A degree condition for fractional \((g, f, n)\)-critical covered graphs

Xiangyang Lv

School of Economics and management, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China

* Correspondence: Email: xiangyanglv@yeah.net; Tel: +8613952892158; Fax: +8651184448789.

Abstract: A graph \(G\) is called a fractional \((g, f)\)-covered graph if for any \(e \in E(G)\), \(G\) admits a fractional \((g, f)\)-factor covering \(e\). A graph \(G\) is called a fractional \((g, f, n)\)-critical covered graph if for any \(W \subseteq V(G)\) with \(|W| = n\), \(G - W\) is a fractional \((g, f)\)-covered graph. In this paper, we demonstrate that a graph \(G\) of order \(p\) is a fractional \((g, f, n)\)-critical covered graph if \(p \geq \frac{\delta(G) + n - (b - m)(b+1) + \frac{a+b}{a+m}}{n + \frac{a+b}{a+m} + \frac{m}{a+m}}\), where \(g\) and \(f\) are integer-valued functions defined on \(V(G)\) satisfying \(a \leq g(x) \leq f(x) - m \leq b - m\) for any \(x \in V(G)\).

Keywords: graph; degree condition; fractional \((g, f)\)-factor; fractional \((g, f)\)-covered graph; fractional \((g, f, n)\)-critical covered graph

Mathematics Subject Classification: 05C70, 90B99

1. Introduction

All graphs considered here are finite, undirected and simple. Let \(G\) be a graph. The vertex set and the edge set of \(G\) are denoted by \(V(G)\) and \(E(G)\), respectively. Let \(d_G(x)\) denote the degree of a vertex \(x\) in \(G\), and \(N_G(x)\) denote the neighborhood of a vertex \(x\) in \(G\). Set \(N_G[x] = N_G(x) \cup \{x\}\). Let \(X\) be a vertex subset of \(G\). We use \(G[X]\) to denote the subgraph of \(G\) induced by \(X\), and write \(G - X = G[V(G) \setminus X]\). If no two vertices in \(X\) are adjacent, then we call \(X\) an independent set of \(G\).

For two integer-valued functions \(g\) and \(f\) with \(f(x) \geq g(x) \geq 0\) for any \(x \in V(G)\), a \((g, f)\)-factor of \(G\) is defined as a spanning subgraph \(F\) of \(G\) such that \(g(x) \leq d_F(x) \leq f(x)\) for any \(x \in V(G)\). Let \(E_\varepsilon = \{e : e = xy \in E(G)\}\). A fractional \((g, f)\)-indicator function is a function \(h\) that assigns each edge of \(G\) to a number in \([0, 1]\) so that \(g(x) \leq \sum_{e \in E_\varepsilon} h(e) \leq f(x)\) for every \(x \in V(G)\). Let \(h\) be a fractional \((g, f)\)-indicator function of \(G\). Write \(E_h = \{e : e \in E(G), h(e) \geq 0\}\). If \(G_h\) is a spanning subgraph of \(G\) with \(E(G_h) = E_h\), then \(G_h\) is called a fractional \((g, f)\)-factor of \(G\). If \(h(e) \in [0, 1]\) for any \(e \in E(G)\), then \(G_h\) is just a \((g, f)\)-factor of \(G\). A graph \(G\) is said to be a fractional \((g, f)\)-covered graph if for any
In this paper, we extend Theorem 1 to fractional (g, f, n)-critical covered graph, and derive the following result.

Theorem 2. Let a, b, m, and n be integers satisfying $m \geq 0$, $n \geq 0$, $a \geq 1$ and $b \geq a + m$, let G be a graph of order p with $p \geq \frac{(ab)(a+b+n+1)-(b-m)n+2}{a+m}$, and let g and f be integer-valued functions defined on $V(G)$ satisfying $a \leq g(x) \leq f(x) \leq b - m$ for every $x \in V(G)$. If $\delta(G) \geq \frac{(b-m)p + (a+m)n + 2}{a+b} + n$ and for every pair of nonadjacent vertices u and v of G,

$$\max\{d_G(u), d_G(v)\} \geq \frac{(b-m)p + (a+m)n + 2}{a+b},$$

then G is a fractional (g, f, n)-critical covered graph.

