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Abstract: Dynamic energy pricing provides a promising solution for the utility companies to in-
centivize energy users to perform demand side management in order to minimize their electric bills.
Moreover, the emerging decentralized smart grid, which is a likely infrastructure scenario for future
electrical power networks, allows energy consumers to select their energy provider from among mul-
tiple utility companies in any billing period. This paper thus starts by considering an oligopolistic
energy market with multiple non-cooperative (competitive) utility companies, and addresses the prob-
lem of determining dynamic energy prices for every utility company in this market based on a modified
Bertrand Competition Model of user behaviors. Two methods of dynamic energy pricing are proposed
for a utility company to maximize its total profit. The first method finds the greatest lower bound
on the total profit that can be achieved by the utility company, whereas the second method finds the
best response of a utility company to dynamic pricing policies that the other companies have adopted in
previous billing periods. To exploit the advantages of each method while compensating their shortcom-
ings, an adaptive dynamic pricing policy is proposed based on a machine learning technique, which
finds a good balance between invocations of the two aforesaid methods. Experimental results show that
the adaptive policy results in consistently high profit for the utility company no matter what policies
are employed by the other companies.
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1. Introduction

There is no doubt that electrical energy, which dramatically fuels both the development of society
and the improvement of people’s living standard, is the lifeline of national economy [2]. Availability
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of affordable and sustainable electrical energy has been the key to prosperity and continued socio-
economic growth in the nations and the world [2]. The two key characteristics of electrical energy are
that it is easy to distribute but hard to store. More precisely, electrical energy can be transmitted to
a faraway place through the power transmission lines with only a tiny loss, but unlike other common
forms of energy such as chemical or kinetic, electrical energy should be used as it is being generated.
If long-term storage is required, electrical energy will typically be converted immediately into another
form of energy such as potential, kinetic, or electrochemical.

Electrical energy is currently provided to the end users through an infrastructure, comprised of
utility companies, power plants, and transmission lines, which serve millions of electricity customers
[3]. Due to the difficulty in storing electrical energy, matching power supply with real-time demand
is the usual practice of power generation and distribution networks [4]. This is a challenging problem
because the power demand depends on exogenous factors and varies dramatically as a function of time
of day and seasonal factors [5]. Meanwhile, the amount of generation, transmission and distribution
capacities that utility companies need to provision depends on the peak demand rather than the average,
and the huge difference between energy consumption levels at peak usage hours and off-peak hours has
resulted in not only cost inefficiencies and potential power delivery failures (brownouts and blackouts),
but also environmental pollution due to the over-provisioning of the Power Grid and the resulted energy
waste [6]. For example, the US national load factor (i.e., the ratio of average load to peak load) is about
55%, and only 10% of generation plants and 25% of distribution facilities are used only more than 400
hours per year, i.e., 5% of the total time [2].

Dynamic energy pricing provides a potential solution for demand shaping to reduce the peak power
demand and smoothen the overall power profile, and has been widely investigated in [2–10]. Dynamic
changes in energy prices provide an incentive for electricity users to shift their energy consumption
from peak hours of energy usage to off-peak hours, and thereby, lower their monthly electric bills. At
the same time, by effectively incentivizing users to shift their power demands, utility companies can
reduce their capital expenditure without any need of adding new power plants to the Grid to meet the
users’ power demands during peak hours. In summary, dynamic energy pricing can potentially benefit
both the energy producers and consumers from the economical perspective.

Effective implementation of dynamic energy pricing faces many challenges. The most difficult
step is to predict energy users’ reactions to various dynamic energy pricing policies, which calls for
accurate behavioral models and practical algorithms. Authors in [6] and [7] provide algorithms for
optimal load scheduling and cost minimization incentivized by dynamic energy pricing at the energy
consumer side. For the utility companies, reference [8] proposes a real-time energy price determination
algorithm under the assumption that each energy consumer will optimize a predefined utility function.
However, these papers have focused on either profit maximization for utility companies or cost mini-
mization for energy users. Considering the fact that utility companies tend to make decisions based on
the anticipated response from energy users, our work in [11] combined the energy generation model
of the utility company and the load scheduling model of residential users, and concurrently optimized
the utility company’s power generation cost and the users’ electric bill. However, the optimization
framework of [11] is based on a centralized monopolistic electrical grid, where a single utility com-
pany supplies all the power demands of electricity consumers in a local area, while the government
enforces regulations on electric price in this monopolistic energy market. As a decentralized ”smart
grid” becomes the major trend of the future electrical power network architecture [2], each energy user
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is allowed to have multiple choices among different utility companies. According to this trend, compe-
tition between different utility companies will be increasingly widespread, and will be encouraged by
the government [12] due to the fact that monopoly results in significant deadweight losses (also known
as excess burden or allocative inefficiency) and other types of economic inefficiencies.

