
AIMS Mathematics, 4(3): 880–895. 
DOI: 10.3934/math.2019.3.880 
Received: 28 April 2019 
Accepted: 11 July 2019 
Published: 23 July 2019 

http://www.aimspress.com/journal/Math 
 

Research article 

Existence of positive solution to the boundary value problems for 

coupled system of nonlinear fractional differential equations 

Md. Asaduzzaman
1,
* and Md. Zulfikar Ali

2
 

1 Department of Mathematics, Islamic University, Kushtia-7003, Bangladesh 
2 Department of Mathematics, University of Rajshahi, Rajshahi-6205, Bangladesh 

* Correspondence: Email: masad_iu_math@yahoo.com; alimath1964@gmail.com. 

Abstract: In this paper, we investigate the existence criteria of at least one positive solution to the 
three-point boundary value problems with coupled system of Riemann-Liouville type nonlinear 
fractional order differential equations. The analysis of this study is based on the well-known 
Schauder’s fixed point theorem. Some new existence and multiplicity results for coupled system of 
Riemann-Liouville type nonlinear fractional order differential equation with three-point boundary 
value conditions are obtained. 

Keywords: coupled system of Riemann-Liouville type fractional differential equations; three-point 
boundary value condition; positive solution; Schauder’s fixed point theorem 
Mathematics Subject Classification: 47H10, 34A08, 34B18, 34B18 
 

1. Introduction 

Boundary value problems (for short BVPs) for nonlinear fractional order differential equation (for 
short NLFDE) have been addressed by several researchers during last few decades. The necessity of 
fractional order differential equations (for short FDEs) lies in the fact that fractional order models are 
more accurate than integer order models, that is, there are more degree of freedom in the fractional 
order models. Furthermore, fractional order derivatives provide an excellent mechanism for the 
description of memory and hereditary properties of various materials and processes. In applied sense, 
FDEs arise in various engineering and scientific disciplines for mathematical modeling in the fields of 
physics, chemistry, biology, mechanics, control theory of dynamical system, electrical network, 
statistics and economics, see for instance [1–6] and their references.  

mailto:asad_iu_math@yahoo.com
mailto:alimath1964@gmail.com


881 
 

AIMS Mathematics  Volume 4, Issue 3, 880–895. 

Consequently, day by day the topics in FDEs are taking an important part in various applied 
research. Some recent development of FDEs can be seen in [7–16] and in their references. 

Now a days, many researchers devoted themselves to determine the solvability of system of 
nonlinear fractional order differential equations (for short SNLFDEs) with different boundary 
conditions, specifically to the study of existence of positive solutions to BVPs for SNLFDEs, see for 
instance [10,12–14,17–29] and their references. 

Inspired by the above-mentioned works on existence of positive solutions to BVPs for 
SNLFDEs, in this paper, we establish the existence criteria of at least one positive solution to the 
following boundary value problem (for short BVP) for coupled system of Riemann-Liouville type 
nonlinear fractional order differential equations (for short NLFDEs) applying Schauder’s fixed point 
theorem [30]: 
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where, 0 0 0 0, , andi i i iD D D D
   
    are standard Riemann-Liouville fractional differential operators of 
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          2 1 2, , 0, for 0, 0,1 , 1,2 .i iH f t u t u t u t i     

To the best of our knowledge there is no any works considering the BVP for coupled system of 
Riemann-Liouville type NLFDEs given by (1) applying Schauder’s fixed point theorem. 

The rest of this work is furnished as follows. In section 2, we will provide some basic ideas of 
fractional calculus, certain lemmas and state Schauder’s fixed point theorem. Section 3 is used to 
state and prove our main results, which provide some techniques to check the existence of at least 
one positive solutions of coupled system of Riemann-Liouville-type NLFDEs with three-point 
boundary conditions given by (1). In section 3 we also give some illustrative examples. Finally, we 
conclude this paper. 

2. Preliminary notes 

In this section, we introduce some necessary definitions and preliminary facts which will be 
used throughout this paper. 

Definition 1 ([3–5]). Let 𝑓: (0,∞) → ℝ  be a continuous function and 0  . Then the 
Riemann-Liouville fractional integral of order   is defined as follows: 
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where    is the Euler Gamma function of   and provided that the integral exists. 

