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1. Introduction

Boundary value problems (for short BVPs) for nonlinear fractional order differential equation (for
short NLFDE) have been addressed by several researchers during last few decades. The necessity of
fractional order differential equations (for short FDEs) lies in the fact that fractional order models are
more accurate than integer order models, that is, there are more degree of freedom in the fractional
order models. Furthermore, fractional order derivatives provide an excellent mechanism for the
description of memory and hereditary properties of various materials and processes. In applied sense,
FDE:s arise in various engineering and scientific disciplines for mathematical modeling in the fields of
physics, chemistry, biology, mechanics, control theory of dynamical system, electrical network,
statistics and economics, see for instance [1-6] and their references.
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Consequently, day by day the topics in FDEs are taking an important part in various applied
research. Some recent development of FDEs can be seen in [7-16] and in their references.

Now a days, many researchers devoted themselves to determine the solvability of system of
nonlinear fractional order differential equations (for short SNLFDEs) with different boundary
conditions, specifically to the study of existence of positive solutions to BVPs for SNLFDESs, see for
instance [10,12—14,17-29] and their references.

Inspired by the above-mentioned works on existence of positive solutions to BVPs for
SNLFDEs, in this paper, we establish the existence criteria of at least one positive solution to the
following boundary value problem (for short BVP) for coupled system of Riemann-Liouville type
nonlinear fractional order differential equations (for short NLFDEs) applying Schauder’s fixed point
theorem [30]:

~Dguy (t) = Aa (1) f(tuy (t).uy (1)) +g, (1), te[0,1].¢ €(3,4],
D2 (1) = A (€) 10 (2).60 ()£ G5 1), [0, < (3.4],
D,tu; (0)=Dyiu; (0) =Dy (0)=0, u; (1) =7y, (&),

DZ2u, (0) = D22u, (0)=D2u, (0)=0, u,(1)=7,u,(&,),

(1)

where, D“ Dg, Dy i and D(f;' are standard Riemann-Liouville fractional differential operators of

order ¢ 6(3,4], B e(O,l), 7 6(1,2), 0 6(2,3), (i :1,2), respectively, 177, & 6(0,1) with
0<m&® ' <1, (i=12) and f,, g, & and 4,(i=12) satisfy the following hypothesis:

(H,) () f; € C([0,1]x[0,+0)x[0,+0), [0,+)), (i=1,2)
(ii) &, 9; € C([0,1], [0,+)),(i=1,2),

(iii) 4, (i =1,2)are positive parameters.

(Hy) fi(tuy(t).u,(t))>0, for uy; > 0,t €[0,1], (i=1,2).

To the best of our knowledge there is no any works considering the BVP for coupled system of
Riemann-Liouville type NLFDEs given by (1) applying Schauder’s fixed point theorem.

The rest of this work is furnished as follows. In section 2, we will provide some basic ideas of
fractional calculus, certain lemmas and state Schauder’s fixed point theorem. Section 3 is used to
state and prove our main results, which provide some techniques to check the existence of at least
one positive solutions of coupled system of Riemann-Liouville-type NLFDEs with three-point
boundary conditions given by (1). In section 3 we also give some illustrative examples. Finally, we
conclude this paper.

2. Preliminary notes

In this section, we introduce some necessary definitions and preliminary facts which will be
used throughout this paper.

Definition 1 ([3-5]). Let f:(0,0) > R be a continuous function and « >0 . Then the
Riemann-Liouville fractional integral of order « is defined as follows:
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1 f (t):ﬁj‘;(t—s)ﬂ f(s)ds, t >0,

where F(a) is the Euler Gamma function of « and provided that the integral exists.

