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Abstract: Energy management and demand control through conventional energy generation sources
are challenging for energy providers. Distributed energy resources (DERs) allocation near load
centers may provide a suitable solution. The main contribution of the paper improves the voltage
profile and reduce the active and reactive power losses in the distribution network. DERs are
integrated with IEEE 33 bus system using fuzzy logic controller (FLC) and game theory for two
different cases with unity and 0.9 power factor (PF) and compares with conventional methods of
integration (i.e., modified novel method, power loss sensitivity method, voltage sensitivity analysis
method). The capacity of DERs is optimized by FLC with the help of three triangular input functions
voltage profile, active power loss, and reactive power loss. The location of integration of DERs in
the radial distribution network is identified by game theory. Game theory is a mathematical
algorithm, the results of multiple runs of DERs integration with the desired capacity calculated by
FLC, identify the location for integration. The results comparison of DERs integration with the
proposed methodology and conventional method shows the effectiveness of the proposed
methodology. The voltage profile of the IEEE 33 bus system is increased by 6.70% with unity PF
and 7.10% with 0.9 PF most among the applied methodologies and reduce the active and reactive
power losses for both unity and 0.9 PF cases.

Keywords: distributed energy resources; fuzzy logic controller; game theory; cooperative game
theory; intelligent distribution network




475

1. Introduction

Energy consumption is increasing and it is challenging to meet the demand with limited
available resources. Conventional electrical systems are unidirectional, electricity is generated by
centralized generation sources and distributed to consumers through large transmission networks [1].
Advancement in the applications of sensors, communication networks, real-time monitoring,
intelligent appliances etc. are important technologies for transformation of the conventional grid into
an intelligent grid. Intelligent grid will generate a huge amount of energy through DERs, and store
bulk power as a backup energy resource to supply during peak hours [2]. An intelligent power grid
includes the basic structure of conventional power grid and smart components (i.e., electric vehicles,
solar photovoltaic, wind generators, mini/micro hydro, energy storage devices, smart meters etc.) at
low voltage distribution networks. DERs are the small scale energy sources connected near load
centers to manage the demand and to maintain the peak of energy consumption [3]. A Conventional
electric power system with centralized generation is facing the following challenges to manage the
demand of the consumers:
= According to World Energy Scenario 2019 [4], the demand for electricity grows at its fastest rate
and increase 40 to 60% from 2020 to 2040. To meet with the required demand through fossil
fuels, carbon emission will increase by 59% will show the worst effect on the environment.

= The most challenging task is to provide electricity to all available consumers all the time.

= Participation of consumers in grid operations.

= Enhancement in electric vehicles penetration will introduce an extra burden on the electric grid.

= Reform the structure of the distribution network with the integration of DERs.

= Optimal allocation of DERs to maintain the voltage profile and reduction in power losses [5].

The optimal integration of DERs is important to reduce active and reactive power losses,
improving the voltage profile, network reliability etc. in the distribution network. Authors of [6—11]
are discussed the challenges associated with the integration of DERs. Proper allocation of DERs are
essential for multiple advantages i.e., minimize of real and reactive power losses, line loading,
carbon emission, initial cost, tariff structuring, cost of energy generation, utility cost, etc. and
improve the voltage profile of the distribution network. Sever methodologies of DERs integration are
available in literature i.e., novel method, power loss sensitivity method, voltage indexing, voltage
sensitivity analysis, etc. and optimized by different tools i.e., fuzzy logic controllers, genetic
algorithms, practical swarm optimizations, neural networks, machine learning etc. The novel method
of DERs optimization based on active power loss of the system for unity power factor and further it
is modified for lagging and leading power factor cases to integrate DERs [12,13]. Power loss
sensitivity method calculates the loss sensitivity of the network by load flow analysis. The node
where the loss sensitivity is maximum is selected for DERs integration. The capacity of DERs is
obtained by connecting different capacity DERs at define node and where the active power losses are
minimum use for integration [14,15]. Voltage sensitivity analysis calculates the sensitivity of voltage
at each bus and the minimum voltage sensitive bus is identified for DERs integration and capacity of
DERs is calculated with the same method used in the power loss sensitivity analysis [16].