Definition 2 ([3–5]). Let 𝑓: (0,∞) → ℝ  be a continuous function and 0  . Then the 
Riemann-Liouville fractional derivative of order   is defined as follows: 
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where   1n    and   denotes the integer part of real number   and provided that the 

right-hand side is point-wise defined on  0, . 

Lemma 1 ([10]). Suppose that    0,1h t C  and  1H  holds, then the unique solution of the BVP  
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Remark 1. Similar as Lemma 1 the unique solution of the BVP 
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where the Green’s function  2 ,G t s  is defined by 
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Remark 2. In view of Lemma 1 and Remark 1, the couple system of BVPs defined by (1) is 
equivalent to the following couple system of integral equations: 
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where the Green’s functions    , , 1,2iG t s i   are given by (3) and (5). 

Lemma 2 ([10]). The Green’s functions    , , 1,2iG t s i  defined as in (3) and (5) satisfy the 

following properties: 

(i)    , , 1,2iG t s i  are continuous on the unit square    0,1 0,1 , 

i.e.,       , 0,1 0,1iG t s C  and    , 0, , 0,1 ;iG t s t s    

(ii)        0,1max , 1, , 1,2 ;i it
G t s G s i


   

(iii)                  ,1 0,1min , max , 1, , 0,1 , 1,2 .i i i i it t
G t s s G t s s G s i

 
  

  
     

Lemma 3. If the Green’s functions    , , 1,2iG t s i  are given as in (3) and (5), then there exist 

constants    0,1 , 1,2i i    such that  

           1 2,1 0,1min , max , 1, , 1,2 .i i i i it t
G t s G t s G s i 

 
    

Proof. Since  1 2, 1t , then from (3) we obtain that 
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Let 1  be a positive number such that      1 1 11 2,1min , 1,
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This completes the proof.                 ∎ 
Throughout this paper let        : 0,1 , 0,1B u t u C t    be a Banach space with the usual 

supremum norm .  Now, if we set ,X B B  where X is equipped with the norm 
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   (6) 

Then it is easy to see that the BVP (1) has a solution  1 2,u u X  if and only if  1 2,u u is a fixed 
point of the operator T defined by (6) and from this context, the main objective of this study is to 
find the existence of fixed point of the operator T defined by (6). 

For the brevity, we state only the Schauder’s fixed point theorem [30], which will be used to prove 
the main results. 
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Theorem S. [30] (Schauder’s Fixed Point Theorem) Let X be a Banach space and E  be a 

nonempty closed convex subset of X . Let T  be a continuous mapping of E  into a compact set 

F E . Then 𝑇 has a fixed point in X . 

3. Main results 

This section is devoted to establishing the existence criteria of at least one positive solution to 
the BVP given by (1). 

Let 1 2and   be the non-negative constants given by Lemma 3 associated to the Green’s functions 

 1 ,G t s and  2 ,G t s respectively. Next suppose that 1 2andf f  are Caratheodory type functions, 
that is  
 (i) for almost all 𝑡 ∈  0, 1 , 𝑓1 𝑡,∙ : ℝ+ → ℝ and 𝑓2 𝑡,∙ : ℝ+ → ℝ are continuous. 

(ii) for every 𝑟 ∈ ℝ+, 𝑓1 ∙, r :  0, 1 → ℝ and 𝑓1 ∙, r : [0, 1] → ℝ are measurable. 

Throughout this paper, we use the following notations:  
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Finally, we define a set S as follows 

        1 2 1 2, : , 0, 0,1 .S u u X u t u t t     

We are now in position to present and prove the main results. 

Theorem 1. Consider the BVP for coupled system of Riemann-Liouville-type NLFDEs given by (1), 

along with Caratheodory functions 1 2andf f . Suppose that there exist 0m  and 0  such that 

the following conditions are satisfied: 
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      If 

* 0,M  then the BVP given by (1) has at least one positive solution. 

Poof. Since, the solution of the BVP given by (1) is equivalent to the fixed point of the integral 
operator T  defined by (6), so we have to prove that the integral operator T  defined by (6) exist a 
fixed point. 
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Let         
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This tells us that  T  is equicontinuous. Hence from the Arzela-Ascoli theorem [31], we conclude 
that :T   is completely continuous operator and it ensure that T  is a continuous operator 
from a bounded closed convex subset of X to the compact subset of that bounded closed convex 
subset. 
Thus, in view of Theorem S (Schauder’s Fixed Point Theorem) the integral operator T  given by (6) 
has at least one fixed point which is positive and this means that the BVP given (1) has at least one 
positive solution. 
This completes the proof.                   ∎ 

