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2 DICEA, Università di Firenze, via Santa Marta 3, I-50136 Firenze, Italy

* Correspondence: Email: paolo.mariano@unifi.it; Tel: +390552758893.
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1. Introduction

For sufficiently differentiable maps ũ : T2 × [0,T ] → R̃2 and ν̃ : T2 × [0,T ] → S 2, with T2 a torus
and S 2 the unit sphere, we have shown in reference [12] that the system

ut + (u · ∇)u − ∆u + ∇π = −∇ · (∇ν>∇ν) − ∇ν>∆νt,

∇ · u = 0,
∆νt + ∆((u · ∇)ν) − ∆2ν = νt + (u · ∇)ν + |∇ν|2ν − ∆ν,

reasonably describes the dynamics over T2 of oriented (i.e., polarized or spin) fluids, a representation
in which we account for second-neighbor director interactions in a minimalistic way, the one giving us
sufficient amount of regularity to allow existence of a certain class of weak solutions.

In the balance of microstructural actions governing the evolution of ν, an hyper-stress behaving like
∇2ν accounts for second-neighbor interactions; it enters the equation through its double divergence,
which generates the term ∆2ν. A viscous-type contribution (namely ∇ν>∆νt) affects Ericksen’s stress
in the balance of macroscopic momentum, an equation in which π is pressure, i.e., the reactive stress
associated with the volume-preserving constraint ∇ · u = 0.
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We have explicitly underlined in reference [12] the terms neglected in the previous balance
equations with respect to a complete representation of second-neighbor director interactions, and their
contribution to the Ericksen stress.

Also, to tackle the analysis of such balances, in reference [12] we considered transient states
foreseeing |ν| ≤ 1 (i.e., a polarized fluid not in saturation conditions) and replaced the nonlinear term
|∇ν|2ν with its approximation 1

ε2 (1 − |ν|2)ν, ε a positive parameter. Eventually, we established just
local existence of a certain class of weak solutions.

The description of such fluids falls within the general model-building framework of the mechanics
of complex materials (a format involving manifold-valued microstructural descriptors) in references
[25] and [26] (see also [27,28]). By following that format, if we derive balance equations by requiring
invariance of the sole external power of actions under isometric changes in observers even just for
first-neighbor interactions, since the infinitesimal generator of S O(3) action over S 2 is −ν×, we find
the possible existence of a conservative self-action proportional to ν, i.e., something like λν, with λ ≥ 0.

Consequently, we consider here a relaxed version of the balances above by accounting for |ν| ≤ 1
and introducing the self-action λν. Then, we write

ut + (u · ∇)u − ∆u + ∇π = −∇ · (∇ν>∇ν) − ∇ν>∆νt, (1.1)
∇ · u = 0, (1.2)

∆νt + ∆((u · ∇)ν) − ∆2ν = νt + (u · ∇)ν − ∆ν +
1
ε2 (1 − |ν|2)ν − λν, |ν| ≤ 1, (1.3)

with initial conditions
u|t=0 = u0, ν|t=0 = ν0. (1.4)

We tackle its analysis by filtering the balance of macroscopic momentum by (I − ∆)−1. In the process,
we define the regularized velocity

w := (I − ∆)−1u,

and approximate the filtered version of equation (1.1) by considering that ∇·(I−∆)−1(u⊗u) ≈ ∇·(w⊗w).
Then, we apply the inverse filter (I − ∆) (and we write once again π and ν for pressure and director
field, respectively). The resulting system reads

wt − ∆wt + (w · ∇)w − ∆w + ∇π = −∇ · (∇ν>∇ν) − ∇ν>∆νt, (1.5)
∇ · w = 0, (1.6)

∆νt + ∆((w · ∇)ν) − ∆2ν = νt + (w · ∇)ν − ∆ν +
1
ε2 (1 − |ν|2)ν − λν, |ν| ≤ 1. (1.7)

For it, we prove global existence of weak solutions (defined as in reference [12]).
The obtained regularity could allow us to obtain a uniqueness result. Also, the granted global

existence of weak solutions can be used for analyzing possible weak or strong attractors, which we
may foresee in appropriate state spaces. All these aspects will be matter of a forthcoming work.

2. Notation and preliminaries

For p ≥ 1, by Lp = Lp(T2) we indicate the usual Lebesgue space with norm ‖ · ‖p. When p = 2,
we use the notation ‖ · ‖ := ‖ · ‖L2 and denote by ( · , · ) the related inner product. Moreover, with k
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a nonnegative integer and p ≥ 1, we denote by Wk,p := Wk,p(T2) the usual Sobolev space with norm
‖ · ‖k,p (using ‖ · ‖k when p = 2 ). We write W−1,p′ := W−1,p′(T2), p′ = p/(p−1), for the dual of W1,p(T2)
with norm ‖ · ‖−1,p′ .

Let X be a real Banach space with norm ‖ · ‖X. We will use the customary spaces Wk,p(0,T ; X),
with norm denoted by ‖ · ‖Wk,p(0,T ;X). In particular, W0,p(0,T ; X) = Lp(0,T ; X) are the standard Bochner
spaces.

(Lp)n := L2(T2,Rn), p ≥ 1, is the function space of vector-valued L2-maps. Similarly, (Wk,p)n :=
(Wk,p(T2))n is the usual Sobolev space of vector-valued maps with components in Wk,p, while (H s)n is
the space of vector-valued maps with components in H s = W s,2 ∩ {w : ∇ · w = 0}. We also define the
following spaces:

H := closure of C∞0 (T2,R2) ∩ {w | ∇ · w = 0} in (L2)2,

H s := closure of C∞0 (T2,R2) ∩ {w | ∇ · w = 0} in (W s,2)2,

Hs := {ν ∈ (W s,2)3}.