To address the issues related to a centralized monopolistic market, in this paper we propose a dy-
namic pricing optimization framework for multiple utility companies in an oligopolistic energy market.
At the beginning of each billing period (i.e., a day), each utility company will announce the time-of-use
dependent electricity pricing policy during the billing period. Each energy user is able to perform task
scheduling according to the dynamic energy prices, in order to minimize the total daily energy cost.
Moreover, each energy consumer can freely select any utility company for energy supply at the begin-
ning of each day, based on the anticipated energy cost on that day. Competition mechanisms among
utility companies are introduced in this paper considering that (i) multiple utility companies concur-
rently make their decisions about dynamic pricing, and (ii) the dynamic pricing policies will affect
each consumer’s selection of energy supplier and task scheduling results. Based on this system model,
we propose two price determination methods for any utility company to maximize its total profit in
the subsequent day, accounting for both the expected revenue obtained from energy consumers and
the cost of energy generation. The first method maximizes a lower bound on the total profit that is
guaranteed for the utility company. The second method finds the best response for the utility company
with respect to the dynamic pricing policies of the other utility companies in the previous day. The first
method is relatively conservative, and performs well when other utility companies are also rational
and conservative. On the other hand, the second method is more aggressive in profit maximization
without a guarantee of certain level of profitability. To exploit the advantages of each method while
compensating the weaknesses, we propose an adaptive dynamic pricing policy based on the machine
learning technique [18], which finds a desirable tradeoff between the two abovementioned methods.
When employing this adaptive policy, the utility company consistently achieves high profit no matter
what policies are utilized by the other utility companies.

The remainder of this paper is organized as follows. In the next section, we present the system model
of the oligopolistic energy market with multiple utility companies. Section 3 presents the proposed
dynamic pricing methods for the utility companies, and Section 4 reports the simulation results. The
paper is concluded in Section 5.

2. System model

As stated earlier, our ultimate goal is to maximize the overall profit for a utility company in the
oligopolistic market. In classical economics problems between sellers and buyers, sellers need to
determine their prices based on the anticipated reaction of the buyers. This is because the sellers and
buyers are typically non-cooperative and always make decisions for their own maximum profit [11],
while the government would like to maximize the total social welfare. This is also the case for utility
companies and energy users.

In the proposed system model, utility companies and energy users are assumed to act as non-
cooperative players, i.e., always trying to maximize their own profits or minimize their own energy
costs. Each utility company needs to decide its dynamic energy price during the whole billing period
by anticipating the energy users’ responses to various dynamic energy pricing policies. At the begin-
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ning of the day∗, all the utility companies concurrently announce their dynamic pricing policies over
the billing period to energy users, in order to comply with the fair competition rules. Next each energy
user (i) schedules its tasks according to the offered energy prices, (ii) calculates the resulting energy
cost if it selects a utility company as its energy provider, and (iii) finally chooses one of the utility
companies. When all the energy users have made their choices and scheduled their tasks accordingly,
utility companies are able to calculate their final profits based on their own energy generation cost
functions. This information will be used to set/revise future pricing policies of the utility companies.
Figure 1 shows the flow chat of each billing period.

Figure 1. Flow chat of one billing period in our system model.

In the following, we first describe the task scheduling problem that each energy user faces and ex-
plain the solution method. Since multiple utility companies offer potentially different daily dynamic
price functions, we next discuss the users’ responses to these prices (which are based on a modi-
fied Bertrand Competition Model) and explain their energy provider selection procedures. Finally, we
present the method by which utility companies determine their future pricing policies in this oligopolis-
tic energy market.

2.1. Model and solution of task scheduling for each energy user

Figure 2 shows an example task scheduling solution based on the given electricity price function.
The height of the task box in this figure signifies the amount of power the corresponding household
task consumes when running. Under a non-constant price function, energy users tend to assign their
tasks to low-price time periods.