Definition 2 ([3-5]). Let f:(0,00) > R be a continuous function and « >0 . Then the
Riemann-Liouville fractional derivative of order « is defined as follows:

Dy f (t)zr(nl_a)(%jn

where n=[a]+1 and [a]denotes the integer part of real number o and provided that the

J.(:(t—s)"*”’*1 f (s)ds,

right-hand side is point-wise defined on (O,oo) .
Lemma 1 ([10]). Suppose that h(t) eC [0,1] and (H1) holds, then the unique solution of the BVP

{Dg‘:ul(t)=h(t), te[0,1],3<a, <4

(2)
D2y, (0) =D/, (0)=Dgu, (0)=0, u,(1)=mnu, (&),
is provided by
1
u, (t) :_[0 G, (t,s)h(s)ds,
where the Green’s function G, (t,) is defined by
a;-1
1_:77[(1—5)“‘_1—77,(51—s)“‘_l}—(t—s)al_l; 0<s<t<&<l,
121
a1
1_:77[(1‘5)%1—771(51—5)“'1} O<t<s<g <l,
G (ts)=—— ! (3)
F(a] ) tal - o -1 o -1
W(I—S) —(t—S) 5 OS;SSStSI,
121
o -1
1_;7(1—3)“"‘; 0<& <t<s<l.
1>1
Remark 1. Similar as Lemma 1 the unique solution of the BVP
—Dg?u, (t)=h(t), te[0,1],3<a,<4 @
DZu, (0)=D72u, (0)=Dg2u, (0) =0, u,(1)=m,u,(&),

is provided by

U, (t) =G, (t.s)h(s)ds.
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where the Green’s function G, (t, s) is defined by

a,—1
1_:7 f%_l [(l_s)wr1 _772(52_S)a271j|_(t—3)a271; 0<s<t<§, <1,
292
a,-1
t—al[(l—S)“z‘l—772(52—8)“2_1} 0<t<s<§ <,
1 1-1,8,"
Gz (t, S)ZF(OC) t"‘z*l (5)
’ W(l—s)“zl—(t—s)“zl; 0<& <s<t<l,
_772 5 2
a,-1
ItT(l—S)“r'; 0<& <t<s<l,
—s,

Remark 2. In view of Lemma 1 and Remark 1, the couple system of BVPs defined by (1) is
equivalent to the following couple system of integral equations:

(1) =,6, (t.5)[ 4, (1) (5., (5).1(5)) + g, (5) Jos.
0, (1)=[ G, (t.5)[ 2, (1) f, (5., ()., (5)) + 9, () ],

where the Green’s functions G, (t,S), (i = 1,2) are given by (3) and (5).

Lemma 2 ([10]). The Green’s functions G(t, s), (i=1,2)defined as in (3) and (5) satisfy the

following properties:

(i) Gi(t, s), (i=12)are continuous on the unit square [0,1]x[0,1],
ie, Gi(t, s)eC([0,1]x[0,1])and G;(t,5)=0, Vt,5€[0,1];

(i)) max, G, (t.5)=G,(Ls). (i=1.2);

(iif) min,y, G, (t.s)= 6 (s)max,, G (t.s)=0,(s)G, (Ls), A(0.1). (i=12).

A,1-2] te[0,1]

Lemma 3. If the Green’s functions G, (t, s), (i=1,2)are given as in (3) and (5), then there exist
constants &; €(0,1), (i=1,2) such that

G (t,5) > x; max, ;G (t,5) =xG; (1,9), (i =1,2).

min, [0.1] i

1/2,1]

Proof. Since te [1/ 2, 1], then from (3) we obtain that
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1 2 a;-1 B 1_ a;-1 _ _ al—l_ 3 a-1
(/) _( S) 771(981 S) __(1/2 S) : 03331/235131,
(1-m& )T (a) [(e)

1 2 a;-1 B 1_ o -1 _ _ al—l_
2y |(1-s) : UG 4 0<1/2<s<& <,
(1-m&“ ™ )T (@)

(12" [(1=s)"" = (12-s)"" |
(1_771951&171)1—‘(051) ,

minte[l/z,l] G, (t’ S) -

8/_2,)7;;%(—11520;); 0<¢ <1/2<s<1.