This last space is the usual Sobolev space of vector fields with components W s,2-functions. Again
H := H0. By H−s we indicate the space dual to H s. We denote by 〈 · , · 〉H−s,H s the duality pairing
between H−s and H s. We will also assume that the vector fields u and w have null average on T2. In
particular, under such an assumption, Poincaré’s inequality holds true.

Here and in the sequel, we denote by c (or c̄) positive constants, which may assume different values.
We’ll make use of the following well-known inequalities (see, e.g., [1, 2, 15, 18, 21, 22, 32]):

Ladyzhenskaya’s,
‖v‖L4 ≤ C‖v‖

1
2 ‖∇v‖

1
2 , v ∈ H1, (2.1)

Agmon’s,
‖v‖L∞ ≤ C‖v‖

1
2 ‖∆v‖

1
2 , v ∈ H2. (2.2)

In the sequel (especially to get estimates in Hs, with s non-integer) we’ll also make use of
commutator-type estimates as the one in the following lemma concerning the operator Λs, s ∈ R+

(see, e.g., [19, 20, 30], see also [6, 31]), with Λ := (−∆)1/2.

Lemma 2.1. For s > 0 and 1 < r ≤ ∞, and for smooth enough u and v, we get

‖Λs(uv)‖Lr ≤ c(‖u‖Lp1 ‖Λ
sv‖Lq1 + ‖v‖Lp2 ‖Λ

su‖Lq2 ), (2.3)

where 1/r = 1/p1 + 1/q1 = 1/p2 + 1/q2 and c is a suitable positive constant.

We also recall the following result about product-laws in Sobolev spaces ( [16, Theorem 2.2], see
also [29])

Lemma 2.2. Let s0, s1, s2 ∈ R. The product estimate

‖ f g‖H−s0 ≤ c‖ f ‖Hs1 ‖g‖Hs2 (2.4)

holds, provided that

s0 + s1 + s2 ≥
n
2
, where n is the space dimension, (2.5)
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s0 + s1 ≥ 0, (2.6)
s0 + s2 ≥ 0, (2.7)
s1 + s2 ≥ 0, (2.8)
If in (2.5) the equality sign holds, inequalities (2.6)–(2.8) must be strict. (2.9)

Set T2 := 2πZ2/L. T2 is the torus defined by T2 :=
(
R2/T2

)
. We can expand w ∈ Hs(T2) in Fourier

series as
w(x) =

∑
k∈T ?

2

ŵkeik·x,

with k = (k1, k2) ∈ Z2 the wave-number, |k| =
√
|k1|

2 + |k2|
2. The Fourier coefficients for w are defined

by ŵk := 1
(2π)2

∫
T2 w(x)e−ik·xdx. The norm in Hs is given by

‖w‖2Hs =
∑
|k|2s|ŵk|

2,

and the inner product ( · , · )Hs = ( Λs · , Λs · ) is characterized by

(w, v)Hs =
∑
|k|≥1

|k|2sŵk · v̂k,

where the over-bar denotes, as usual, complex conjugation. Consider the inverse Helmholtz operator

G := (I − ∆)−1, (2.10)

taking values

Gw(x) :=
∫
T2

G(x, y)w(y))dy, (2.11)

where G(x, y) is the associated Green function (see, e.g., [5, 7–10]). For w ∈ Hs, take the Fourier
expansion w =

∑
k∈T ?

2
ŵkeik·x, so that, by inserting this expression in (2.11), we get

Gw :=
∑
k∈T ?

2

1
1 + |k|2

ŵkeik·x. (2.12)

G is self-adjoint. It commutes with differential operators (see, e.g., [4, 5, 7]). We get also

(Gv,w) = (G1/2v,G1/2w)L2 = (v,w)H−1 and (G1/2v,G1/2v)L2 = ‖v‖H−1 . (2.13)

(see also [5, 18]).

3. Existence and regularity result

We set
fε(ν) :=

1
ε2 (1 − |ν|2)ν, ε > 0.

Then, we rewrite the filtered balances as

wt − ∆wt + (w · ∇)w − ∆w + ∇π = −∇ · (∇ν>∇ν) − ∇ν>∆νt, (3.1)
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∇ · w = 0, (3.2)
∆νt + ∆((w · ∇)ν) − ∆2ν = νt + (w · ∇)ν − ∆ν + fε(ν) − λν, |ν| ≤ 1, (3.3)

with initial conditions
w|t=0 = w0, ν|t=0 = ν0. (3.4)

To keep the notation compact, here and in the sequel we omit the dependence of w and ν on ε.

Definition 3.1 (Regular weak solution). For a given T > 0, a pair (w, ν) is a regular weak solution of
(3.1)–(3.3) if (w, ν) ∈ L∞(0,T ;H

3
2 × H

5
2 ), (∂tw, ∂tν) ∈ L2(0,T ;H1 × H

3
2 ), and∫ T

0

(
(wt(s), v(s)) + (∇wt(s), ∇v(s)) + ((w(s) · ∇)w(s), v) + (∇w(s),∇v(s))

)
ds

=

∫ T

0

(
(∇ν>∇ν(s),∇v(s)) + (∇ν>∇νt(s),∇v(s))

)
ds,

(3.5)

holds true for every v ∈ C∞0
(
(0,T ) × T2), and∫ T

0

(
(∇νt(s),∇h(s)) +

(
∇
[
(w(s) · ∇)ν(s)

]
,∇h(s)

)
+ (∆ν(s),∆h(s))

)
ds

=

∫ T

0

(
(νt(s), h(s)) +

(
(w(s) · ∇)

)
ν(s), h(s)

)
+ ( fε(ν(s)), h(s)) + (∇ν(s),∇h(s)) − λ(ν(s), h(s))

)
ds

(3.6)

for every h(t, x) = ψ(t)φ(x), with φ ∈ H
5
2 , ψ ∈ C∞0 (0,T ), and |ν(x, t)| ≤ 1 a.e. in (0,T ) × T2.