In this paper, existing DERs optimization methodologies are compared with the proposed
methodology of DERs integration using the fuzzy logic controller and game theory. The fuzzy logic
controller is a mathematical system based on the predefined set of rules to optimize the non-linear
equations. The proposed methodology calculates the capacity of DERs to integrate with radial
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distribution network by FLC. Game theory is a mathematical tool mostly used for sharing the profits

between players. The game theory methodology calculates the payoff functions for different players

and obtains the solutions for conflicts between the players [17]. Characteristically game theory is

classified into two categories cooperative and non-cooperative game theory. When players

communicate with each other and share their strategies to other players to maximize the payoffs as a

group are known as cooperative game theory and when consumers don’t share their strategies or

actions to other players to maximize their payoffs are known as non-cooperative game theory [18-20].

In this work, cooperative game theory is used to optimize the location of DERs integration based on

a predefined set of rules. This paper compares the modified novel method, power loss sensitivity,

voltage sensitivity analysis of DERs integration with the proposed methodology using a fuzzy logic

controller and game theory for IEEE 33 bus radial distribution network. Major contributions of the

paper with the proposed methodology for the integration of DERs are:

= Integration of the DERs with IEEE 33 bus system using different methodologies.

= Two case studies are identified for DERs integration at unity and 0.9 power factor in a radial
distribution network.

= The fuzzy logic controller is used to optimize the DERs capacity at different buses.

= Game theory methodology is used to optimize the location of DERs to integrate with a radial
distribution network.

* Compared the different DERs integration methodologies with the proposed approach.

The rest of the paper is organized as follows, section-2 defines the modified novel method,
section-3 defines the power loss sensitivity method, section-4 defines the voltage sensitivity analysis
method and section-5 defines the proposed method using the fuzzy logic controller and cooperative
game theory for the integration of DERs. Results of two different cases for IEEE 33 bus system are
explicating in section-6. Section-7 compares the results obtained by various methods. Finally, section
8 concludes the paper with the advantages of the proposed methodology.

2. DERs integration using modified novel method

DERs integration at unity power factor was proposed by novel method without the calculation
of Ypus & Zpys. Further, the methodology is updated for lagging power factor and denoted as a
modified novel method. According to modified novel method DERs are integrate with distribution
network where the active power losses are minimum [21]. DERs are generating active as well as
reactive power. For calculation of degenerating current from DERs include active and reactive
current and the total power generated by DERs. Total number of nodes are denoted as n and total
branches are denoted as b. Total active power losses Pt in the system is calculated by (1):

PT_Z?lIlz (1)

where, lj is the current in branch R;. Total current on i" node li includes the active component of
current (l5;) and reactive components of current (I ;).

Ii = Ia,i + Ir,l' (2)

Put the current component from (2) to (1)
=P I2 R+ B0 12 R 3)
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DERs are integrated at bus m, an active component of current generated by DERs at bus m is
lape,m and total active power losses including DERs at bus m is Pt pg by (4)

Prpc = X1 gizm Iii R+ XiemUai + Iapem)®Ri + 20—y Irz,i R; 4)

Subtract (3) from (4):
APpr = Zi:m(la,i + IaDG,m)ZRi )

For maximum loss saving:

P21~ 0 or 2 x lapgm Zi=m Ri +2 X Xj—m [5,iR; =0 (6)
0lapG,m ' '
Yi=mla,iRi
IaDG,m = ——Z::maRl (7)

Optimal size of DERs at bus m is calculated by multiplying (7) with voltage at node m denoted
as Vpgm and defined power factor by (8):

Ppem = Vpem X lapgm X Cos @ (8)

The optimal size of DERSs to integrate at different buses at unity and 0.9 power factor for IEEE 33
bus system using the modified novel method is calculated by (8) and shown in Figure 1.

