved by the equation

φ(s(t), t) = γes(t),

where the solution φ is apriorily unknown.

4. Existence and Uniqueness

4.1. Approximation

Let H(ξ) be the Heaviside function, i.e., H(ξ) = 0 for ξ < 0 and H(ξ) = 1 for ξ > 0. Then we can
rewrite (20) as

σ(t, φ) = σ̂H + (σ̂L − σ̂H)H(φ − γex).

We use a standard approximation for H(ξ) and φ0(x) such that

Hε(ξ) ∈ C∞(R1) and Hε(ξ) = H(ξ) for |ξ| > ε,
φ0ε(x) ∈ C3(R1) ∩W1,∞(R1),

φ′0ε(x) − γex < 0, for 0 < x < ln
1
γ
.

Now we consider the following approximated problem

∂φε
∂t
−

1
2
σ2
ε

(∂2φε
∂x2 −

∂φε
∂x

)
= 0, (x, t) ∈ QT , (24)

φε(x, 0) = φ0ε(x), −∞ < x < ∞, (25)

where
σε = σ̂H + (σ̂L − σ̂H)Hε(φε − γex). (26)
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4.2. Estimates

Lemma 4.1. The problem (24)-(25) admits a unique solution

φε(x, t) ∈ C2,1(QT ) ∩Cα, α2 (QT ), for ∀α ∈ (0, 1)

Moreover, the following estimates hold uniformly with respect to ε:

a) 0 6 φε(x, t) 6 1, 0 6 φεx(x, t) 6 C1

b) sup
06t6T

∫ +∞

−∞
φ2
εxdx +

!
QT

(φ2
εxx + φ2

εt)dxdt 6 C2

where C1 and C2 depend only on known data.

Proof. By the theory of parabolic equation, we know that the problem (24)-(25) admits a unique classic
solution φε ∈ C2,1(QT ) ∩Cα, α2 (QT ).

Now we derive the uniform estimates. First of all, by the maximum principle for Cauchy problem,
we see

0 6 φε(x, t) 6 1, (x, t) ∈ QT .

Let ψε(x, t) = φεx(x, t), then

ψεt −
∂

∂x
[1
2
σ2
ε

(
ψεx − ψε

)]
, (x, t) ∈ QT ,

ψε(x, 0) = φ′0ε(x) > 0, −∞ < x < +∞

Again, since φ′0ε(x) > 0, by maximum principle, we obtain

ψε(x, t) > 0.

On the other hand,

ψεt −
∂

∂x
(1
2
σ2
εψεx

)
= −

∂

∂x
(1
2
σ2
εψε

)
(27)

We multiply equation (27) ψp
ε for any p > 1, to obtain

d
dt

1
p + 1

∫ +∞

−∞

ψp+1
ε dx + p

∫ +∞

−∞

1
2
σ2
εψ

2
εxψ

p−1
ε dx

= p
∫ +∞

−∞

1
2
σ2
εψ

p
εψεxdx

6 δ

∫ +∞

−∞

p ·
1
2
σ2
εψ

p−1
ε ψ2

εxdx + C(δ)p
∫ +∞

−∞

1
2
σ2
εψ

p+1
ε dx.

If we choose δ sufficiently small, we have

d
dt

1
p + 1

∫ +∞

−∞

ψp+1
ε dx +

1
2

p
∫ +∞

−∞

1
2
σ2
εψ

2
εxψ

p−1
ε dx 6 C

∫ +∞

−∞

1
2
σ2
εψ

p+1
ε dx

Since 0 < σ0 6 σε 6 σ1 < +∞, we have∫ +∞

−∞

ψp+1
ε dx +

∫ +∞

−∞

∫ t

0
ψ2
εxψ

p−1
ε dxdt
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6

∫ +∞

−∞

φ′0ε(x)2dx + C
∫ t

0

∫ +∞

−∞

ψp+1
ε dxdt

Gronwall’s inequality yields, ∫ +∞

−∞

ψp+1
ε dx +

∫ +∞

−∞

∫ T

0
ψ2
εxψ

p−1
ε dxdt 6 C,

where C depends only on known data and p, but not on ε.
Now from equation (27),

ψεt −
∂

∂x
(1
2
σ2
εψεx

)
= −

∂

∂x
(1
2
σ2
εψε

)
, (x, t) ∈ QT

ψε(x, 0) = φ′0ε(x), −∞ < x < +∞

where σ2
εψε ∈ Lp(R1) for any p > 1. Then ‖ ψε ‖L∞(QT )6 C. To derive the W2,1

2 (QT )−estimate, we
multiply equation (24) by φεxx and integrate over Qt to obtain