In the following, we’ll always refer to “regular weak solutions” simply as “weak solutions”, for the
sake of brevity.

Theorem 3.1. Assume (w0, ν0) ∈ H
3
2 × H

5
2 , with |ν0(x)| ≤ 1 for a.e. x ∈ T2. Then, systems (3.1)–(3.3),

supplied with (3.4), admits a weak solution (w, ν) which is defined for any fixed time T ≥ 0.

The chosen regularity for the initial data allows the reader to compare easily the result here with
what we got in reference [12], realizing our passage from local (short time) to global (large fixed time)
existence. Also, by renouncing to a certain amount of solution regularity (i.e., considering a weaker
class) we could accept data (w0, ν0) ∈ H1 × H2, obtaining for them once again an existence result (see
Remark 4.1 below).

Remark 3.1. For the integral
∫
T2 ∇

(
(w · ∇)ν

)
· ∇ω dx, with w ∈ H1, ω ∈ H1, and ν ∈ H2, we get∫

T2
∇
(
(w · ∇)ν

)
· ∇ω dx =

∫
T2
∂ j

(
wi∂iν

k)∂ jω
k dx

=

∫
T2
∂ jwi∂iν

k∂ jω
k dx +

∫
T2

wi∂i jν
k∂ jω

k dx.

The first term on the right-hand side of the above identity is such that∫
T2
∂ jwi∂iν

k∂ jω
k dx =

∫
T2
∂iν

k∂ jω
k∂ jwi dx =

∫
T2

(
∇ν>∇ω

)
· ∇w dx,
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and for the second term we find∫
T2

wi∂i jν
k∂ jω

k dx =

∫
T2
∂i jν

k∂ jω
kwi dx =

∫
T2
∇(∇ν)>∇ω · w dx.

For the second term on the right-hand side of (3.1), we compute

∇ν>∆νt = ∇ ·
(
∇ν>∇νt

)
− ∇(∇ν)>∇νt. (3.7)

4. Proofs

We introduce Galerkin’s approximating functions {(wn, νn)}, prove a maximum principle, by which
the constraint |νn| ≤ 1 is verified, and compute some a-priori estimates. The Aubin-Lions compactness
theorem [24] allows us to get convergence of a subsequence. Actually, we apply Galerkin’s procedure
originally used for the standard Navier-Stokes equations, by adapting it to systems (3.1)–(3.3). (Further
details about such a scheme appear in references [23, §2], [13, Appendix A], [7, 11]).

Note: In the sequel, for the sake of conciseness we often avoid writing explicitly the integration
measure in some integrals, every time we find it appropriate.

4.1. Approximate Galerkin solutions

We apply directly Galerkin’s method only to the velocity field w (this scheme is also known as
“semi-Galerkin formulation”; see, e.g, [13]).

For any positive integer i, let us denote by (ωi, πi) ∈ H2 ×W1,2 the unique solution of the following
Stokes problem:

∆ωi + ∇πi = −λiωi, in T2,

∇ · ωi = 0, in T2,
(4.1)

with
∫
T2 πidx = 0, for i = 1, 2, . . . and 0 < λ1 ≤ λ2 ≤ . . . λn . . . with λn → +∞, as n → ∞. Functions

{ωi}
+∞
i=1 determine an orthonormal basis inH made of the eigenfunctions pertaining to (4.1).

Let Pn : H3/2 → Hn := H3/2 ∩ span{ω1, ω2, . . . , ωn} be the orthonormal projection of H3/2 on its
finite dimensional subspaceHn. Take T > 0. For every positive integer n, we look for an approximate
solution (wn, νn) ∈ C1(0,T ;Hn) × L∞(0,T,H

3
2 ) ∩ L2(0,T,H

5
2 ) to systems (3.1)–(3.3) with

wn(t, x) =

n∑
i=1

φn
i (t)ωi(x), φn

i to be determined. (4.2)

Consider the following problem defined a.e. in (0,T ) × T2:

(wn
t (t) − ∆wn

t (t), vn)
H

1
2

+
(
(wn(t) · ∇)wn(t), vn)

H
1
2

+ (∇wn(t),∇vn)
H

1
2

=
(
(∇(νn)>∇νn)(t),∇vn)

H
1
2

+
(
(∇(νn)>∆νt)(t), vn)

H
1
2
, ∀vn ∈ Hn,

(4.3)

(I − ∆)
[
∂tν

n(t) − ∆νn(t) +
(
(wn(t)·∇)νn(t)

)]
=− fε(νn(t)) + λνn, (4.4)

|νn| ≤ 1, (4.5)

wn(x, 0) = wn
0(x) := Pn(w0)(x), νn(0, x) = ν0(x), for x ∈ T2, (4.6)
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where w0 ∈ H
3
2 and ν0 ∈ H

5
2 , with |ν0(x)| ≤ 1 a.e. in T2.