350 i -
B DERSs capacity at unity PF

300 B DERs capacity at 0.9 PF
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Figure 1. Optimal DERSs capacity using Modified Novel Method.
3. DERs integration using power loss sensitivity method

Power loss sensitivity factor is calculated for defining the proper size and location of DERs to
integrate with radial distribution network. DERs integration is affecting by active as well as reactive
power losses therefore, loss sensitivity factor is depending upon the active and reactive power loss
components [22]. Loss sensitivity factor concerning active power is calculated by (9) and loss
compassion factor concerning reactive power is calculated by (10):
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0S; __ 0P . 0Q;

aPl_i o aPu J aPu (9)
aS; J0P; . 0Q;

= 10
0Qy; 9Qu J 0Qy; (10)

where, S; is the apparent power losses at i" bus (1=1,2,.....,n), P;j is the active power losses at it bus,
Qi is the reactive power losses at i" bus, P is the active power load connected at i™ bus and Qi is
the reactive power load connected at i" bus. The loss sensitivity factor is calculated by forward-
backward load flow analysis as Shown in Figure 2 for IEEE 33 bus system.
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Figure 2. Power loss sensitivity for IEEE 33 bus system.

Normalized voltage V, is calculate to maintain the voltage profile near unity PF after integration
of DERs by (11).
v
= L (11)
where, V;j is the voltage at i" node. DERs are integrate at a particular bus, where the active power
losses sensitivity is maximum and normalized voltage shown in Figure 3 is less than 1.01 p.u.. Figure 2
shows the maximum power loss sensitivity for IEEE 33 bus system. Power loss sensitivity is
maximum for buses 3, 4, 5 & 18 are respectively 0.208, 0.1455, 0.138 & 0.1124 but at these busses
normalized voltage is more than 1.01 p.u.. Therefore these busses are not consider for the integration
of DERs with the proposed system. After this bus 28 have maximum loss sensitivity 0.0623 have
normalized voltage 0.9865 p.u. is selected for the integration of DERs.
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Figure 3. Normalized voltage profile for IEEE 33 bus system.
4. DERs integration using voltage sensitivity analysis method

Voltage Sensitivity Analysis method (VSA) is defining the best position at which the system is
stable. In this method voltage profile is used to optimize the location of DERs. VSA defines the
utility operator that the system is close to collapse and required to improve voltage profile. VSA is
calculating by connecting DERs with a capacity of 20% of the total connected active load at each
node. VSA is calculated by (12) and the point where VSA is minimum is selected for the integration

of DERs [23,24].
VSA; = ’M (12)

where, Vi is the voltage at m™ bus and n is the total number of busses. Figure 4 shows the VSA
profile of the IEEE 33 by connecting 20% capacity of DERs of total load capacity 3710 kW.
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Figure 4. Voltage sensitivity factor for IEEE 33 bus system.
It shows that VSA is minimum at bus 17, therefore this bus is selected for DERs integration.

DERs capacity is calculating by connecting different capacities of DERs at bus 17 and at a particular
capacity where active power losses are minimum is selected for the integration.
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5. Proposed methodology

5.1. DERs capacity for integration using Fuzzy Logic Controller

Fuzzy system is an extension of integer numbers and used to transmute the verbal rules into
mathematical modelling. In this work, the capacity of DERs to integrate with proposed system is
calculate by the fuzzy logic controller by applying three input sets in the form of triangular function,
voltage profile, active power losses, and reactive power losses. Further, every input is subdivided
into three subsets of lower, medium and the higher range shown in Table 1 [25]. The output of fuzzy
logic controller is the capacity of DERs to integrate with proposed system for unity and 0.9 PF are

shown in Figure 5.

Table 1. Membership functions of Fuzzy Logic Controller.

Input’s/Output’s

Range Criteria

Range of Triangular function
[min. Peak Max.]

Voltage (pu) Low [0.9, 0.92, 0.94]
Medium [0.93, 0.95, 0.96]
High [0.95,0.98, 1]
Active Power Loss (kW) Low [0, 5, 10]
Medium [10, 20, 30]
High [30, 50, 100]
Reactive Power Loss (kVAr) Low [0, 5, 10]
Medium [10, 20, 30]
DG Capacity (MVA) Low [0, 1, 1.5]
Medium [1.5,2.25,2.5]
High [2.5,4.0,5.0]
3500 .
B DERs at unity PF - mDERs at 0.9 PF
2 3000
Z 2500
£ 2000
5 1500
O
g v | | “ “ “ ‘| “ ‘ “ “ “ “ “ “ ‘ “ “ “ “ “ “
a 500
0 | TN
1 35 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Bus Number