In this paper, we adopt a slotted time model, i.e., all system cost parameters and constraints as well
as scheduling decisions are provided for discrete time intervals of constant length. The whole billing
period is thus divided into a fixed number of equal-sized time slots (in the experiment, a day is divided

∗We take one full day as the billing period for each utility company in the market.
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Figure 2. An example of the task scheduling problem.

into 24 time slots, each with duration of one hour). Tasks can be launched only at the beginning of one
of these time slots and be completed at the end of a slot.

We define the price function, P[t], as the price of one unit of energy at time slot t where t ∈
{1, 2, . . . ,T }†. In this subsection, we assume that P[t] is fixed and pre-announced by the utility company
at the start of the day. Energy users can schedule their tasks for the whole day but their decisions will
not affect the energy price function. For the energy user of interest, we assume that there are a number
of tasks that should be executed daily, and these tasks are independent of each other. These tasks are
identified by index j. The set of task indexes is {1, . . . ,N} where N is the total number of tasks for the
energy user. For each task j, the earliest start time, ES j, the latest end time, LE j, energy consumption
per time slot, C j, and the duration of task, Time j, are specified and provided to the energy user.

To solve the task assigning problem, two additional definitions are needed: start time, S j, which
represents the time slot when task j starts and task operation condition, M j[t], where M j[t] = 1 if task
j is operating at time slot t, i.e., S j ≤ t < S j + Time j, and M j[t] = 0 otherwise.

Using the above definitions, the energy user’s cost minimization problem can be modeled as follows:

Task Scheduling Problem for an Energy User

Find: the optimal S j for 1 ≤ j ≤ N.

Minimize:
Cost =

∑
t

P[t] ·
∑

j

C j · M j[t]. (1)

Subject to:
S j ≥ ES j f or 1 ≤ j ≤ N, (2)

S j + Time j ≤ LE j f or 1 ≤ j ≤ N. (3)
†A unified price function is used throughout this paper
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A greedy algorithm can be used to achieve the minimal cost for the energy user, as shown in Algo-
rithm 1.

Algorithm 1 Task Scheduling Algorithm for an Energy User.
1: for each task j do
2: for every possible start time ES j ≤ t ≤ LE j − Time j + 1 do
3: Calculate sum[t] = P[t] + P[t + 1] + · · · + P[t + Time j − 1].
4: end for
5: Find the minimal sum[t] and assign S j = t.
6: end for
7: Repeat the above steps until all the tasks are scheduled.

It can be proved that the proposed greedy algorithm obtains the global optimum solution.
Property 1: Algorithm 1 achieves the minimal energy cost of each energy user.
Proof : In the task scheduling algorithm, every possible start time t of each task j is examined, and

thus, an optimal schedule of each task j is achieved. As the tasks are considered to be independent, the
minimal total cost of the energy user can be obtained when we apply this algorithm to all the tasks.

2.2. Responses of energy consumers to dynamic prices

Energy users will be the beneficiaries of the competition among utility companies since the competi-
tion encourages a larger range of choices of energy provider and results in lower electricity prices. The
authors in [13] applied two kinds of competition models, i.e., the Cournot Competition Model and the
Bertrand Competition Model, in a conventional electrical energy market. However, both of them may
not be applicable in the future smart grid architecture. First of all, demand response is a key element
of smart grid technologies, which implies that the usual practice of smart power networks is match-
ing supply to demand instead of the opposite way. For this reason, the Cournot Model, where all the
companies compete on the amount of products they produce, is not applicable to the future smart grid.
On the other hand, the Bertrand Competition Model, which assumes that consumers always choose
the product with the lowest price, also turns out to be oversimplified, because (i) the introduction of
daily dynamic prices makes it hard for energy users to determine which utility company actually of-
fers a better price, and (ii) the users may not be absolutely free to switch from one energy supplier to
another [12].

In this paper, we use a modification of the Bertrand Competition Model in the energy supplier
selection process that yields more realistic results. Let Costc,i denote the total electricity bill of the
ith energy user, when it selects the cth utility company as energy supplier and performs optimal task
scheduling (as shown in Section 2.1) in the entire billing period. Obviously, each ith energy user could
estimate all the Costc,i values based on the dynamic energy prices offered by different utility companies.
It is generally agreed by economists (cf. [12]) that each energy user i has a threshold cost value, denoted
by threi, which represents the expected amount of money they prepare to pay for electricity bill. The
threshold cost may differ for different energy users due to the variation in the energy users’ income
level, total electricity consumption, cultural reasons, and other factors. Utility companies can predict

AIMS Energy Volume 4, Issue 1, 119–135.