Instead of exploiting test functions in L2, we take directly the formulation in H1/2, for it provides
the needed regularity, The pertinent analysis develops in two steps:
Step A: Let wn

∈ C1(0,T ;Hn) be a given velocity field of the form wn(t, x) =
∑n

i=1 φ
n
i (t)ωi(x), with φ

n
i

assigned. For

(I − ∆)
[
νn

t (t) − ∆νn(t) +
(
wn(t) · ∇

)
νn(t)

]
= − fε(νn(t)) + λνn(t), a.e. in (0,T ) × T2,

with νn(0, x) = ν0(x), for x ∈ T2, we actually look for a vector field

νn ∈ L∞(0,T ; H
3
2 ) ∩ L2(0,T ; H

5
2 ), νt ∈ L2(0,T ; H1)

solving a.e. on (0,T ) × T2 the following system:

νn
t (t) − ∆νn(t) +

(
wn(t) · ∇

)
νn(t) = −G

(
fε(νn(t))

)
+ λG(νn(t)), (4.7)

νn(0, x) = ν0(x), for x ∈ T2, (4.8)

where G is once again the inverse Helmholtz operator G = (I − ∆)−1 introduced in (4.1). Since G
has Fourier symbol corresponding to the inverse of two spatial derivatives, the right-hand side part of
(4.7) results to be regularized (i.e., the terms −G fε(νn) gains two additional spatial derivatives with
respect to fε(νn); the same occurs for Gνn(t)). Thus, this new expression can be rewritten equivalently
as a semilinear parabolic equation in the unknown νn. The existence of such νn is guaranteed by the
classical theory of parabolic equations (see, e.g., [17]), which also provides higher regularity results
(see [17, Theorem 6, Ch. 7.1]). They allow us to use the regularity of initial data ν0 ∈ H

5
2 to get νn ∈

L∞(0,T ; H
3
2 )∩L2(0,T ; H

5
2 ) and νn

t ∈ L2(0,T ; H1) (by interpolation we also have that νt ∈ C(0,T ; H1)).
The following lemma (see [12, Lemma 4.1] and also [14, Lemma 2.1]) guarantees the constraint |ν| ≤ 1.

Lemma 4.1 (Weak maximum principle). Let ν0 ∈ H
5
2 be such that |ν0(x)| ≤ 1 for a.e. x ∈ T2. Take

w̄n ∈ C(0,T ;Hn). Then, there exists a weak solution νn ∈ L∞(0,T ; H
3
2 ) ∩ L2(0,T ; H

5
2 ) to the problems

(4.7)–(4.8). Moreover, fixed ε > 0 large enough in the definition of fε , every such weak solution verifies
|νn(x, t)| ≤ 1 a.e. on T2 × [0,T ].

In performing the next calculations, we could relax hypotheses by assuming that ν0 ∈ H1 and is
such that |ν0(x)| ≤ 1 a.e. x ∈ T2, with w̄n ∈ C(0,T ; Hn). Then, there would exist a weak solution
ν ∈ L∞(0,T ; H1) × L2(0,T ; H2), with |ν(x, t)| ≤ 1 a.e. in T2 × (0,T ). However, for the sake of
simplicity, we still use the same regularity assumptions previously introduced, and we denote by ν and
w the quantities νn and w̄n, respectively for the sake of conciseness.

Proof. Existence of the solution νn ∈ L∞(0,T ; H
3
2 ) ∩ L2(0,T ; H

5
2 ) to (4.7)–(4.8) has been already

mentioned above.
Define ϕ(x, t) = (|ν(x, t)|2 − 1)+, where z+ = max{z, 0} for each z ∈ R. Assume there exists a

measurable subset B ⊂ T2 with positive measure |B| > 0 such that |ν(x, t)| > 1 a.e. in B × (t1, t2],
0 ≤ t1 < t2 ≤ T , and |ν(x, t)| = 1 a.e. in ∂B × (t1, t2]. By taking ϕν as a test function against (4.7), we
get

1
2

∫
T2
∂t(|ν|2)ϕ+

∫
T2

(w · ∇)|ν|2ϕ +

∫
T2
∇ν · (ϕν)

−
1
ε2

∫
T2

G(|ν|2 − 1)ν · ϕν + λ

∫
B
(Gν) · (ϕν) = 0,
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which is equivalent to

1
2

∫
B
∂t(|ν|2)ϕ+

∫
B
(w · ∇)|ν|2ϕ +

∫
B
∇ν · ∇(ϕν)

−
1
ε2

∫
B

G1/2(ϕν) ·G1/2(ϕν) + λ

∫
B
(G1/2ν) · (G1/2ν) = 0.

(4.9)

With ‖ · ‖ indicating ‖ · ‖L2(B), we can also write

1
2

∫
B
∂t(|ν|2)ϕ =

1
2

∫
B
∂t(|ν|2 − 1)ϕ =

1
4

d
dt
‖ϕ‖2,∫

B
(w · ∇)|ν|2ϕ =

∫
B
(w · ∇)(|ν|2 − 1)ϕ =

∫
B
(w · ∇)ϕ · ϕ = 0,∫

B
∇ν · ∇(ϕν) =

1
2

∫
B
∇(|ν|2) · ∇ϕ +

∫
B
|∇ν|2ϕ

=
1
2

∫
B
∇(|ν|2 − 1)∇ϕ +

∫
B
|∇ν|2ϕ

=
1
2
‖∇ϕ‖2 +

∫
B
|∇ν|2ϕ ≥

1
2
‖∇ϕ‖2 ≥ 0.

Then, Eq. (4.9) becomes

d
dt
‖ϕ‖2 + 2‖∇ϕ‖2 + 4

∫
B
|∇ν|2ϕ −

4
ε2

∫
B

G1/2(ϕν) ·G1/2(ϕν)

+ 4λ
∫

B
(G1/2ν) ·G1/2(ϕν) = 0.

(4.10)

Since ϕ(t2) ≥ ϕ(t1) (here, ϕ(t1) = 0), by integrating in time over (t1, t2], we get

2
∫ t2

t1
‖∇ϕ‖2 + 4

∫ t2

t1

( ∫
B
|∇ν|2ϕ −

4
ε2

∫
B
(G1/2ν) ·G1/2(ϕν)

+ 4λ
∫

B
(G1/2ν) ·G1/2(ϕν)

)
≤ 0.

In principle, B may have more than one connected component with positive measure. However,
these components are finite in number for B is compact. Thus, previous inequality can be rewritten as∑

i

(
2
∫ t2

t1

∫
Bi

|∇ϕ|2 + 4
∫ t2

t1

( ∫
Bi

|∇ν|2ϕ −
4
ε2

∫
Bi

G1/2(ϕν) ·G1/2(ϕν)

+4λ
∫

Bi

(G1/2ν) ·G1/2(ϕν)
))
≤ 0.