If we take 0<s<t<{ <I, then

a-1 -1 1-s)""
& 09) (a0 e -

(=9 (G- (1) (1-me )
(1 - 771;&171 )F(al )

_ng (=) e (G-9)" _ (1-s)"
(=& )r(@)  (1=n&")r(a)

and

(1/2)05171 [(l_s)aﬁ “n, (51 _S)aﬁl}_(l_méa]f1)(1/2_5)05,71

minte[]/Z,]] Gl (t’ S) = (1 _nléglal_l )F(al)
(2 (1=5)"" = (&=5)"" = (1-n&")(1-25)"" |
- (1_771‘§1a]_1)r(a1)
(l/z)al—l (1 _ s)arl _771510,171 (1 _;] _(1 _771510[]71)(1 _2s)al—1
) ] (1_77151%71)1_‘(“1)
. (12" [ (1=s)"" =g (1-2s)" 7~ (1= g ) (1-25)" |
- (1_771§1a171)r(0‘1)
(12" [(1-s)"" = (1-2s)"" |

(1 —m&" )F(a1)

Let o, be a positive number such that min G, (t,5)>0,G,(1,5). Then we have

tef1/2,1]
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(12" [(1=s)" " =(=29)"" | (2) (1=s)" —(1/2-s)""

o0, < =

(l—s)“‘_1 (l—s)a‘_1

=(1/2)"" - (1/12 _ )%1 <(1/2)"".

This means that o, €(0,1).

If we take 0<t<s<{ <I,then

and

Let o, be a positive number such that min,,, ; G, (t,5) > 0,G, (1,5). Then we have

1/2,1]
o, <t (1-n&™).
This means that o, € (O,l) .

If we take 0<¢& <s<t<l], then

and

12y (1) mg

min,;,, 1 G (t, 5) (1=m&™" )T (o)

te[l/2,1] 1

\%

Let o, bea positive number such that min,,, G, (t,5) 2 5,G; (L;s). Then we have
0_3 < tarln]églalfl'

This means that o, € (0, 1).

If we take 0<¢& <t<s<I, then
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and

(12)" " (1-5)""
(1 _771510[1_1 )F(al ) .

G, (t,5)>0,G,(1,5). Then we have

minte[l/z,l] Gl (t’ S) -

Let o, be a positive number such that min,_,, ,

o, <t
This means that o, € (0, 1).

Now, if we set «; = min{O'I, o,, 63,64}, then we obtain that

min,, , ; G, (1,5) 2 5,6, (1, s) = k; max,, ; G, (t.5).
Similarly, for the Green’s function G, (t,s), we can prove that
min,, , ; G, (£,8) 2 5,G, (1,5) = &, max 4, , G, (L.5).
This completes the proof. [

Throughout this paper let B = {u (t) :ueC ([0,1]), te [0, 1]} be a Banach space with the usual

supremum nhorm || . || Now, if we set X =BxB, where X is equipped with the norm
H (u,,u,) H=||u1||+||u2 | for(u,,u, ) X, then it is clear that X is also a Banach space. Furthermore,

we define the integral operators A, A, : X - B by

(A (0,))(0) = [ G (t.5) Aa, (5) £, ( 5., (5)-u,(5)) +, (5)]ds.

and
(AZ (UI’UZ))(t) = J: G, (t’s)[ﬂ?az (s)f, ( s,U,(s)u, (S))+ 9, (S)} ds,

where G, (t, S), (i =1,2) are the Green’s functions given by (3) and (5). Finally, combining the
operators A and A,, we define an operator T : X — X

(T (1)) (1)) = ((A () (1), (A (u.0,)) (1))
([ et Aa(s) (s ()0 () 0, (5) s ©)

j;Gz (t,s)[ﬂzaz (s)f, ( s,u, (s),u, (s))+ g, (s)}ds).