σ0

"
Qt

φ2
εxxdxdt +

∫ +∞

−∞

φ2
εxdx −

∫ +∞

−∞

φ2
εx(x, 0)dx

=

"
Qt

1
2
σ2
εφεxφεxxdxdt

6 δ

"
Qt

φ2
εxxdxdt + C(δ)

"
Qt

φ2
εxdxdt

By choosing δ sufficiently small, we have

σ0

"
Qt

φ2
εxxdxdt +

∫ +∞

−∞

φ2
εx(x, t)dx 6

∫ +∞

−∞

φ2
εx(x, 0)dx + C

"
Qt

φ2
εxdxdt

Gronwall’s inequality yields

sup
06t6T

∫ +∞

−∞

φ2
εxdx +

"
Qt

φ2
εxxdxdt 6 C.

From the equation (24), we see "
Qt

φ2
εtdxdt 6 C

�

Lemma 4.2. The solution φε(x, t) ∈ C1+α, 1+α
2 (QT ) uniformly with respect to ε, for some α ∈ (0, 1).

Moreover, for any ρ > 0 there exists a constant C(ρ) such that

||ψε||Cα, α2 (Q̄T \Bρ(0,0)) 6 C(ρ),

where Bρ(0, 0) = {(x, t) : −ρ < x < ρ, 0 < t < ρ} and C(ρ) depends only on known data and ρ.
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Proof. Indeed, we see ψε(x, t) is a solution of the following problem:

ψεt −
∂

∂x
[1
2
σ2(ψεx − ψε

)]
= 0, (x, t) ∈ QT ,

ψε(x, 0) = φ′ε0(x) > 0, −∞ < x < +∞.

By the standard theory for parabolic equations, we see that ψε(x, t) is Hölder continuous in QT .
Moreover, the Hölder continuity of ψε holds up to the initial time t = 0 except a neighborhood of
the singular point (0, 0). Hence, for any ρ > 0, we have

||ψε||Cα, α2 (Q̄T \Bρ(0,0)) 6 C(ρ),

where Bρ(0, 0) defined above and C(ρ) depends only on known data and ρ, but not on ε. �

4.3. Existence

Theorem 4.1. The problem (17), (21) admits a solution φ(x, t) ∈ W1,0
∞ (QT )∩W2,1

2 (QT )∩Cα, α2 (QT ), for
any α ∈ (0, 1). Furthermore, the solution satisfies

a) 0 6 φ(x, t) 6 1, 0 6 φx(x, t) 6 C1,

b)
∫ +∞

−∞
φ2

xdx +
!
QT

(φ2
xx + φ2

t )dxdt 6 C2,

where C1 and C2 are constants which depend only on known data.

Proof. By the standard compactness argument, we see that there exists a function φ(x, t) ∈ Cα, α2 (QT ) ∩
W2,1

2 (QT ) such that

φε(x, t)→ φ(x, t) uniformly in Cα, α2 (QT ),
φε(x, t)→ φ(x, t) weakly in W2,1

2 (QT ).

Moreover, 0 6 φ(x, t) 6 1, 0 6 φx(x, t) 6 C1. For the limit function φ, and (x0, t0) with (x0, t0) < ΓT

and t0 > 0, where ΓT is defined in (19), there exists a small neighborhood Pδ(x0, t0) = {(x, t)|(x− x0)2 +

(t − t0)2 < δ} such that Pδ(x0, t0) ∩ ΓT = ∅. In Pδ(x0, t0), σε(x, t, φ) = σ(x, t, φ). By regularity theory of
parabolic equation, φ(x, t) ∈ C2,1(Pδ(x0, t0)), and

φt −
1
2
σ2(φxx − φx) = 0.

It follows that for any (x, t) < ΓT

φt −
1
2
σ2(φxx − φx) = 0, in the classical sense in QT\ΓT ,

φ(x, 0) = φ0(x), −∞ < x < +∞.