Then, there exists at least one connected component B j, with |B j| > 0, on which

2
∫ t2

t1

∫
B j

|∇ϕ|2 + 4
∫ t2

t1

( ∫
B j

|∇ν|2ϕ −
4
ε2

∫
B j

G1/2(ϕν) ·G1/2(ϕν)

+4λ
∫

B j

G1/2(ν) ·G1/2(ϕν)
)
≤ 0,
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and hence, by(2.13), we have

2
∫ t2

t1
‖∇ϕ‖2L2(B j)

+ 4
∫ t2

t1

∫
B j

|∇ν|2ϕ ≤
4
ε2

∫ t2

t1

∫
B j

G1/2(ϕν) ·G1/2(ϕν)

− 4λ
∫ t2

t1

∫
B j

G1/2(ν) ·G1/2(ϕν)
)

≤
c
ε2

∫ t2

t1
‖ϕν‖2H−1(B j)

+ 4λ

∣∣∣∣∣∣∣
∫ t2

t1

∫
B j

G1/2(ν) ·G1/2(ϕν)

∣∣∣∣∣∣∣ .
(4.11)

Since |ν(x, t)| = 1 a.e. on ∂B×(t1, t2), we get ϕ(x, t) = 0 a.e. on ∂B×(t1, t2) and, in particular, ϕ(x, t) = 0
a.e. on ∂B j × (t1, t2). Assume that B j is the closure of an open set. By using the Poincaré inequality on
left-hand side first term of (4.11), along with the control (2.4) (see also [29]), we obtain

‖ϕν‖2H−1 ≤ ‖ϕ‖
2
H1(B j)

‖ν‖2L2(B j)
≤ c‖ϕ‖2H1(B j)

‖ν‖2L∞(0,T ;L2(T2)) = c̃‖ϕ‖2H1(B j)
,

and

4λ
∣∣∣∣∣∫

B
G1/2(ν) ·G1/2(ϕν)

∣∣∣∣∣ ≤ 4λ‖ν‖‖ϕν‖H−1

≤ 4λ‖ν‖2‖ϕ‖H1

≤ cλ
( ∫

B j

(‖ν‖2 − 1) dx + 1
)
‖ϕ‖H1

≤ cλ
(∫

B j

(‖ν‖2 − 1)2 dx
) 1

2

‖ϕ‖H1 + cλ‖ϕ‖H1

≤ cλ‖ϕ‖‖ϕ‖H1 + c̄λ‖ϕ‖2H1

≤ ĉλ‖ϕ‖2H1 .

(4.12)

Hence, the inequality

C
∫ t2

t1
‖ϕ‖2L2(B j)

+

∫ t2

t1
‖∇ϕ‖2L2(B j)

+ 4
∫ t2

t1

∫
B j

|∇ν|2ϕ ≤
( c̃
ε2 + ĉλ

) ∫ t2

t1
‖ϕ‖2H1(B j)

,

where C is the constant involved in the Poincaré inequality, holds true. Then, we find

c
∫ t2

t1
‖ϕ‖2H1(B j)

+ 4
∫ t2

t1

∫
B j

|∇ν|2ϕ ≤
( c̃
ε2 + ĉλ

) ∫ t2

t1
‖ϕ‖2H1(B j)

, (4.13)

which gives an absurd by assuming that ε is sufficiently large as λ is small.
The general case, when B j is not the closure of an open set, follows the same line of the argument

in reference [12]. �
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Step B: Let νn ∈ L∞(0,T ; H
3
2 ) ∩ L2(0,T ; H

5
2 ) be the vector field just determined in the previous step.

We search the approximating velocity field wn ∈ C1(0,T ;Hn) satisfying the equation

(wn
t (t), vn)

H
1
2
+(∇wn

t (t),∇vn)
H

1
2

+ (∇wn(t),∇vn)
H

1
2

+
(
(wn(t) · ∇)wn(t), vn)

H
1
2
,

=
(
(∇(νn)>∇νn),∇vn)

H
1
2
+
(
∇(νn)>∆νt, vn)

H
1
2
, ∀vn ∈ Hn,

with

wn(x, 0) = wn
0(x) = Pn(w0)(x), for x ∈ T2,

where both νn and wn are given. Thanks to the Cauchy-Lipschitz theorem, we can prove existence of a
unique maximal solution wn of the above problem.

4.2. Global existence

In the sequel, as short-hand notation, we use the same symbol ‖ · ‖Lp(0,T ;Lk) for both the norm in
Lp(0,T ; Lk) and the one in Lp(0,T ; (Lk)n). We employ the same convention also for Lp(0,T ; W s,k) and
Lp(0,T ; (W s,k)n) (also Lp(0,T ; Hs) and Lp(0,T ; (Hs)n)).

Proof of Theorem 3.1. First, we deduce a priori estimates. Then, we apply a compactness criterion
proving that the limiting pair (ŵ, ν̂) is actually a weak solution to (3.1)–(3.3), supplemented by (1.4).
Only for the sake of conciseness we use (w, ν) instead of (wn, νn).
Step 1: Energy a priori estimates. Consider Eq. (3.3), to which we apply the operator G = (I − ∆)−1,
and take the L2-product with test ν, obtaining

1
2

d
dt
‖ν‖2 + ‖∇ν‖2 ≤

1
ε2

∫
T2
|G

(
(1 − |ν|2)ν

)
||ν| dx + λ

∫
T2
|G

1
2 ν|2 dx

≤
c
ε2 ‖(1 − |ν|

2)ν‖H−2‖ν‖ + cλ‖ν‖2H−1

≤
c
ε2 ‖(1 − |ν|

2)ν‖‖ν‖ + cλ‖ν‖2

≤
( c
ε2 + cλ

)
‖ν‖2,

(4.14)

where the constraint |ν|2 ≤ 1 plays a role. Given T > 0, the Gronwall Lemma implies ν ∈ L∞(0,T ; L2)∩
L2(0,T ; H1).