125

each energy user’s threshold cost value by examining its previous reactions as well as other statistics.
It has been conjectured in [14] that an energy user i will randomly choose one utility company among
those who result in a total electricity cost no higher than the user’s threshold cost, i.e., Costc,i ≤ threi.

There is another situation where none of the utility companies offer a price lower than threshold,
i.e., Costc,i > threi for ∀c. Because electrical energy is a necessity for all the energy users (please note
that this is different from classical economic theory [12]), each user will choose the utility company
that results in the least electricity bill Costc,i in this case.

2.3. Determination of daily energy prices by the utility companies

In the proposed oligopolistic energy market framework, the utility companies are aware of the task
profiles and task scheduling/energy supply selection methods of energy users, using the increasingly
widespread smart meters and prediction techniques [2]. Hence, each utility company is able to maxi-
mize its total profit by effective price determination based on the anticipated reactions of energy users.

At the beginning of day, each utility company c announces its energy price over the day, denoted
by Pc[t] (1 ≤ t ≤ T ), which is the optimization variable of the utility company. In addition, let
cost ec[t] denote the unit energy cost of each utility company c at time t, which is determined by
the type of electricity generation (e.g., steam-power station or solar-energy-power station) as well as
weather condition and seasons.

We define a Boolean variable satc,i for each utility company c and energy user i. We have satc,i = 1
if the energy price function offered by utility company c leads to an electricity cost no higher than
the threshold cost for that user, i.e., Costc,i ≤ threi. In this case, energy user i is satisfied with utility
company c. We have satc,i = 0 otherwise.

Consider the situation where none of the utility companies offer a satisfying price function for a
certain energy user i, then the user chooses the utility company that results in the lowest energy cost
after performing task scheduling. We set another binary variable winc,i = 1 when utility company c
wins the price competition and is chosen by energy user i in this case, and set winc,i = 0 otherwise.
Please notice that (i) we have

∑
c winc,i ≤ 1, which means at most one utility company can win the price

competition for a certain energy user and (ii) for an energy user i, winc,i can be 1 only when satc,i = 0
for all c, i.e., the user is satisfied with none of the utility companies.

Based on the above definitions, the profit of each utility company can be separated into two parts:
1) the profit from satisfied users, which is a random variable since the users randomly choose one from
all the utility companies that offer satisfying energy prices and, 2) the profit from unsatisfied users.
The expected profit maximization problem for a utility company with price restriction can be formed
as follows:

Profit Maximization Problem for Each Utility Company c

Find: the optimal price function Pc[t] for 1 ≤ t ≤ T .

Maximize: the expected profit value, given by:

E[pro f itc] =
∑

i

(
1

1 +
∑

c′,c ·satc′,i
· satc,i + winc,i) · [

∑
t

(Pc[t] − cost ec[t]) · conc,i[t]] (4)
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in which conc,i[t] is the total energy consumption of energy consumer i at time t if it chooses com-
pany c and performs optimal task scheduling as discussed in Section 2.1.

Subject to: the price restriction rules:

Pc[t] ≥ minimalprice f or 1 ≤ t ≤ T,

Pc[t] ≤ maximalprice f or 1 ≤ t ≤ T.
(5)

3. Profit maximization methods

The profit maximization problem for a utility company has been discussed in the previous section.
In Eq. (4), the values of

∑
c′,c satc′,i and winc,i can be calculated only when the price strategies of the

other utility companies are known in prior, i.e. each utility company’s payoff is determined by not
only its own strategy (dynamic energy price), but also the price functions of its competitors. For fair
competition, all companies announce their price functions simultaneously at the beginning of a day,
implying that the decisions of other utility companies are unknown when one company determines its
own price function. Those factors make the profit maximization problem a normal-form game among
the non-cooperative utility companies [16].