Notice also by Lemma 4.2, φ, φx are continuous across ΓT . That is, φ(x, t) is a solution in QT . �

We can obtain a better regularity for the strong solution obtained in Theorem 4.1.
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Theorem 4.2. The solution φ(x, t) ∈ C1+α, 1+α
2 (QT ) for some α ∈ (0, 1). Moreover, φx(x, t) is Hölder

continuous up to the initial time t = 0 except a neighborhood of (0, 0).

Proof. Indeed, we see ψ(x, t) = φx(x, t) is a weak solution of the following problem:

ψt =
∂

∂x
[1
2
σ2(ψx − ψ

)]
, (x, t) ∈ QT ,

ψ(x, 0) = φ′0(x) > 0, −∞ < x < +∞.

By the standard regularity theory of parabolic equations, we see that ψ(x, t) is Hölder continuous in
QT . Moreover, the Hölder continuity of ψ holds up to the initial time t = 0 except a neighborhood of
the singular point (0, 0). �

4.4. Uniqueness

In this section we use a novel approach to prove the uniqueness. This method is also suitable for a
general n-dimensional problem.

Theorem 4.3. The solution obtained in Theorem 4.1 is unique.

Proof. We rewrite Eq.(18) as follows:

k(φ, x, t)φt = φxx − φx, (28)

where

k(φ, x, t) =
{ 2/σ̂2

L(t), if φ > γex,

2/σ̂2
H(t), if φ < γex.

Define

e(φ, x, t) =
(
1/σ̂2

L(t) + 1/σ̂2
H(t)

)
(φ − γex)

+
(
1/σ̂2

L(t) − 1/σ̂2
H(t)

)
|φ − γex|

=
{ 2(φ − γex)/σ̂2

L(t), if φ > γex,

2(φ − γex)/σ̂2
H(t), if φ < γex.

(29)

which satisfies that

k(φ, x, t) =
∂e
∂φ

=
{ 2/σ̂2

L(t), if φ > γex,

2/σ̂2
H(t), if φ < γex.

(30)

Therefore,
∂

∂t
[e(φ, x, t)] − [φxx − φx] =

∂e
∂t
≡ f (φ, x, t), (31)

where

f (φ, x, t) :=
(
1/σ̂2

L(t) + 1/σ̂2
H(t)

)′
(φ − γex)

+
(
1/σ̂2

L(t) − 1/σ̂2
H(t)

)′
|φ − γex|.
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We also have
e(φ, x, t)|t=0 = e0(x), (32)

where

e0(x) =
(
1/σ̂2

L(0) + 1/σ̂2
H(0)

)
(φ0(x) − γex)

+
(
1/σ̂2

L(0) − 1/σ̂2
H(0)

)
|φ0(x) − γex|,

To prove the uniqueness, we assume that there are two solutions φi(x, t), i = 1, 2 of the problem
(17), (21), which satisfy the estimates in Theorem 4.1. Set

φ(x, t) = φ1(x, t) − φ2(x, t), (x, t) ∈ QT .

Now we multiply
∫ τ

t
φ(x, s)ds in the both sides of (31), where τ ∈ [0,T ], and then integrate it in R,

we have

∂

∂t

∫
R

[
(e(φ1, x, t) − e(φ2, x, t))

∫ τ

t
φds

]
dx

+

∫
R

[
(e(φ1, x, t) − e(φ2, x, t))φ

]
dx

=

∫
R

[
(φxx − φx)

∫ τ

t
φds

]
dx +

∫
R

[(
f (φ1, x, t) − f (φ2, x, t)

) ∫ τ

t
φds

]
dx

:= A1(x, t, τ) + A2(x, t, τ),

where

A1(t, τ) =

∫
R

[
(φxx − φx)

∫ τ

t
φds

]
dx,

A2(t, τ) =

∫
R

[(
f (φ1, x, t) − f (φ2, x, t)

)∫ τ

t
φds

]
dx.

Now,

A1(t, τ) = −

∫
R

[
(φx − φ)

∫ τ

t
φxds

]
dx

=
1
2
∂

∂t

∫
R

[ ∫ τ

t
φxds

]2
dx +

∫
R

[
φ

∫ τ

t
φxds

]
dx.