By taking the L2-product of (3.1) with w, we compute

1
2

d
dt

(
‖w‖2 + ‖∇w‖2

)
+ ‖∇w‖2 =

∫
T2

(
∇ν>∇ν

)
· ∇w dx −

∫
T2
∇ν>∆νt · w dx

=

∫
T2

(
∇ν>∇ν

)
· ∇w dx +

∫
T2

(
∇ν>∇νt

)
· ∇w dx

+

∫
T2
∇(∇ν)>∇νt · w dx,

(4.15)

where, to get the second equality, we have used relation (3.7), integrating by parts the first term
obtained.
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By multiplying (3.3) by νt and integrating over T2, we obtain

1
2

d
dt

(
‖∇ν‖2 + ‖∆ν‖2

)
+ ‖νt‖

2 + ‖∇νt‖
2 = −

∫
T2
∇
(
(w · ∇)ν

)
· ∇νt dx

−

∫
T2

(w · ∇)ν
)
· νt dx

−

∫
T2

fε(ν) · νt dx + λ

∫
T2
ν · νt dx.

(4.16)

Remark 3.1 implies that the first term in the right-hand side of (4.16) can be rewritten as∫
T2
∇
(
(w · ∇)ν

)
· ∇νt dx =

∫
T2

(
∇ν>∇νt

)
· ∇w dx +

∫
T2
∇(∇ν)>∇νt · w dx.

Then, by summing up (4.15) and (4.16), we infer

1
2

d
dt

(
‖w‖2 + ‖∇w‖2+‖∇ν‖2 + ‖∆ν‖2

)
+ ‖∇w‖2 + ‖νt‖

2 + ‖∇νt‖
2

≤

∫
T2
|∇w||∇ν|2 dx +

∫
T2
|w||∇ν||νt| dx

+

∫
T2
| fε(ν)||νt| dx + λ

∫
T2
|ν||νt| dx =:

4∑
i=1

Ii.

(4.17)

For the terms Ii, i = 1, 2, 3, we have the following bounds

I1 ≤‖∇w‖‖∇ν‖2L4

≤c‖∇w‖‖∇ν‖‖∆ν‖

≤cε‖∇w‖2‖∇ν‖2 + Cε‖∆ν‖
2,

(4.18)

I2 ≤‖w‖L4‖∇ν‖L4‖νt‖

≤c‖w‖
1
2 |∇w‖

1
2 ‖∇ν‖

1
2 ‖∆ν‖

1
2 ‖νt‖

≤
c
δ
‖w‖‖∇w‖‖∇ν‖‖∆ν‖ + δ‖νt‖

2

≤
c̄
δ
‖∇w‖‖∇ν‖‖∆ν‖ + δ‖νt‖

2

≤
c̄ε
δ2 ‖∇w‖2‖∇ν‖2 + cε‖∆ν‖2 + δ‖νt‖

2,

(4.19)

I3 ≤
2
ε2 ‖ν‖‖νt‖

≤
c
ε4δ
‖ν‖2 + δ‖νt‖

2,
(4.20)

and

I4 ≤ λ‖ν‖‖νt‖

≤
cλ
δ
‖ν‖2 + λδ‖νt‖

2.
(4.21)
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Estimates above, together with inequalities (4.14) and (4.17), allow us to write

d
dt

(
‖w‖2 + ‖∇w‖2 + ‖∇ν‖2 + ‖∆ν‖2

)
+ ‖∇w‖2 +

(
1 − (λ + 2)δ

)
‖νt‖

2 + ‖∇νt‖
2

≤ cε,δ,λ‖ν‖2 + cε‖∆ν‖2 + cε,δ‖∇w‖2‖∇ν‖2.
(4.22)

In the present case the penalisation parameter ε > 0 is constant, so we omit such a term along with
δ and λ in the next calculations. From (4.22) we obtain

d
dt

(
‖w‖2 + ‖∇w‖2 + ‖∇ν‖2 + ‖∆ν‖2

)
≤ c

(
‖ν‖2 + ‖∆ν‖2 + ‖∇w‖2‖∇ν‖2)

≤ c‖ν‖2 + c
(
‖∇w‖2 + ‖∆ν‖2

)
(1 + ‖∇ν‖2).

Set y =
(
‖w‖2 + ‖∇w‖2 + ‖∇ν‖2 + ‖∆ν‖2

)
. The differential inequality

y′ ≤ c‖ν‖2 + y(1 + ‖∇ν‖2)

implies (
‖w‖2 + ‖∇w‖2 + ‖∇ν‖2 + ‖∆ν‖2

)
(t)

≤
(
‖w0,∇w0,∇ν0,∆ν0‖

2)e∫ t
0 (1+‖∇ν(s)‖2)ds

+ ‖ν‖L∞(0,T ;L2)

∫ t

0
e
∫ t

s (1+‖∇ν(`)‖2)d` ds.