Figure 5. Energy generation capacity from DERs using Fuzzy Logic Controller.
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5.2. DERs location of Integration using game theory

Game theory is a tool of mathematical expressions to identify the best suitable combination for
the participants among the rules designed to get maximum benefits. Cooperative game theory is used
in the proposed methodology to identify the location to integrate the DERs with maximum benefits.
Cooperative game theory allowed the players to communicate with each other and find the nash
equilibrium by their mutual concerns. Cooperative game theory games are categorized as static and
dynamic games. When each consumer select their best response only once are known as static games.
When consumers update their best responses after considering the responses of other players are
known as dynamic games. Dynamic games allowed the consumers to modify the action more than
one to increase the payoffs. Dynamic game with cooperative game theory is designed for
optimization of DERs integration location. The capacity of all the DERs to integrate at different
buses are calculated by FLC and active & reactive power losses by the integration of these DERs are
determined by load flow analysis. Two inputs for the cooperative game is considered as active &
reactive power losses and voltage profile. Some rules are design before identify the suitable location
for the integration of DERs.

Rule-I: The maximum capacity of DERs to integrate into the system at different busses are always
less than and equal to the maximum power handling capacity of the system.
Rule-II: One branch includes several buses will consider for the integration of DERs at any one bus.
Rule-III: A maximum of three DERSs are integrate with a particular system at three different locations.
Rule-IV: DERs are integrating where active and reactive power losses after the integration of proper
size of DERs, calculate by fuzzy logic controller are minimum and voltage profile before
integration is minimum.
As per the defined rules, a game is played between busses to integrate DERs. The capacity of

DERs is obtaining by two sets of input strategies are | = { Iy, 1, .......... I} the strategy of finding the
buses to integrate DERs and J = {J, Jo, ........ , Jk} strategy of DERSs capacity to connect [20]. Payoff
function for strategy set | with strategy set J is in (13).

Ui(l;,]) = (L= + ) (13)

Strategy set J with set | is in (14)
Ui, 1) = Ji(L = + ) (14)

where, ljand J; are the proportion of effort for payoff function of U; and U; respectively are the real
numbers between zero to one and having the possibilities of infinite set actions so not required to
prepare game table. Maximum payoffs are calculated by differentiating (13) and (14) with respect to
liand Jirespectively in (15) and (16) to find the best response U;(I;,/;)" and U;(J;, I;)".

Uyl )t = (15)

i

U0 1y = &0 (16)

l

The Nash equilibrium of the two payoff functions is calculated where the two best responses
intersect. Best response of each player are intersected with another player’s best response in (17)
and (18) respectively:
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* 1_];
Uil ) = S (17)

N 1-1]
Ui, 1) = &0 (18)

i

Nash equilibrium for both these equations are shown in (19):

e = 0 0, »

6. Simulation results

IEEE 33 bus radial distribution system is used to optimize the integration problem of DERs to
the system with the load capacity of 3710 kW & 2300 kVAr.

6.1. Modified novel method

IEEE standard 33 bus system is used to integrate the DERs of different capacities at different
busses as shown in Figure 1. Without installation of DERSs, active and reactive power losses at IEEE 33
bus system are 216.84 kW, 141.3417 kVAr respectively. As per the modified novel method, the bus
where active power losses are minimum is specified to integrate the DERs. DERs at bus 6 with a
capacity of 2093.5 kVA and 2306.86 kVA respectively for unity and 0.9 power factor are integrated.
Active and reactive power losses after integration of DERs at unity power factor are 133.098 kW &
109.3978 kVAr respectively and at 0.9 power factor 129.99 kW & 107.2327 kVAr respectively as
shown in Figure 6 and Table 2.

B Total Active Power Loss Unity PF

E 250 ® Total Active Power Loss 0.9 PF
§ 200

kK

5 150

2

£

5 100

2

2 50

=

20

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Bus Number

Figure 6. Total active power losses by integration of DERs using modified novel method.
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Figure 7. Voltage Profile at IEEE 33 Bus System using Modified Novel Method for
DERs Integration.