A2(t, τ) =

∫
R

[(
fφ(ξ, t)φ

) ∫ τ

t
φds

]
dx,

where ξ is the mean-value between φ1 and φ2.
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We take integration to the above equation with respect to t from 0 to τ to obtain:∫ τ

0

∫
R

[e(φ1, x, t) − e(φ2, x, t)]φdxdt +
1
2

∫
R

[ ∫ τ

0
φxds

]2
dx

=

∫ τ

0

∫
R+

[
φ

∫ τ

t
φxds

]
dxdt +

∫ τ

0

∫
R

(
fφ(ξ, x, t)φ

) ∫ τ

t
φdsdxdt

6 2ε
∫ τ

0

∫
R

φ2dxdt + C(ε)
∫ τ

0

∫
R

([ ∫ τ

0
φds

]2
+

[ ∫ τ

0
φxds

]2)
dxdt.

Here at the final step we have used the uniform boundedness of fu(u, t) and Cauchy-Schwarz’s
inequality with small parameter ε.

Notice (29), we have

[e(φ1, x, t) − e(φ2, x, t)] > c0(φ1 − φ2) = (2/σ2
1)φ,

where σ1 defined in (21) has a positive lower bound. We choose ε sufficiently small to obtain∫ τ

0

∫
R

φ2dxdt +

∫
R

[ ∫ τ

0
φxds

]2
dx

6 C
[ ∫ τ

0
[
∫ t

0

∫
R

φ2dxds]dt +

∫ τ

0

∫
R

[ ∫ τ

0
φxds

]2
dxdt

]
.

Consequently, Gronwall’s inequality yields φ(x, t) ≡ 0 on Qτ. As τ is arbitrary over [0,T ], we have
φ(x, t) ≡ 0 on QT .

Thin concludes the proof of uniqueness. �

5. Free Boundary and its Regularity

In this section, we show that ΓT is the graph of a smooth free boundary x = s(t).

Lemma 5.1. There exists a number T0 > 0, such that ΓT0 defined in (19) is the graph of a function
x = s(t), 0 6 t 6 T0 with s(0) = s0 = ln 1

γ
.

Proof. Note that φ0(x) = min{ex, 1}, then s0 := s(0) = ln 1/γ > 0, it follows that φ′0(x) = 0, for x > 0;
φ′0(x) = ex, for x < 0. It follows that if x > 0,

φ
′

0(x) − γex = −γex < 0.

Since φx(x, t) is Hölder continuous except (0, 0), there exists small numbers t0 > 0 and δ0 > 0 such that

φx(x, t) − γex 6 m0 < 0, s0 − δ0 < x < s0 + δ0, 0 6 t 6 t0,

where m0 depends on t0 and δ0.
By the implicit function theorem, there exists a function, denoted by x = s(t) solves φ(s(t), t) = γes(t)

such that
Γt0 = {(x, t)|x = s(t), 0 6 t 6 t0}.

It will be seen in the next theorem that we can extend t0 as long as φ−x (s(t), t) − γes(t) < 0.
�
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Theorem 5.1. There exists a function x = s(t) ∈ Cβ[0,T ] with β ∈ ( 1
2 , 1) such that

ΓT = {(s(t), t) : 0 6 t 6 T }.

Moreover, there exists a constant ε0 > 0 such that

φx(s(t), t) − γes(t) 6 −ε0 < 0, 0 6 t 6 T.

Proof. From Lemma 5.1, we know that there exists at least a small internal [0,T0] such that

ΓT0 = {(s(t), t) : 0 6 t 6 T0.}

Moreover,
φx(s(t), t) − γes(t) < 0, t ∈ [0,T0].

Since F(x, t) := φ(x, t) − γex is differentiable in QT with respect to x, by the implicit function
theorem, the set

Γt0 = {(x, t); F(x, t) = 0, 0 6 t 6 t0}

can be extended as the graph of a curve x = s(t) as long as

Fx(x, t) < 0, for all (x, t) ∈ ΓT .

Moreover, x = s(t) is decreasing on [0,T ].
Define

T ∗ = sup{T0 : φx(s(t), t) − γes(t) < 0, 0 6 t 6 T0}.

We claim T ∗ = T . Assume the contrary with T ∗ < T . It is clear by the definition of T ∗ and the
continuity of φx(x, t) that

lim
t→T ∗

(φ−x (s(t), t) − γes(t)) = 0.