Then it is easy to see that the BVP (1) has a solution (u,,u, )e X if and only if (ul,u2 )is a fixed

point of the operator T defined by (6) and from this context, the main objective of this study is to
find the existence of fixed point of the operator T defined by (6).

For the brevity, we state only the Schauder’s fixed point theorem [30], which will be used to prove
the main results.
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Theorem S. [30] (Schauder’s Fixed Point Theorem) Let X be a Banach space and E be a
nonempty closed convex subset of X . Let T be a continuous mapping of E into a compact set
F c E.Then T has a fixed pointin X .

3. Main results

This section is devoted to establishing the existence criteria of at least one positive solution to
the BVP given by (1).

Let x, and x, be the non-negative constants given by Lemma 3 associated to the Green’s functions
G, (t,s)and G, (t,s)respectively. Next suppose that f, and f, are Caratheodory type functions,

that is
(i) for almost all t € [0,1], f;(t,): Rt - R and f,(t,): RT —» R are continuous.
(ii) for every r € RT, f,(,1):[0,1] » R and f;(-,r): [0,1] = R are measurable.

Throughout this paper, we use the following notations:

if for almost all te[0,1], m>0,meL'(0,1), then we denote m>0,

. 1G, (t,s 1G, (t,s
M =max{supte[0’l] J'O lto({]_l )gl(s)ds, SUP, o IO ii_l )g2 (s)dS},

and

tefo.1] J, ton -1 4 tefo.1] J, taz—l

M., = min {inf

J.l—Gl (t:s) g,(s)ds, inf J.I—G2 (ts) g, (s)ds}.

Finally, we define a set S as follows

S ={(u.u,) e X :u,(t), u, ()20, te[0,1]}.
We are now in position to present and prove the main results.
Theorem 1. Consider the BVP for coupled system of Riemann-Liouville-type NLFDEs given by (1),

along with Caratheodory functions f, and f,. Suppose that there exist m>0 and g > 0such that

the following conditions are satisfied:

(H,) 0= f,(tu,u,), T, (Lu,u,)< ”;(j), v(u,u,)eS, te[0,1]andu, = 0;
1

ds <+, where " =max {¢,,a,}. If

(H,) /ﬁlel (1,s)a, (s)m(s)ds<+oo’ izj'ol G,(1,s)a,(s)m(s)

2
o ) e
M. > 0, then the BVP given by (1) has at least one positive solution.

Poof. Since, the solution of the BVP given by (1) is equivalent to the fixed point of the integral
operator T defined by (6), so we have to prove that the integral operator T defined by (6) exist a
fixed point.
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Let ‘Pz{(u],uz)es :t“*‘lpgu] (t), u,(t)<t“"'P, Wt e[O,l]}, where . =min{a1,a2} and
P> p>0 are undetermined positive constants. Then it is clear that V¥ is a bounded closed convex
subset of X .

It is obvious that operator T:¥ —Y is continuous. To prove T (‘P) cV¥, letus fix p=M., and

from assumption, we have p>0.Now forall te[0,1]and (u,,u,)e ¥, we yield that
Au:)(t)> LIGI (t.5)g,(s)ds =t 'M, =t“'p=t"p.

On the other hand, if we put

N*:max{ﬁt;_l [y , j;ez(l,ga{(s)m(s)ds} )

then using (H,), we get

*

Now, if we set P = ( N
p.“

+M’ ] , then we obtain that
t“p< A (u,u,)(t)<t“P. (8)
Similarly, for the operator A (uj,u, ), we obtain that
t“p< A (u,u,)(t)<t“'P. 9)
Hence, from (6)—(8) we have

t ' p<T (u,u,)(t) <t'P.
This means that T (‘P) c V.