The integration of DERs are improving the voltage profile of the system. Figure 7 shows the
voltage profile in three cases, without the integration of DERs, integration of DERs at unity power
factor and integration of DERs at 0.9 power factor for IEEE 33 bus system. It shows that the
minimum voltage after integration of DERs is improving at unity power factor is 0.913291 p.u. and
at 0.9 power factor 0.91435 p.u. from 0.9025 p.u. the without integration of DERs.

Table 2. 33 bus system results using modified novel method.

Without DERs DERs at Unity PF DERs at 0.9 PF

DERs Size - 2093.5 kVA 2306.86 kVA
DERs Integration Location - 6 6

(bus)

Total Active Power Losses 216.84 kW 133.098 kW 129.99 kW
Total Reactive Power Losses  141.3417 kVAr  109.3978 kVAr 107.2327 kVAr
Min. Bus Voltage 0.9025 pu 0.9133 pu 0.9143 pu

6.2. Power loss sensitivity method

The power loss sensitivity method allowed the grid to integrate the DERs where power loss
sensitivity is highest and normalized voltage is less than 1.01. DERs capacity optimize by integrating
different capacity of DERs to defined bus and calculate the active & reactive power losses and
voltage profile. Before installation of DERs, active and reactive power losses of IEEE 33 bus system
are 216.84 kW, 141.3417 kVAr respectively. As per power loss sensitivity method, DERs are
connected at bus 28. Different capacity of DERs are integrated from 0 kVA capacity to 2000 kVA
capacity and the DERs capacity where the active power losses are minimum are used to integrate the
DERs. DERs at bus 28 with a capacity of 1600 kVA and 1200 kVA respectively for unity and 0.9

power factor are integrate as shown in Fig. 8 have minimum power losses respectively for unity
and 0.9 PF.

AIMS Energy Volume 8§, Issue 3, 474-492.



484

250 ® Active Power Loss Unity PF
= m Active Power Loss 0.9 PF
200
&

3
5150
2
o
(=T
2100
5
<
= 50
o
F
0
(e} o o o j =l o S [ [ (o] (] [ (o] (] S S (=] S S
S S S S S S (=] (=] O (=] (e (=] (=] (=] (=] (== (=] O O (=]
= 8 &8 F 3 8 & 3 S -8 & 3I B EEE S G
DERs Capacity (kVA)

Figure 8. Total power losses with different capacity DERs at bus 28 using power loss
sensitivity method.

The integration of DERs are improving the voltage profile of the system. Figure 9 shows the
voltage profile without integration of DERs, integration of DERs at unity power factor and
integration of DERs at 0.9 power factor for IEEE 33 bus system. It shows that the minimum voltage
is improved from integration of DERs at unity power factor is 0.9317 p.u. and at 0.9 power
factor 0.9309 p.u. from 0.9025 p.u. without integration of DERs. Active and reactive power losses
after integration of DERs at unity power factor are 125.3946 kW & 89.7300 kVAr respectively and
at 0.9 power factor 125.5273 kW & 89.4465 kV Ar respectively are shown in Table 3.

=0=Without DERs ==®=With DERs at unity PF  ==®==With DERs at 0.9 PF

0.98
0.96

0.94

Voltage (p.u.)

0.92

0.9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Bus Number

Figure 9. Voltage profile at IEEE 33 bus system using power loss sensitivity method for
DERs integration.
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Table 3. 33 bus system results using power loss sensitivity method.

Without DERs DERs at Unity PF DERs at 0.9 PF

DERs Size - 1600 kVA 1200 kVA
DERs Integration Location - 28 28

(bus)

Total Active Power Losses  216.84 kW 125.3946 kW 125.5273 kW
Total Reactive Power 141.3417 kVar 89.7300 kVar 89.4465 kVar
Losses

Min. Bus Voltage 0.9025 pu 0.9317 pu 0.9309 pu

6.3. Voltage sensitivity analysis

Without DERSs, active and reactive power losses of IEEE 33 bus system are 216.84 kW, 141.3417
kVAr respectively. As per voltage sensitivity analysis method, DERs are connected at bus 17 as shown
in Figure 4. DERs at bus 17 with a capacity of 800 kVA for unity and 0.9 power factor are integrate as
shown in Figure 10 as they have minimum active power losses.