For a normal-form non-cooperative game, the Nash equilibrium is of primary interest [16]. The
Nash equilibrium is the optimal strategy profile for all the players (utility companies) in the sense that
no player can benefit by changing its strategy unilaterally while the other players keep their strategies
unchanged. However, it is hard to achieve the Nash equilibrium solution in our game formulation
because of the following reasons: (i) the payoff of each player (utility company) is integrated with a
task scheduling and energy provider selection process of various energy users, and hence is a complex
function without explicit expression. As a result, it is difficult to guarantee the existence and uniqueness
of Nash equilibrium for the players. (ii) The utility companies achieve best response with respect to
the others in the Nash equilibrium only if all the companies are rational players. However, with the
introduction of dynamic pricing, different utility companies could employ different price determination
policies and it is not easy to tell which method is more ”rational” than the others.

Considering these factors, we present two price determination methods for each utility company.
The first method maximizes a lower bound on the total profit that is guaranteed for the utility company
and independent of the other utility companies’ strategies. The second method finds the best response
of the utility company with respect to the dynamic pricing policies of the other utility companies in
the previous billing period. In order to exploit the advantage of each method while compensating the
weaknesses, we propose an adaptive dynamic pricing policy based on machine learning [18], which
finds a desirable tradeoff between the two methods.

3.1. Lower bound-based profit maximization

In this method, we maximize a lower bound of profit for the company of interest. Notice that in Eq.
(4), satc,i, cost ec[t] and conc,i[t] for all i and 1 ≤ t ≤ T can be determined without knowing the pricing
schemes of the other companies. Hence, a lower bound of the utility company’s profit can be estimated
if we assume that the energy consumers satisfied with the utility company of interest are also satisfied
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with all the other companies, i.e., the energy price functions offered by all the utility companies lead
to an electricity cost no higher than the threshold costs of those users. In this situation, those satisfied
energy users have a probability of 1/K to choose the company of interest, where K is the total number
of utility companies. We can maximize the lower bound given as follows:

E[pro f it boundc] =
1
K
·
∑

i

satc,i · [
∑

t

(Pc[t] − cost ec[t]) · conc,i[t]] (6)

This lower bound is a conservatively estimated profit for the utility company, and can be guaranteed
regardless of the other utility companies’ pricing policies. In this way, each utility company can inde-
pendently optimize its own objective function (6) and finds the corresponding dynamic pricing policy,
regardless of the pricing policies of the other companies. The lower bound-based profit maximization
method performs well when the other utility companies are also rational and conservative.

Generally speaking, a simplified profit maximization problem considering fixed (and pre-known)
task schedules of energy user is a mixed integer non-linear programming (MINLP) problem which is
well known as NP hard. The integer part of the problem comes from the fact that satc,i is 0 or 1 based on
the energy prices throughout a day. The complexity of solving this problem is equal to the complexity
of selecting the best subset of the energy users and finding the energy price to satisfy their total cost
threshold and to maximize the profit of the utility company. By adding the task scheduling model
for each energy consumer in the previous section, this problem becomes a multi-level optimization
problem and is even harder to find a practical algorithm leading to the best result. Considering these
facts, we use simulated annealing (SA), which is a probabilistic technique that comes from annealing
in metallurgy for approximating the global optimum of a given function [15], to find a nearly-optimal
solution for the target utility company c with an objective function Ob j = E[pro f it boundc]. Details
of this method are provided as follows:

In the simulated annealing-based approach, the run-time and the quality of final result can be ad-
justed by changing some parameters values as well as the running steps [15]. In Algorithm 2, the
cooling factor α is a tradeoff between algorithm run-time and the quality of final result. If we decrease
this factor, the algorithm run-time will be reduced but the final result will deteriorate. In addition, the
final (cooling) temperature Temmin should also be adjusted together with factor a in order to derive the
best pricing results.

3.2. Best response-based profit maximization

Although the lower bound-based profit maximization method guarantees a conservative estimated
profit for the utility company c, it fails to take into consideration the revenue from those unsatisfied
energy users by winning the price competition. However, as stated before, all the utility companies
announce their price functions simultaneously at the beginning of each billing period, the decisions
of other utility companies are unknown when one company is deciding its own strategy on energy
price function. In this method, utility company c predicts its competitors’ price functions based on
the information from the previous billing period that is already announced to all the energy users, and
optimizes its own price function Pc[t] for 1 ≤ t ≤ T based on these data, i.e., each utility company
designs its price function so that it has the best response to the price functions from other companies
in the previous billing period. The objective function of utility company c is Eq. (4), where the satc′,i

(for c′ , c) and winc,i values can be estimated by utility company c since it takes the other companies’
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Algorithm 2 Lower bound-based profit maximization algorithm for utility company c.
1: Initialize Pc[t] for 1 ≤ t ≤ T .
2: Initialize Ob jmax to be a large negative number.
3: Initialize temperature Tem = Temmax.
4: while (Tem > Temmin) do
5: Change the price function Pc[t](1 ≤ t ≤ T ) by randomly picking one or several successive time

slots and changing the price values while satisfying the constraints provided in Eq. (5).
6: Anticipate the task assignment results for all the energy users under the modified price function.