The following result holds if setting $m = 0$ in Theorem 2.

Corollary 1. Let a, b, and n be integers satisfying $n \geq 0$ and $b \geq a + 1$, let G be a graph of order p with $p \geq \frac{(ab)(a+b+n+1)-(b+1)n+2}{a}$, and let g and f be integer-valued functions defined on $V(G)$ satisfying $a \leq g(x) \leq f(x) \leq b$ for every $x \in V(G)$. If $\delta(G) \geq \frac{b(b+1)+2}{a} + n$ and for every pair of nonadjacent vertices u and v of G,

$$\max\{d_G(u), d_G(v)\} \geq \frac{bp + an + 2}{a+b},$$
then G is a fractional (g, f, n)-critical covered graph.

The following result holds if setting $n = 0$ in Theorem 2.

Corollary 2. Let a, b and m be integers satisfying $m \geq 0$, $a \geq 1$ and $b \geq a + m$, let G be a graph of order p with $p \geq \frac{(a+b)(a+b+1)+2}{a+m}$, and let g and f be integer-valued functions defined on $V(G)$ satisfying $a \leq g(x) \leq f(x) - m \leq b - m$ for every $x \in V(G)$. If $\delta(G) \geq \frac{(b-m)(b+1)+2}{a+m}$ and for every pair of nonadjacent vertices u and v of G,

$$\max|d_G(u), d_G(v)| \geq \frac{(b-m)p + 2}{a+b},$$

then G is a fractional (g, f)-covered graph.

2. Proof of Theorem 2

The following theorem derived by Li, Yan and Zhang [23] is essential to the proof of Theorem 2.

Theorem 3 ([23]). Let G be a graph, and let g and f be integer-valued functions defined on $V(G)$ satisfying $0 \leq g(x) \leq f(x)$ for any $x \in V(G)$. Then G is a fractional (g, f)-covered graph if and only if

$$\delta_g(S, T) = f(S) + d_{G-S}(T) - g(T) \geq \epsilon(S)$$

for each $S \subseteq V(G)$, where $T = \{x : x \in V(G) \setminus S, d_{G-S}(x) \leq g(x)\}$ and $\epsilon(S)$ is defined by

$$\epsilon(S) = \begin{cases} 2, & \text{if } S \text{ is not independent}, \\ 1, & \text{if } S \text{ is independent and there is an edge joining } S \text{ and } V(G) \setminus (S \cup T), \text{ or there is an edge } e = uv \\ & \text{joining } S \text{ and } T \text{ such that } d_{G-S}(v) = g(v) \text{ for } v \in T, \\ 0, & \text{otherwise}. \end{cases}$$

We now verify Theorem 2. Let $H = G - W$ for any $W \subseteq V(G)$ with $|W| = n$. In order to justify Theorem 2, it suffices to show that H is a fractional (g, f)-covered graph. Suppose that H is not a fractional (g, f)-covered graph. Then by Theorem 3, there exists some subset S of $V(H)$ such that

$$\delta_H(S, T) = f(S) + d_{H-S}(T) - g(T) \leq \epsilon(S) - 1,$$ \hspace{1cm} (2.1)

where $T = \{x : x \in V(H) \setminus S, d_{H-S}(x) \leq g(x)\}$.

If $T = \emptyset$, then using (2.1) and $\epsilon(S) \leq |S|$ we derive $\epsilon(S) - 1 \geq \delta_H(S, T) = f(S) \geq (a+m)|S| \geq |S| \geq \epsilon(S)$, a contradiction. Therefore, we admit $T \neq \emptyset$. Next, we define

$$d_1 = \min\{d_{H-S}(x) : x \in T\}$$

and select $x_1 \in T$ with $d_{H-S}(x_1) = d_1$. Note that $d_1 \leq d_{H-S}(x) \leq g(x) \leq b - m$ holds for any $x \in T$. We shall discuss two cases.

Case 1. $T = N_{H[T]}[x_1]$.