250 B Active Power Loss at Unity PF

200
150
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o o
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Figure 10. Total power losses with different capacity DERs at bus 17 using voltage
sensitivity analysis method.
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Figure 11. Voltage profile using voltage sensitivity analysis method for DERs integration.

The integration of DERs are improving the voltage profile of the system. Figure 11 shows the
voltage profile without integration of DERs, integration of DERs at unity power factor and
integration of DERs at 0.9 power factor for IEEE 33 bus system. It shows that the minimum
voltage is improve after integration of DERs at unity power factor is 0.9132 p.u. and at 0.9 power
factor 0.9136 p.u. from 0.9025 p.u. without integration of DERs. Active and reactive power losses
after integration of DERs at unity power factor are 161.1102 kW & 111.7854 kV Ar respectively and
at 0.9 power factor 162.3449 kW & 112.5487 kV Ar respectively are shown in Table 4.

Table 4. 33 bus system results using voltage sensitivity analysis method.

Without DERs DERs at Unity PF DERs at 0.9 PF

DERs Size - 800 kVA 800

DERs Integration Location - 17 17

(bus)

Total Active Power Losses 216.84 kW 162.1102 kW 162.3449 kW
Total Reactive Power Losses  141.3417 kVar 111.7854 kVar 112.5487 kVar
Min. Bus Voltage 0.9025 pu 0.9132 pu 0.9136 pu

6.4. Proposed Methodology

Before integration of DERs minimum bus voltage is identified at bus 6, bus 22, bus 25, and bus 30.
Maximum of 3 DERs are integrated at three different branches, therefore select bus 6, 25, 30 for
integration of DERs with capacities of 1671.50 kVA, 1499.70 kVA & 1499.95 kV A respectively for
unity power factor and 1856.80 kVA, 1799.65 kVA, 1699.94 kVA for 0.9 PF respectively. Total
capacity at DERs connected at three buses are more than total system load, therefore bus 25 is not
selected for DERs integration as it have maximum power loss among remaining system. Figure 12
shows the total active and reactive power losses by the integrating of DERs of different capacity at
different buses.

AIMS Energy Volume 8§, Issue 3, 474-492.
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Figure 12. Total power losses at unity and 0.9 PF (a) Active Power Losses (b) Reactive
Power Losses.
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Figure 13. Power loss after integration of DERs at bus 6 and 30 (a) Active Power Loss
(b) Reactive Power Loss.

Nash equilibrium is obtained to integrate the DERs at bus 6 & 30 with a total capacity of 3171.45
kVA for unity power factor and 3556.74 kVA for 0.9 power factor lagging. The nash equilibrium is
the win-win situation among all the buses to integrate the DERs. DERs power handling capacity is
variable in a day and the location to integrate is calculate by using base line load. Results of Figure 13
shows the active and reactive power losses after integration of DERs at bus 6 and 30 shown that the total
active power losses are reduced from 216.84 kW to 107.8397 kW for unity PF and 120.8873 for 0.9 PF.
Total reactive power losses are reduced from 141.3417 kVAr to 77.332 kVAr and 85.7890 kVAr
respectively for unity and 0.9 PF. Figure 14 shows the voltage profile without integration of DERs,
integration of DERs at unity power factor and integration of DERs at 0.9 power factor for IEEE 33
bus system. It shows that the minimum voltage is improve after integration of DERs at unity power
factor is 0.9630 p.u. and at 0.9 power factor 0.9704 p.u. from 0.9025 p.u. without integration of
DERSs shown in Table 5.

AIMS Energy Volume 8§, Issue 3, 474-492.