7: Calculate conc,i[t](1 ≤ t ≤ T ) and satc,i for each i.
8: Ob j← E[pro f it boundc] in Eq. (6) based on the calculated conc,i[t] and satc,i values.
9: if Ob j ≥ Ob jmax then

10: Accept the change of the Pc[t] values.
11: else
12: Accept the change with probability e(Ob j−Ob jmax)/Tem.
13: end if
14: Ob jmax ← Ob j if the change has been accepted.
15: Decrease the temperature Tem by a factor of α.
16: end while

price functions from the previous billing period. Let E[pro f it′c] denote the objective function of the
best-response-based profit maximization method. Please note that it is different from E[pro f itc] in
Eq. (4) due to the adoption of the other companies’ price functions from the previous billing period.
The algorithm of best response-based profit maximization is also based on the simulated annealing
approach and is similar to what we have discussed in the previous method. The algorithm details are
omitted due to the similarity to Algorithm 2.

3.3. Learning-based profit maximization

There are some limitations in the best response-based profit maximization method discussed in
Section 3.2. The main weakness of the method is that it can only provide a solution that is the
best response to the price functions from other companies in the previous billing period, instead
of the current billing period. Moreover, compared with the lower bound-based profit maximiza-
tion method, the best response-based method is more aggressive in profit maximization without a
guarantee of certain level of profitability. Our goal is therefore to find an optimal tradeoff between
the two methods. More specifically, we set the new objective function for utility company c as
Ob j = α · E[pro f it boundc] + (1 − α) · E[pro f it′c], where α ∈ [0, 1] is the factor representing the
preference of each method.

The most critical task in the new method is the evaluation and selection of the preference factor α.
For a utility company, a machine learning algorithm is employed for this purpose [18]. The algorithm
is an adaptation of Freund Schapire’s on-line allocation algorithm [19]. The target utility company
has L policies to choose from; we number these policies l ∈ {1, 2, . . . , L}. Each policy l corresponds
to a preference factor αl ∈ [0, 1]. The algorithm associates and maintains a weight vector wd =<
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wd
1,w

d
2, . . . ,w

d
L > comprised of weight factors corresponding to different policies, where d ∈ {1, 2, . . . }

is the index of each billing period. The value of a weight factor wd
l reflects the estimated performance

of a policy l, where a higher value indicates a better performance. In our implementation, the initial
weights w1

l ’s of all the policies are equally set to be 1/L.
At the beginning of each billing period, the utility company simply selects the policy with the high-

est weight, and subsequently finds the dynamic price based on the corresponding objective function
using simulated annealing. If there are multiple policies with the equal weight, the utility company
randomly selects one of these policies. Once the billing period (a day) finishes, the utility company
evaluates the performance of the selected policy by calculating the actually received profit based on the
energy users’ reactions to the announced price function. Dormant (unselected) policies are evaluated
on the basis of how energy consumers would have reacted if such policies had been selected. Please
note that this is a unique feature of the learning framework in this work since most learning-based
policy selection method does not allow for evaluating the unselected policies [20]. In the evaluation
phase, a value lossd

l is used to capture the profit loss of each policy l ∈ {1, 2, . . . , L} by comparing with
the maximal profit from all the policies:

lossd
l = 1 −

pro f itd
l

pro f itd
max

(7)

where pro f itd
max = maxl(pro f itd

l ).
The final step in the evaluation phase involves updating the weight factors for all the policies based

on the lossd
l values they have incurred:

wd+1
l = wd

l β
lossd

l (8)

where the learning parameter β is set between 0 and 1. Thus, the weight factors corresponding to
policies with higher lossd

l values get reduced more than the policies with lower lossd
l values. This pro-

cedure enhances the chance of selecting the better performing policies in the next billing period. Once
the weight factors are updated, the utility company is again ready to select its pricing determination
policy for the next billing period. Details of this method are presented as follows:

4. Experimental results

To observe the effectiveness of the proposed profit maximization algorithms, various cases corre-
sponding to the aforesaid pricing models are examined. The proposed algorithms have been imple-
mented in C++ code and tested also for random cases.