We define W(x, t) = φ(x, t) − γex, then

Wt = φt, Wx = φx − γex, Wxx = φxx − γex

Therefore, W(x, t) satisfies

Wt −
1
2
σ2

H(Wxx −Wx) = 0, −∞ < x < s(t), 0 < t < T ∗,

W(s(t), t) = 0, 0 < t < T ∗,

W(x, 0) = W0(x), −∞ < x < s0,

where W0(x) := φ0(x) − γex > 0 on (−∞, s0].
Since s(t) is decreasing on [0,T ∗), Hopf’s lemma holds at (s(T ∗),T ∗). Hence, by Hopf’s lemma,

there exists a number ε0 > 0 such that Wx(s(T ∗),T ∗) 6 −ε0 < 0, which contradicts with the definition
of T ∗. It follows that T = T ∗. Consequently, there exists a curve, denoted by x = s(t), such that

ΓT = {(s(t), t) : 0 6 t 6 T.}.
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Moreover, there exists a constant ε0 > 0 such that

φx(s(t), t) − γes(t) 6 −ε0 < 0, 0 6 t 6 T. (33)

To prove the Hölder continuity of s(t) on [0,T ], we take any t1 < t2 in [0,T ] with |t1− t2| sufficiently
small,

φ(s(t2), t2) − φ(s(t1), t1) = γ(es(t2) − es(t1)).

Then,

φ(s(t2), t1) − φ(s(t1), t1) − γ(es(t2) − es(t1))
= φ(s(t2), t1) − φ(s(t2), t2).

We use the mean-value theorem to obtain

|s(t2) − s(t1)| 6
|φ(s(t2), t2) − φ(s(t2), t1)|

|Fx(ϑ, t1)|
,

where ϑ is the mean-value between s(t1) and s(t2).
Since |Fx(x, t)| is bounded and |Fx(x, t)| has a positive lower bound in a neighborhood of x = s(t), 0 6

t 6 T , we find that there exists a constant C such that

|s(t2) − s(t1)| 6 C|t1 − t2|
β,

where β = 1+α
2 .

It follows that s(t) is Hölder continuous on [0,T ] with a Hölder exponent β ∈ ( 1
2 , 1). �

Theorem 5.2. The free boundary s(t) satisfies

s′(t) = −
σH(t)(φxx(s(t)−, t) − φx(s(t)−, t))

φx(s(t), t) − γes(t) , 0 6 t 6 T.

Moreover, s(t) ∈ C∞[0,T ], provided that σL(t) and σH(t) are smooth on [0,T ].

Proof. By Theorem 5.1, we can define QL
T and QH

T as in Section 3. From the theory of parabolic
equations (LadyÅenskaja et al., 1968), we know that φ(x, t) is smooth in QL

T and QH
T , respectively.

Moreover, φx(x, t) is continuous up the boundary x = s(t) from the left-hand side and the right-hand
side on [0,T ].

To prove the further regularity of s(t), we note that ψ(x, t) = φx(x, t) is a classical solution of the
following free boundary problem

ψt =
∂

∂x
[
1
2
σ2(ψxx − ψ)], (x, t) ∈ QT\ΓT ,

ψ(s(t)−, t) = ψ(s(t)+, t), 0 < t < T,

σH(ψx(s(t)−, t) − ψ(s(t), t)) = σL(ψx(s(t)+, t) − ψ(s(t)+, t)), 0 6 t 6 T,

s′(t) = −
σH(t)(ψx(s(t)−, t) − ψ(s(t), t))

ψ(s(t), t) − γes(t) , 0 6 t 6 T,

ψ(x, 0) = φ
′

0(x), −∞ < x < ∞.

We can apply the classical technique for the Musket problem Evans (1978) to obtain s(t) ∈
C∞[0,∞]. �
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Theorem 5.3. s(t) is non-increasing on [0.T ].

Proof. We go back the approximate problem (24)-(25). Note that φ
′

0(x) − φ0(x) = 0 if x < 0 and
φ
′

0(x) − φ0(x) = −1 if x > 0. We can construct a smooth approximation for φ0(x) such that

φ
′′

ε0 − φ
′

0(x) < 0,−∞ < x < ∞.