Now forall t,t, [0,1], t, >t, and using (8) and (9), we get
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HT(UnUz)( )=T (u H
<[ (uu,)(4 H H u,)(t)]
—HA1 U,)(t), A (uy,u,) 1” HA1(Ulvuz)(tz)»Az(Ulﬂuz)(tz)u
:HAl Uy )( tl)‘+HA2 )(t, H_(HAI(ul’uz)(tz)HJrHAz(ul’uz)(tz)u)
= (A (w2 ) (6 )= A (ot (0)])+ (A (vt ) ()] =] (o) (1))

< P tla**l _tza**l ‘+ P tla**l _tza**l ‘

=2P|t " -t

\szmm—gw

This tells us that T (‘I’)is equicontinuous. Hence from the Arzela-Ascoli theorem [31], we conclude

that T:W — WY is completely continuous operator and it ensure that T is a continuous operator
from a bounded closed convex subset of X to the compact subset of that bounded closed convex
subset.

Thus, in view of Theorem S (Schauder’s Fixed Point Theorem) the integral operator T given by (6)
has at least one fixed point which is positive and this means that the BVP given (1) has at least one
positive solution.

This completes the proof. u
Theorem 2. Consider the BVP as like Theorem 1 and assume that (H4)holds. Suppose that there
exist m>=0, m >0 and 0<u<1 such that the following condition is satisfied:

m(z)

(H;) - < filtowy ). fo(tag.u,) < o V(uy.u, )€ S. te[0.1]and u, # 0.
1y u,

If M, =0, then the BVP given (1) has at least one positive solution.

Proof. To prove this theorem, we follow the proof the Theorem 1 and just search the positive

constants P >p>0 suchthat T(¥)cW. So, from Theorem 1 we can obtain that

Al(ul,uz)(t)st“*“{N; +M*j,

Y
where N is given by (7).

Now, if we set

n’S[. (10)

~* . l- 1 lG{l.S)a [.S')F;I{S) 1 163{1.3)(13[5)';!(.5')
N =minq Ak = J.l 1 ,z.rl'élf'—l'l ds. Ak, o= L T
| ¥ S ! 7 S ’

where «, and x, be the non-negative constants given by Lemma 3, then using (HS), we get
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A () (1)2 /lqu: G, (1.5)a,(s) f; (.5'.!!1 (5).uy(s))ds
> AIEGI (r.5)ay(s) fi (5. (5).u {S})ds

S _+1Gl{l.s)a1{5)£:{s)
AL
a1 N Hpata Vo

P P

ds

* Py
*

Hence, if we consider p and P satisfying {N—ﬂ+M*JS P and g—ﬂ = p then using the same
P

process as like the Theorem 1, we conclude that T 1is a continuous operator from a bounded closed
convex subset of X to the compact subset.

Thus, in view of Theorem S the integral operator T given by (6) has at least one fixed point which
is positive and this means that the BVP given (1) has at least one positive solution.

This completes the proof. [

Theorem 3. Consider the BVP as like Theorem 1. and assume that there exist m>=0, m >0 and
O<p<l such that (H,) and (H,) hold. If M" <0 with the following condition

1
~ 1 \
N |
(2,) M,>[ wu-] ‘1_% .

() )

then the BVP given (1) has at least one positive solution.

Proof. To prove this theorem, we follow the proof the Theorem 2 and just search the positive

constants P> p>0 such that

& P 1|

N N
—_+M, |2p. (11)
A

}J—QEPmd

*

Now, if we fix P=N—ﬂ,then
p

ok —~

p“z + M, = p implies that either g—y +M,=>p or, M, =

(V-

7 *

p— (13]*)” p*’ = @(p). Tt is clear that the minimum value of @(p) occur at p=py =
1
ﬁ*yz 1—;42 . .
[(N*)#] . Hence, if we put p = p,, then we obtain that
L M L
o~ F a4 1_.&': ~F o~ % 3 l_ﬂl ~ % 3 1_.“: .
N u N N u N u 1]
M.29¢(p,)= 4 B = V ‘1_,1’13 ‘

(¥') (V) () (¥°)

Therefore, for M*Zgo( po) (11) is satisfied. Consequently, (Hé) is satisfied. Thus, in view of

Theorem 2 and Theorem S the integral operator T given by (6) has at least one fixed point which is
positive and this means that the BVP given (1) has at least one positive solution.
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This completes the proof. ]
Now, we give some illustrative examples.