4.1. Simulation setup

In our simulations, we consider one day as a billing period and duration of one time slot is set to be
one hour. To make the experimental result easier to read, units of energy and cost are all unified with a
resolution set to be 1.

We assume that there are 3 utility companies to serve a community of in total 1000 energy users with
10000 aggregated tasks and each company starts with a relatively high initial price of 120‡. We use the

‡We end up with similar results under low initial price functions
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Algorithm 3 Machine learning-based profit maximization algorithm for utility company c.

1: Initialize w1
l = 1/L for l ∈ {1, 2, . . . , L}.

2: for each day d = {1, 2, . . . } do
3: At the beginning of day d:
4: Choose the policy l with the highest weight in wd.
5: Find the preference factor αl with the corresponding l.
6: Determine the objective function Ob j based on αl.
7: Determine the price function Pc[t] for 1 ≤ t ≤ T using simulated annealing method.
8: Energy users choose energy provider and schedule their tasks according to the announced price

functions. This step is out of the control of the utility company.
9: At the end of day d:

10: Evaluate the performance of each policy using Eq. (7).
11: Update the weight vector using Eq. (8).
12: end for

predicted energy users’ profiles to design the price function of each utility company. The duration of
each task varies from 1 to 6 time slots, the power consumption of each task varies from 1 to 10 energy
units per time slot. The earliest start time and latest end time of each task are also generated randomly.

To be realistic, the energy generation cost functions of those utility companies are different due to
the power-station type as well as the technology. The average energy generation cost for each utility
company is set to be between 40 and 50. The first utility company is assumed to be a pure thermal
power plant with a constant energy generation cost throughout the day, the second company models
a solar power plant where the energy generation cost is lower at daytime, and the third company is a
combination of the above two.

For simulated annealing setup, the initial temperature Temmax is set to be 4.0, the cooling factor α
is set to be 0.96, and the final temperature Temmin is set to be 1.7. Under each temperature point Tem,
we conduct 120 iterations, and the total number of iterations is around 2500.

4.2. Lower bound-based profit maximization results

We first use the lower bound-based profit maximization algorithm to decide the price function for
each utility company. Table 1 shows the comparison of initial and final E[pro f it boundc] calculated
using Eq. (4) in the previous section.

Table 1. Comparison of expected profit bound for utility companies between initial
price function and optimized price function in lower bound-based profit maximization
method.

Company Initial expected profit bound Final expected profit bound Profit increase factor
1 132520 622960 4.7
2 274284 755646 2.75
3 193419 654224 3.38

It can be observed from Table 1 that all those 3 utility companies achieved the E[pro f it boundc]
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increase by a factor between 2 and 5. This is because they adjusted their price functions to satisfy a
certain amount of users while maintaining a gap between the energy price and energy cost. If we take
energy prices in June 2014 from Consolidated Edison Company§ as an example (from $0.0116/kWh
to $0.3032/kWh) and consider U.S. residential energy users each with an average annual electricity
consumption as 10,932 kWh¶, the average daily revenue increase for each utility company (serving a
community of 1000 energy users) can be around $1500.

Figure 3. Initial and final price functions of each utility company.

Figure 3 shows the change of price function for each utility company. In Figure 3, the energy price
of each utility company significantly decreases after all of them have tried to maximize their expected
profit bounds. Remember that there is no price constraint from government. Instead, it is competition
in energy market that has brought price down, which has been proven to be more efficient in promoting
overall economic well-being than a centrally planned monopoly market [12].

However, all the previous simulations are merely based on profit prediction at the utility company’s
side. In order to verify whether the proposed algorithm really guarantees a lower bound on the total
profit, another simulation is presented from the energy user’s side. In this simulation, we assume the
price functions are given from the previous solution and all energy users give their reactions on which
utility company to choose based on the rules discussed in section 2, i.e., randomly choose a utility
company which they are satisfied, or choose the utility company which offers a price function resulting
in the lowest energy cost if none of the companies offer a satisfied price function. After that the real
profit of each utility company is calculated and compared with the lower bound of the expected profit,
which is shown in Table 2.