(4.23)

Since (w, ν) stands for (wn, νn), as a consequence of the above estimates, for any fixed T > 0, it follows
that ‖wn,∇wn‖2L∞(0,T ;H) + ‖∇νn,∆νn‖2L∞(0,T ;H) is uniformly bounded with respect to n ∈ N. The control
(4.22) implies νt ∈ L2(0,T ; H1).
Step 2: Further a priori estimates. We take the H1/2-inner product of (3.1) and (3.2) with w and νt,
respectively, as in the case of Eqs (4.15) and (4.16). After integration by parts, we obtain

1
2

d
dt

(
‖w‖2

H
1
2

+ ‖∇w‖2
H

1
2

)
+‖∇w‖2

H
1
2

= −
(
(w · ∇)w),w

)
H

1
2

+
((
∇ν>∇ν

)
,∇w

)
H

1
2

+
((
∇ν>∇νt

)
,∇w

)
H

1
2

+
(
∇(∇ν)>∇νt,w

)
H

1
2
,

(4.24)

and
1
2

d
dt

(
‖∇ν‖2

H
1
2

+ ‖∆ν‖2
H

1
2

)
+ ‖νt‖

2

H
1
2

+ ‖∇νt‖
2

H
1
2

= −
((
∇ν>∇νt

)
,∇w

)
H

1
2
−

(
∇(∇ν)>∇νt,w

)
H

1
2

−
(
(w · ∇)ν

)
, νt

)
H

1
2
−

(
fε(ν), νt

)
H

1
2

+ λ
(
ν, νt

)
H

1
2
.

(4.25)

From Eqs (4.24) and (4.25), we get

1
2

d
dt

(
‖w‖2

H
1
2

+ ‖∇w‖2
H

1
2

+ ‖∇ν‖2
H

1
2

+ ‖∆ν‖2
H

1
2

)
+ ‖∇w‖2

H
1
2

+ ‖νt‖
2

H
1
2

+ ‖∇νt‖
2

H
1
2

≤

∣∣∣∣((w · ∇)w),w
)

H
1
2

∣∣∣∣ +
∣∣∣∣((∇ν>∇ν),∇w

)
H

1
2

∣∣∣∣
+

∣∣∣∣((w · ∇)ν
)
, νt

)
H

1
2

∣∣∣∣ +
∣∣∣∣( fε(ν), νt

)
H

1
2

∣∣∣∣
+ λ

∣∣∣∣(ν, νt
)

H
1
2

∣∣∣∣ =:
5∑

i=1

Li.

(4.26)
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For the terms Li, i = 1, . . . , 5 we actually use the norm induced by ( · , · )
Ḣ

1
2

= (Λ
1
2 (·),Λ

1
2 (·)) instead

of the full norm H
1
2 , although we still keep the same norm notation ‖ · ‖

H
1
2
. Previous evaluation of the

lower-order terms in the steps already described motivates our notational choice. Also, for the velocity
vector filed w, the norm ‖w‖

Ḣ
1
2

is equivalent to the full norm ‖w‖
H

1
2
.

Consider L1. Since
∫
T2(w · ∇)Λ

1
2 w · Λ

1
2 w ds = 0, we get

L1 ≤

∫
T2
|(Λ

1
2 w · ∇)w| |Λ

1
2 w| ds

≤ ‖Λ
1
2 w‖2L4‖∇w‖

≤ ‖Λ
1
2 w‖‖Λ

1
2∇w‖‖∇w‖ ≤ c‖w‖

H
1
2
‖∇w‖‖∇w‖

H
1
2

≤
c
ε
‖w‖2

H
1
2
‖∇w‖2 + ε‖∇w‖2

H
1
2
.

(4.27)

Then, by exploiting (2.3), with s = 1/2, r = 2 and p1 = p2 = q1 = q2 = 4, we find

L2 ≤ ‖∇ν
>∇ν‖

H
1
2
‖∇w‖

H
1
2
≤ c‖Λ

1
2∇ν‖L4‖∇ν‖L4‖∇w‖

H
1
2

≤ c
(
‖Λ

1
2∇ν‖

1
2 ‖Λ

1
2 ∆ν‖

1
2 ‖∇ν‖

1
2 ‖∆ν‖

1
2
)
‖∇w‖

H
1
2

≤
c
ε

(
‖∇ν‖2

H
1
2
‖∇ν‖2 + ‖∆ν‖2

H
1
2
‖∆ν‖2

)
+ε‖∇w‖2

H
1
2
,

(4.28)

L3 ≤ ‖(w · ∇)ν‖
H

1
2
‖νt‖H

1
2
≤

(
‖Λ

1
2 w‖L4‖∇ν‖L4 + ‖w‖L4‖Λ

1
2∇ν‖L4

)
‖νt‖H

1
2

≤
c
ε

(
‖∇w‖2‖∇ν‖2

H
1
2

+ ‖w‖2
H

1
2
‖∆ν‖2

)
+ ε‖νt‖

2

H
1
2
,

(4.29)

L4 =
∣∣∣∣(Λ 1

2 fε(ν),Λ
1
2 νt

)∣∣∣∣ ≤ c‖ fε(ν)‖H1‖νt‖H
1
2

≤
c
εε4 (‖ν‖2 + ‖∇ν‖2) + ε‖νt‖

2

H
1
2
,

(4.30)

and
L5 = λ

∣∣∣∣(Λ 1
2 ν,Λ

1
2 νt

)∣∣∣∣ ≤ cλ‖ν‖
H

1
2
‖νt‖H

1
2

≤
cλ
ε
‖ν‖2

H
1
2

+ ε‖νt‖
2

H
1
2
,

(4.31)

after using Hölder’s, Ladyzhenskaya’s, and Young’s inequalities as well as the continuous embedding
W1/2,2(T2) ⊂ L4(T2).