Example 1. Consider the BVP for coupled system of Riemann-Liouville-type NLFDEs provided by
~DY%u, (t) =t[u, (t)+u, ()] +%, tefo, 1],

—Du, (t) =26 u, (t)+u, (1) "+, tefo, 1],

D’u; (0)=D;"u, (0)=DJ*u, (0)=0, u(1)=

12
g

D2l u, (0)=D7’u, (0)= D u, (0)=0, u,(1)=

where for all u,u, >0, f,( tul,uz =[u () +u, ()] >0, £ (tu,u,)=[u, (t)+u, ()] >0,
'3
2’y

o :1_0,%:%(3 4).p = /3 —%e(O,l),ylzg,yzzge(l,Z),é'l:%,52236(2,3),

,71:1,,72_1 51:%6(0,1),522—6(0,1),0<771§1a‘_1<1, 0<n2§2“2‘1<1, A =1>0,4,=2>0,
for all t e[0,1] & (t)=t>0, a,(t)=t>>0, and g, (t)=t>, g,(t)=t>. For the above values it is
clear that (H,) and(H,) are satisfied.

Now if we consider m( ) ( )[u ( ) ]7 and ,u =1, then by direct calculation we obtain that
0< f (tu,u,), f,(tu,u,)< m( ) v te[0,1] /11'[ a(j))m(s)ds<+oo, and
XQJ.; G, (1,8)&2 (S)m(s) ds < +o0, for & = max{al,az}, that is the conditions (H3) and (H4) are

e

satisfied. Furthermore, since G, (t, S),G2 (t, S) >0, then we get

M. = min {mft 0]

1G, (t,s 1G, (t,s
J‘ 11(01 )S 2ds, inf,_ [01]J. 11531 )s3d8}

15°G, (t,s , 15°G, (t,s
= min {mfte[o A IO # ds, 1nfte[0’l] J'O # ds}
3 4

> 0.

Therefore, all the conditions of Theorem 1 are satisfied by BVP (12). Hence by an application of
Theorem 1, we can say that the BVP (12) has at least one positive solution.

Example 2. Consider the BVP for coupled system of Riemann-Liouville-type NLFDEs provided by
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~DPu, (t)=t[u, (t)+u, (t)}lw(ﬁ—%j, tefo,1],
—D)%u, (t)=t>[u, (t)+u, (t)]; +(t2 —%) tefo,1],

(13)
1
DYu, (0) = D%, (0) = D, (0) =0, u, (1) =, H

D(l)/+3U2 (0)= DSPUz (0)= D§(4u2 (0)=0, u,(1)=u, (lj

1
where forall uy,u, >0, fy (t,u,u,)=[u, (t)+u, (t ]4 >0, f, (tup,uy) = u, (t)+u, (t) |5 >0,
7 10 9

1 3
(o :5’6{2 =?€(3 4] ﬂl ﬂz ZSE(Oal)’ =7 =EE(1’2)’§1 - 52 226(2,3),

m=m=1&=¢& :%E(O,l), 0<mp&® <1, 0<m&®7 <1, 4 =4 =1>0, for all te[0,]
a (t)=t>0,a,(t)=t>>0, and g,(t) =[t3 —%j, d, (t)z(t2 —%j For the above values it is clear
that (H,)and(H,) are satisfied.