It follows from $0 \leq d_1 \leq b - m$, $|S| + d_1 = |S| + d_{H-S}(x_1) \geq d_H(x_1) = d_{G-W}(x_1) \geq d_G(x_1) - |W| \geq \delta(G) - n \geq \frac{(b-m)(b+1)+2}{a+m}$, $|T| = |N_{H[T]}[x_1]| \leq d_{H-S}(x_1) + 1 = d_1 + 1 \leq b - m + 1$ and $\epsilon(S) \leq 2$ that

$$\delta_H(S, T) = f(S) + d_{H-S}(T) - g(T)$$
\[\geq (a + m)|S| + d_{H-S}(T) - (b - m)|T| \]
\[= (a + m)|S| + d_1|T| - (b - m)|T| \]
\[\geq (a + m)\left(\frac{(b - m)(b + 1) + 2}{a + m} - d_1\right) - (b - m - d_1)(b - m + 1) \]
\[= (b - m - d_1)m + 2 + (b - a - m + 1)d_1 \]
\[\geq 2 \geq \varepsilon(S), \]

which contradicts (2.1).

Case 2. \(T \neq N_{H[T]}[x_1]. \)

Obviously, \(T \setminus N_{H[T]}[x_1] \neq \emptyset. \) We may define

\[d_2 = \min\{d_{H-S}(x) : x \in T \setminus N_{H[T]}[x_1]\} \]

and select \(x_2 \in T \setminus N_{H[T]}[x_1] \) with \(d_{H-S}(x_2) = d_2. \) It is clear that \(0 \leq d_1 \leq d_2 \leq b - m \) holds.

Note that \(x_1 x_2 \notin E(H). \) Thus, we easily see that \(x_1 x_2 \notin E(G). \) According to the hypothesis of Theorem 2 and \(H = G - W, \) the following inequalities hold:

\[
\frac{(b - m)p + (a + m)n + 2}{a + b} \leq \max\{d_G(x_1), d_G(x_2)\} = \max\{d_{H+W}(x_1), d_{H+W}(x_2)\} \leq \max\{d_H(x_1) + n, d_H(x_2) + n\} = \max\{d_H(x_1), d_H(x_2)\} + n \leq \max\{d_{H-S}(x_1) + |S|, d_{H-S}(x_2) + |S|\} + n = \max\{d_{H-S}(x_1), d_{H-S}(x_2)\} + |S| + n = \max\{d_1, d_2\} + |S| + n = d_2 + |S| + n,
\]

namely,

\[
|S| \geq \frac{(b - m)p - (b - m)n + 2}{a + b} - d_2. \tag{2.2}
\]

Note that \(p - n - |S| - |T| \geq 0 \) and \(b - m - d_2 \geq 0. \) Thus, we derive \((p - n - |S| - |T|)(b - m - d_2) \geq 0. \) Combining this inequality with (2.1) and \(\varepsilon(S) \leq 2, \) we obtain

\[
(p - n - |S| - |T|)(b - m - d_2) \geq 0 \geq \varepsilon(S) - 2 \geq \delta_H(S, T) - 1
\]
\[
= f(S) + d_{H-S}(T) - g(T) - 1
\]
\[
\geq (a + m)|S| + d_1|N_{H[T]}[x_1]| + d_2(|T| - |N_{H[T]}[x_1]|) - (b - m)|T| - 1
\]
\[
= (a + m)|S| + (d_1 - d_2)|N_{H[T]}[x_1]| - (b - m - d_2)|T| - 1
\]
\[
\geq (a + m)|S| + (d_1 - d_2)(d_1 + 1) - (b - m - d_2)|T| - 1,
\]

where \(|T| \geq |N_{H[T]}[x_1]| + 1, \) \(d_1 - d_2 \leq 0 \) and \(|N_{H[T]}[x_1]| \leq d_1 + 1. \) Then from the above inequality we get

\[
-1 \leq (p - n)(b - m - d_2) - (a + b - d_2)|S| - (d_1 - d_2)(d_1 + 1). \tag{2.3}
\]