Let w(x, t) = φεt(x, t). Then w(x, t) satisfies

wt =
1
2
σ2[wxx − wx] + a(x, t)w, (x, t) ∈ QT .

where

a(x, t) :=
(σ2(t, φ))t

σ2(t, φ)
.

Moreover,

w(x, 0) =
1
2
σε(0, φ0)2[φ

′′

0ε(x) − φ
′

0ε(x)] < 0,−∞ < x < ∞.

By the maximum principle, we see w(x, t) 6 0 on QT . After passing the limit, we see

φxx(x, t) − φx(x, t) 6 0, (x, t) ∈ QT ,

in the L2-sense. On the other hand,

φx(s(t), t) − γes(t) < 0, 0 6 t 6 T,

we see from the representation of s(t) that

s′(t) 6 0, t ∈ [0,T ].

�

6. Numerical Example

The numerical solution of the Eq.(17), (21) can be calculated by using a standard PDE method.
However, we are more interested in the . For convenience, the free boundary is denoted by s(r, t),
which depends on the interest rate r.

In order to draw the graph s(r, t), we use the explicit difference scheme (Jiang, 2005), which is
equivalent to the well-known the Binomial-Tree method. The steps of the computation are as follows:

1. Discrete t ∈ (0,T ) by ti = T − i∆t, where T = t0, ..., tI = 0, I = 10, ∆t = tI−t0
I ; r ∈ (0.01, 0.04) by

rk = 0.01 + k∆r, where 0.01 = r0, ..., rK = 0.04, ∆r = rK−r0
K ; in space using a mesh with difference

∆x: 0 = x0, ..., x j = 2. And at every point (ti, x j, rk), denote the function φ(ti, x j, rk) by φi, j,k.

2. For t0 = T , φ0, j,k = min(x j, F), then solve φi, j,k by finite difference scheme:

φi, j,k = φi−1, j,k +
σ2∆t
2∆x2 x2

j[φi−1, j−1,k + φi−1, j+1,k − 2φi−1, j,k]
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+
σ2

r ∆t
2∆r2 r2

k [φi−1, j,k−1 + φi−1, j,k+1 − 2φi−1, j,k]

+rkx j
∆t

2∆x
[φi−1, j+1,k − φi−1, j−1,k]

+a(ϑ − rk)
∆t

2∆r
[φi−1, j,k+1 − φi−1, j,k−1] − rkφi−1, j,k∆t

+
σσr∆tρx j

4∆r∆x
[φi−1, j+1,k+11 − φi−1, j+1,k−1 − φi−1, j−1,k+1

+φi−1, j−1,k−1],

where

σ =

{
σL, if φi−1, j,k > γxk,

σH, otherwise,

Denote the joint points to be s j,k, which represents the approximated credit rating migration joints.

3. Repeat the above process.

4. Draw the graph based on {s j,k} in space r.S , t.

Now we have the 2-d free boundary interface.
The numerical solution of the free boundary is shown in Figure 1, where the parameters and the

ranges of the variables are chosen as follows

a = 1, ϑ = 0.03, F = 1, γ = 0.8,
σL = 0.4, σH = 0.2, σr = 0.3, ρ = 0.5,T = 5,
r ∈ (0.01, 0.04), t ∈ (0, 5).

Fig 1. The credit rating migration surface (free boundary) s(r, t).
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From the graphs, we see that a free boundary y = s(r, t) divides the region into two parts: high
and low rating regions. Moreover, the free boundary is decreasing with respect to r and increasing
with respect to t as expected (see Theorem 4.1 and Theorem 5.2), where t is the original life time of
the bond. From the graph Fig. 1, we also see that the change of free boundary is more sensitive with
respect to the interest rate than that of time.

7. Conclusion

In this paper, we derived a new model for pricing corporate bonds with credit-rating migration and
a stochastic interest rate. The new model consists of a coupled system of partial differential equations.
By employing a dimension-deduction technique, we obtain a new free boundary problem. By using
various analysis techniques for partial differential equations, we established the existence, uniqueness
and regularities of the solution under certain assumptions. Moreover, some properties of the solution
are derived. A C∞-regularity of the free boundary is proved. Their financial implications are explained.
The model is new to our knowledge and is a big improvement for the current model. The analysis is
delicate. Finally, numerical simulations are also presented.
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