It is shown in Table 2 that all the 3 utility companies received a real profit higher than expected.
§http://www.coned.com
¶https://www.eia.gov
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Table 2. Comparison between expected profit bound and real profit for utility compa-
nies in lower bound-based profit maximization method under optimized price function.

Company Expected profit bound Real profit Profit compare ratio
1 622960 733376 1.18
2 755646 3275627 4.33
3 654224 788670 1.21

This is because we were using a conservative estimation of final profit during price determination step,
and thus a lower bound on the expected total profit is guaranteed for each utility company. Notice that
the second utility company turned out to have a real profit much higher than expected, which comes
from the winning of price competition of unsatisfied energy users due to its low energy cost. However,
the price advantage of the second company didn’t affect other utility companies’ expected profit.

The weakness of the lower bound-based algorithm is also shown in Table 2. For company 2, the
real profit is much higher than the expected profit, indicating that there is a large amount of profit from
unsatisfied energy users, which failed to be considered in the price determination step.

4.3. Best response-based profit maximization results

In the second set of simulations, the best response-based profit maximization algorithm is used
for the utility companies. Each company takes its competitors’ price functions from the previous
billing period that is already announced to all the energy users, and decides its strategy on energy price
function. The expected profit E[pro f it′c] presented in the previous section is calculated after each
company finds its optimal price function. Notice that the expected profit in this algorithm is based on
other companies’ price functions in the previous billing period (not the current billing period). When
all the utility companies have calculated and announced their current price functions, the real profit of
each company is calculated and compared with the expected profit. Table 3 shows the result.

Table 3. Comparison between expected profit and real profit for utility companies in
best response-based profit maximization method.

Company Expected profit Real profit Profit compare ratio
1 9335982 9599154 1.03
2 7233343 4291950 0.59
3 5021153 4089555 0.81

From the results shown in Table 3, one can see that the real profits turn out to be unpredictable for
all the utility companies. Except for the first company, each of the other two utility companies achieves
a real profit much less than the expected profit after applying the best response-based profit maximiza-
tion method. This is because the solution of this method is the best response to the price functions
from other companies in the previous billing period, instead of the current billing period. In addition,
compared with the results from lower bound-based method, the best response-based method turns out
to be more aggressive in profit maximization without a guarantee of certain level of profitability.
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4.4. Learning-based profit maximization results

In order to show the effectiveness of our learning-based profit maximization algorithm we con-
sider five profit maximization policies for each utility company based on preference factor α ∈
{0, 0.3, 0.5, 0.7, 1}. At the beginning of each billing period, each utility company selects the policy
with the highest weight, and subsequently finds the dynamic price based on the corresponding objec-
tive function using simulated annealing. At the end of the billing period, both the selected and dormant
(unselected) policies are evaluated. The simulation runs for 50 billing periods. For each utility com-
pany, the real profit it gets from the selected policy and the maximal possible profit it could get from
the optimal policy are compared in each period, as is shown in Figure 4.

Figure 4. Maximal and real profit of each utility company at different billing periods
using learning-based algorithm.

It can be observed in Figure 4 that during the first several billing periods, each utility company did
not choose the optimal policy, which result in a real profit much less than the maximal achievable profit
at the corresponding billing period. However, after the profits from other policies are evaluated and
compared, the utility companies are able to learn from the information and finally all the three compa-
nies are able to choose the optimal price determination policy. The result shows that our learning-based
adaptive policy achieves high profit for the utility company no matter what policies are employed by
the other companies.

We also observe that the maximal profit of each utility company has decreased, especially during the
first several billing periods. This is because of price competition in the oligopolistic electrical market,
which decreases the electricity cost of the energy users.
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5. Conclusion

In this paper, we present an oligopolistic energy market model with multiple non-cooperative utility
companies including its problem formulation and solutions. The utility companies determine dynamic
energy prices concurrently to maximize their anticipated profits, based on a modified Bertrand Com-
petition Model of user behavior. We first propose two price determination methods for any utility
company for the purpose of profit maximization. While the first method aims to find a lower bound of
the total profit guaranteed for the utility company, the second method is designed to calculate the best
response of the utility company with respect to the dynamic energy prices of the other companies in the
previous day. We also propose a machine learning-based adaptive dynamic pricing policy to exploit the
advantage of both methods. Experimental results show that the adaptive policy results in consistently
high profit for the utility company no matter what policies are utilized by the opponent companies.
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