Now if we consider m(t) = us (Ous (8) + up (O], M) = wy (O[ur () + w5 and pr =2,

m(t

then by direct calculation we obtain that 0< f, (t,u;,u,), f,(t,u,,u,)< (#) v tefo,1],
u1

fltuwan). fi(tu.u)< m(j}_ v fe [0.1].&1"’161{1‘3}(?‘ (s)m(s)

'“1 ) i

—— ds < +ea, and
0 ule’ 1)
5

> ds <+oo, for " =max{e,,@,}, that is the conditions (H,),(H,) and

(H 5) are satisfied. Furthermore, since max,, ;G (t,s)=G;(1,s), (i=1,2), then we have

M., —mm{mft o] Jl: G (728)( jds 1nfe[01]jIG )(Széjds}
t4

t2
G (1 G, (1
_ min {infte[oﬁl] J.Ol 1 (59 S) (53 _ ij dS’ infte[0,1] J.Ol 2 (69 S) (Sz _ %j ds}
2 t
=0.

Therefore, all the conditions of Theorem 2 are satisfied by BVP (13). Hence by an application of
Theorem 2, we can say that the BVP (13) has at least one positive solution.

Example 3. Consider the BVP for coupled system of Riemann-Liouville-type NLFDESs provided by
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—DJu, (t)=t[u, (t)+u, (t)]i +(t*-1), tefo,1],

-D;"u, ()=t [y, (t)+u2(t)];+(t3—l), tefo,1],

/3 3/2 9/4 1 (14)
D.’u, (0)=D?u, (0)=D.*u; (0)=0, u,(1)=y, (5]

1
DYu, (0)= D¥2u, (0) = Du, (0) =0, uy (1)=u, H

1
where forall u;,u, >0, fy (t,u,u,)=[u, (t)+u, (t ]4 >0, f, (tup,uy )=y, (t)+u, (t) |5 >0,
7 10

1 3 ?
al zzpaz =?€(334]9ﬂ1 = ﬂz 256(0’1)’ }/1 =]/2 =EE(1,2)’51 - 52 226(2’3)’

=1, &= 52_ e(0,1), 0<p&* 7 <1, 0<m &7 <1, A =24,=1>0, for all te[0,]]

& (t) =t>0, 3, ( ) =t'> 0, and g, (t) = (t2 —1), 9, (t) = <t3 —1). For the above values it is clear that
(Hl) and(Hz) are satisfied.

1 1
Now if we consider m(t) = uy (t)[uy(t) + uy (t) ]2, M(t) = uy () [u (t) + uy ()5 and u = %,
m(t
then by direct calculation we obtain that 0< f, (t,u,,u,), f,(t,u,,u,)< #, v te[0,1],
ul

m(t) ~1G1[1..9}n;(s)m(.5']

m .‘a‘re[o.l]./llj ds < oo,

< filtowus). fr(tuu, ) <

u” ' u
'G, (1,s)a, (s)m(s)
Sk ]
is the condltlons (H;).(H4).(Hs)and (Hg) are satisfied.
Furthermore, since G, (t, S), G, (t, S) >0, then we have

0 ula’-1)
5

1
—
o (1—1%), that

ds <+, for ¢ =max{e,,a,}, and M, = [(N*)“ ‘uz]

o 1

t2 t3

. 1G, (t,s 1G, (t,s
M —maX{SUPtE[OJ]j ( )(t ~1)ds, sup,;, ]jo 21(01 )(t3—1)ds}<0
Therefore, all the conditions of Theorem 3 are satisfied by BVP (14). Hence by an application of

Theorem 3, we can say that the BVP (14) has at least one positive solution.

4. Conclusion

In this paper, some new existence criteria of at least one positive solution to the three-point
BVP for coupled system of Riemann-Liouville-type NLFDEs given by (1) have been studied by
applying Schauder’s fixed point theorem. Proven theorems (Theorem 1-3) of this paper have been
used as the efficient method to checked the existence of at least one positive solution to the
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coupled system of BVP for NLFDEs given by (1). The established results provide an easy and
straightforward technique to cheek the existence of positive solutions to the considered BVP given
by (1). Moreover, the results of this paper extend the corresponding results of Han and Yang [10]
and Hao and Zhai [27].
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