489
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Figure 14. Voltage profile after integration of DERs at bus 6 and 30.
Table S. 33 bus system results using proposed method includes FLC and game theory.
Without DERs DERs at Unity PF DERs at 0.9 PF
DERs Size - 3171.45kVA 3556.74
DERs Integration Location - 6 & 30 6 & 30
(bus)
Total Active Power Losses 216.84 kW 107.8397 kW 120.8873 kW
Total Reactive Power Losses ~ 141.3417 kVAr  77.3332 kVAr 85.7890 kVAr
Min. Bus Voltage 0.9025 pu 0.9630 pu 0.9704 pu

7. Results comparison

Proposed method of DERs integration using FLC and game theory is compared with
conventional method i.e., novel modified method, power loss sensitivity method, voltage sensitivity
analysis method for IEEE 33 bus radial distribution network. The results are compared based on
three constraints active power losses, reactive power losses and voltage profile. The method is useful
which have maximum voltage improvement and minimum active and reactive power losses. DERs
are integrate at different locations from different methods and their capacity is also different. Tables
6 and 7 the results of different DERs integration at unity and 0.9 PF respectively shows that the
active power losses, reactive power losses are minimum in proposed methodology and minimum
voltage is maximum in proposed methodology using FLC and game theory. The results comparison
of different methodologies to integrate DERs define the proposed methodology is best suitable in
terms of voltage profile management and active and reactive power loss management. As per IEEE
standards voltage profile more than 0.95 p.u. increase reliability of the system and the results of proposed
methodology maintain the voltage between 0.9630 p.u. to 1.00157 p.u. and between 0.970385 p.u.
to 1.00157 p.u. for unity and 0.9 PF respectively.
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Table 6. Compression of results of 33 bus system at unity PF.

With DERs
Without  \odified  Power Voltage Proposed
DERs Novel Loss Sensitivity Method
Method  Sensitivity Analysis
Method Method
DERs Location - 6 28 17 6 & 30
DERs Capacity (kVA) - 2093.5 1600 800 3171.45
Total Active Power Losses 216.84  133.098 125.3946 162.1102 107.8397
(kW)
Total Reactive Power Losses 141.3417 109.3978  89.7300 111.7854 77.3332
(kVAr)
Minimum Voltage (pu) 0.9025 0.9133 0.9317 0.9132 0.9630
Table 7. Compression of results of 33 bus system at 0.9 PF lagging.
Without With DERs
DERs Modified Power Voltage Proposed
Novel Loss Sensitivity Method
Method  Sensitivity Analysis
Method Method
DERs Location - 6 28 17 6 & 30
DERs Capacity (kVA) - 2306.86 1200 800 3556.74
Total Active Power Losses (kW) 216.84 129.99 125.5273  162.3449 120.8873
Total Reactive Power Losses 141.3417 107.2327 89.4465 112.5487r 85.7890
(kVAr)
Minimum Voltage (pu) 0.9025 0.9143 0.9309 0.9136 0.9704

8. Conclusions

Distributed energy resources are integrated with distribution networks near load centers to
minimize the losses and to maintain the voltage profile. A Novel approach based on fuzzy logic
controller and game theory is proposed in this paper. The capacity and the proper location for the
integration of DERs are essential to maintain the reliability of the system. Fuzzy logic controller is
used to optimizing the capacity of DERs to integrate with distribution network and game theory
obtain the location of integration. The proposed methodology obtains the results of active power
losses, reactive power losses and voltage profile with and without DERs. To authenticate the results
obtained from the proposed system are compared with conventional methods i.e. modified novel
method, power loss sensitivity method and voltage sensitivity analysis method for IEEE 33 bus
system for unity and 0.9 power factor. The results show the voltage profile is improved respectively
for unity and 0.9 PF is 1.2% & 1.3% using modified novel method, 3.23% and 3.14% using power
loss sensitivity analysis, 1.18% & 1.22% using voltage sensitivity analysis, and 6.70% & 7.52%
using the proposed methodology. The results of active & reactive power losses are reduced 38.42%
& 22.62%, 42.17% & 36.51%, 25.29% & 20.91% and 50.27% & 45.28% respectively for modified
novel method, power loss sensitivity method, voltage sensitivity analysis method and the proposed
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method for unity power factor. The results of active & reactive power losses are reduced 40.05% &
24.13%, 42.11% & 36.71%, 25.13% & 20.37% and 44.25% & 39.30% respectively for modified
novel method, power loss sensitivity method, voltage sensitivity analysis method and the proposed
method for 0.9 power factor. The proposed methodology is useful for practical implementation of the
integration of DERs as maximize the voltage profile and minimize the active and reactive power
losses.
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