By using the estimates (4.27)–(4.30) along with (4.26), and absorbing the parameter ε−4 in a generic
constant c, we obtain

1
2

d
dt

(
‖w‖2

H
1
2

+ ‖∇w‖2
H

1
2

+ ‖∇ν‖2
H

1
2

+ ‖∆ν‖2
H

1
2

)
+ (1 − cε)‖∇w‖2

H
1
2

+ ‖νt‖
2

H
1
2

+ ‖∇νt‖
2

H
1
2

≤c‖w‖2
H

1
2
(1 + ‖∇w‖2 + ‖∇ν‖ + ‖∆ν‖2) + c‖∇ν‖2

H
1
2
(1 + ‖w‖2 + ‖∇ν‖2 + ‖∆ν‖2)

+ c‖∆ν‖2
H

1
2
‖∆ν‖2

with ε > 0 small enough in a way that the coefficient c̄ := (1−cε) is positive. Fix T > 0. By Grönwall’s
lemma, we get
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‖w(t)‖2
H

1
2
+‖∇w(t)‖2

H
1
2

+ ‖∇ν(t)‖2
H

1
2

+ ‖∆ν(t)‖2
H

1
2

+ c̄
∫ t

0

(
‖∇w‖2

H
1
2

+ ‖νt‖
2

H
1
2

+ ‖∇νt‖
2

H
1
2

)
ds

≤ β exp
{

c
∫ t

0

[
(1 + ‖w‖2 + ‖∇w‖2 + ‖∇ν‖2 + ‖∆ν‖2)

]
ds

}
for any 0 < t ≤ T , with

β = c
(
‖w0‖

2

H
1
2

+ ‖∇w0‖
2

H
1
2

+ ∇ν0‖
2

H
1
2

+ ‖∆ν0‖
2

H
1
2

)
,

and the quantity on the right-hand side of the above inequality is bounded, for 0 < t ≤ T , thanks to Eq.
(4.23) and the hypotheses on initial data.

Until here, we mainly used the notation (w, ν) in place of (wn, νn) but, in view of extracting a
convergent subsequence, in the last part of the proof we’ll employ the (wn, νn) notation.
Step 3: Estimate for wn

t . In order to extract a convergent subsequence of {(un, νn)}, we exploit the
classical Aubin-Lions lemma; to this end we have first to provide a suitable control on wn

t . The next
calculations also fixes a minor issue present in the analogous control in reference [12], where we
estimate acceleration in L1(0,T ;H−1).

Consider Eq. (3.1). For ϕ ∈ H1,
∫
T2 ϕ dx = 0, with ‖∇ϕ‖ = 1. Then, we get

〈wn
t − ∆wn

t , ϕ〉H−1,H1 ≤|
(
(wn · ∇)ϕ,wn)| + |(∇wn,∇ϕ)|

+

∫
T2
|∇νn|2|∇ϕ| dx + c

∫
T2
|∇νn||∇νn

t ||∇ϕ| dx

+ c
∣∣∣(∇(∇νn)>∇νn

t , ϕ)
∣∣∣

≤‖wn‖2L4‖∇ϕ‖ + ‖∇wn‖‖∇ϕ‖

+ ‖∇νn‖2L4‖∇ϕ‖ + c‖∇νn‖L4‖∇νn
t ‖L4‖∇ϕ‖

+ c‖∇(∇νn)>∇νn
t ‖H−1‖∇ϕ‖

≤c
(
‖wn‖‖∇wn‖ + c‖∇wn‖ + ‖∇νn‖‖∆νn‖

+ ‖∇νn‖
H

1
2
‖∇νn

t ‖H
1
2

+ ‖∆νn‖
H

1
2
‖∇νn

t ‖H
1
2

)
,

(4.32)

after using the estimates performed in previous steps along with Hölder’s, Ladyzhenskaya’s, and
Poincaré’s inequalities. In the last inequality above, we have also exploited the continuous embedding
W1/2,2(T2) ⊂ L4(T2) and the Sobolev product laws (see, e.g., [?, 3, 29]) to get the estimate

‖∇(∇νn)>∇νn
t ‖H−1 ≤ ‖∆νn‖‖∇νn

t ‖H
1
2

≤ ‖∆νn‖
H

1
2
‖∇νn

t ‖H
1
2
.

Hence, we find ∫ T

0
‖wn

t ‖
2
H1 ds ≤c

[
(1 + ‖wn‖2L∞(0,T ;L2))‖∇wn‖2L2(0,T ;L2) + ‖∆νn‖2L2(0,T ;L2)

+ (‖∇νn‖2

L∞(0,T ;H
1
2 )

+ ‖∆νn‖2

L∞(0,T ;H
1
2 )

)‖∇νn
t ‖

2

L2(0,T ;H
1
2 )

]
.
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As a final step in our argument, to extract a convergent subsequence from {(wn, νn)}, we can use
the Aubin-Lions lemma following the same line as in the proof of [12, Theorem 3.1, Step 3]. Also,
passage to the limit in weak formulation follows the same path exploited in reference [12]. So, we can
conclude stating existence. �

Remark 4.1. By assuming initial data (w0, ν0) ∈ H1×H2, we can still reproduce the same calculations
of Step 1, while Step 2 would require higher-order estimates, which are not available in the present
setting. However, by using an approach similar to the one in Step 3, we could obtain a weaker control
on wt by using Eq. (3.1) and providing a uniform estimate on

‖∆wn
t ‖H−2 = sup

‖ϕ‖Ḣ2 =1
|〈∆wn

t , ϕ〉H−2,H2 |

Indeed, also in this case, the worst term to be controlled is
∣∣∣(∇(∇νn)>∇νn

t , ϕ)
∣∣∣. For it, we get∫ T

0

∣∣∣(∇(∇νn)>∇νn
t , ϕ)

∣∣∣2 ds ≤
∫ T

0
‖(∇(∇νn)>∇νn

t ‖
2
H−2‖ϕ‖

2
H2 ds

≤

∫ T

0
‖∆νn‖2‖∇νn

t ‖
2 ds

≤ ‖∆νn‖2L∞(0,T ;L2)

∫ T

0
‖∇νn

t ‖
2 ds,

on the basis of inequalities (4.22), (4.23), and the product law (2.4). Then, to conclude about the
existence of weak solutions, we can use again the same idea behind limiting and convergence
procedures in [12, Theorem 3.1, Step 3].
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