It follows from (2.2), (2.3), \(0 \leq d_1 \leq d_2 \leq b - m \) and \(p \geq \frac{a + b + n + 1 - (b - m)n + 2}{a + m} \) that

\[
-1 \leq (p - n)(b - m - d_2) - (a + b - d_2)|S| - (d_1 - d_2)(d_1 + 1)
\]
\[\leq (p - n)(b - m - d_2) - (a + b - d_2)\left(\frac{(b - m)p - (b - m)n + 2}{a + b} - d_2\right) \]
\[= -(d_1 - d_2)(d_1 + 1) \]
\[= -\frac{(a + m)p + (b - m)n - 2}{a + b}d_2 + (a + b + n + 1)d_2 - d_1(d_1 + 1) \]
\[+d_2(d_1 - d_2) - 2 \]
\[\leq -\frac{(a + m)p + (b - m)n - 2}{a + b}d_2 + (a + b + n + 1)d_2 - 2 \]
\[\leq -\frac{(a + b)(a + b + n + 1) - (b - m)n + 2 + (b - m)n - 2}{a + b}d_2 \]
\[+ (a + b + n + 1)d_2 - 2 \]
\[= -2, \]

which is a contradiction. Theorem 2 is proved. \(\square\)

3. Remark

Let us explain that \(\max\{d_G(u), d_G(v)\} \geq \frac{(b - m)p + (a + m)n + 2}{a + b} \) in Theorem 2 is best possible, namely, it can not be replaced by \(\max\{d_G(u), d_G(v)\} \geq \frac{(b - m)p + (a + m)n + 2}{a + b} - 1\). Let \(b = a + m\), \(g(x) \equiv b - m\) and \(f(x) \equiv a + m\). We construct a graph \(G = K_{(b - m)t + n} \cup ((a + m)tK_1)\) with order \(p\), where \(\cup\) means “join”. Then \(p = (a + b)t + n\) and

\[\frac{(b - m)p + (a + m)n + 2}{a + b} - 1 \leq \max\{d_G(u), d_G(v)\} \]
\[= \frac{(b - m)t + n}{a + b} \]
\[= \frac{(b - m)p + (a + m)n}{a + b} \]
\[< \frac{(b - m)p + (a + m)n + 2}{a + b} \]

for every pair of nonadjacent vertices \(u\) and \(v\) of \(G\). Let \(W = V(K_n) \subseteq V(K_{(b - m)t + n})\) and \(H = G - W = K_{(b - m)t + n} \cup ((a + m)tK_1)\). Select \(S = V(K_{(b - m)t})\) and \(T = V((a + m)tK_1)\), and \(\varepsilon(S) = 2\). Thus, we derive

\[\delta_H(S, T) = f(S) + d_{H - S}(T) - g(T) \]
\[= (a + m)|S| - (b - m)|T| \]
\[= (a + m)(b - m)t - (b - m)(a + m)t \]
\[= 0 < 2 = \varepsilon(S). \]

In light of Theorem 3, \(H\) is not a fractional \((g, f)\)-covered graph, and so \(G\) is not a fractional \((g, f)\)-critical covered graph.

4. Conclusions

In this paper, we investigate the relationship between degree conditions and the existence of fractional \((g, f, n)\)-critical covered graphs. A sufficient condition for a graph being a fractional
A (g, f, n)-critical covered graph is derived. Furthermore, the sharpness of the main result in this paper is illustrated by constructing a special graph class. In addition, some other graph parameter conditions for graphs being fractional (g, f, n)-critical covered graphs can be studied further.

Acknowledgments

The author would like to thank an anonymous referee for his or her valuable comments and suggestions on an earlier version of this paper.

Conflict of interest

The author declares no conflict of interest in this paper.

References

12. Y. Egawa, M. Kano, *Sufficient conditions for graphs to have (g, f)-factors*, Discrete Mathematics, 151 (1996), 87–90.
13. K. Ota, T. Tokuda, *A degree condition for the existence of regular factors in $K_{1,n}$-free graphs*, J. Graph Theory, **22** (1996), 59–64.

16. J. Jiang, *Independence number and fractional (g,f)-factors with inclusion and exclusion properties*, Utilitas Mathematica, **111** (2019), 27–33.

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)