Theorem 2. Consider the BVP as like Theorem 1 and assume that  4H holds. Suppose that there 

exist 0m , 𝑚 ≻ 0 and 0 1   such that the following condition is satisfied: 

 

If * 0,M   then the BVP given (1) has at least one positive solution. 
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where 1 2and   be the non-negative constants given by Lemma 3, then using  5 ,H we get 
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Hence, if we consider andp P  satisfying 
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𝑁 ∗
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≥ 𝑝  then using the same 

process as like the Theorem 1, we conclude that T  is a continuous operator from a bounded closed 
convex subset of X to the compact subset. 
Thus, in view of Theorem S the integral operator T  given by (6) has at least one fixed point which 
is positive and this means that the BVP given (1) has at least one positive solution. 
This completes the proof.                 ∎ 

Theorem 3. Consider the BVP as like Theorem 1. and assume that there exist 0m , 𝑚 ≻ 0 and 

0 1   such that  4H and  5H hold. If * 0M   with the following condition 
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. Hence, if we put 0 ,p p then we obtain that  

 

Therefore, for  * 0M p  (11) is satisfied. Consequently,  6H is satisfied. Thus, in view of 
Theorem 2 and Theorem S the integral operator T  given by (6) has at least one fixed point which is 
positive and this means that the BVP given (1) has at least one positive solution. 
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This completes the proof.                    ∎ 

Now, we give some illustrative examples. 

Example 1. Consider the BVP for coupled system of Riemann-Liouville-type NLFDEs provided by  

 

       

       

       

       

410 3 2
1 1 20

613 3 2 3
2 1 20

1 2 4 3 9 4
1 1 1 1 10 0 0

2 3 3 2 3 2
2 2 2 2 20 0 0

, 0, 1 ,

2 , 0, 1 ,

1 10 0 0 0, 1 ,
2 2
1 10 0 0 0, 1 .
3 3

D u t t u t u t t t

D u t t u t u t t t

D u D u D u u u

D u D u D u u u





  

  

       


      


 
       


 

     
 

             (12) 

where for all            
4 6

1 2 1 1 2 1 2 2 1 2 1 2, 0, , , 0, , , 0,u u f t u u u t u t f t u u u t u t              

       1 2 1 2 1 2 1 2
10 13 1 2 4 3 9 5, 3,4 , , 0,1 , , 1,2 , , 2,3 ,
3 4 2 3 3 2 4 2

                  

    1 21 1
1 2 1 2 1 1 2 2

1 1 1 1, , 0,1 , 0,1 , 0 1, 0 1
2 3 2 3

                   , 1 21 0, 2 0,    

      2
1 2for all 0,1 0, 0,t a t t a t t     and    2 3

1 2,g t t g t t  . For the above values it is 

clear that    1 2andH H are satisfied. 

Now if we consider        
7

1 1 2 and 1m t u t u t u t      , then by direct calculation we obtain that 
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   that is the conditions  3H and  4H are 

satisfied. Furthermore, since    1 2, , , 0G t s G t s  , then we get  
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Therefore, all the conditions of Theorem 1 are satisfied by BVP (12). Hence by an application of 
Theorem 1, we can say that the BVP (12) has at least one positive solution. 

Example 2. Consider the BVP for coupled system of Riemann-Liouville-type NLFDEs provided by  
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            (13) 

where for all            
1 1
4 31 2 1 1 2 1 2 2 1 2 1 2, 0, , , 0, , , 0,u u f t u u u t u t f t u u u t u t              

       1 2 1 2 1 2 1 2
7 10 1 3 9, 3,4 , 0,1 , 1,2 , 2,3 ,
2 3 3 2 4

                    

  1 21 1
1 2 1 2 1 1 2 2

11, 0,1 , 0 1, 0 1
2

                  , 1 2 1 0,    for all  0,1t

    2
1 20, 0,a t t a t t    and    3 2

1 2
1 1,
4 3

g t t g t t
   

      
   

. For the above values it is clear 

that    1 2andH H are satisfied. 

Now if we consider 𝑚 𝑡 = 𝑢1 𝑡  𝑢1 𝑡 + 𝑢2 𝑡  
1

2 , 𝑚  𝑡 = 𝑢1 𝑡  𝑢1 𝑡 + 𝑢2 𝑡  
1

5 𝑎𝑛𝑑 𝜇 =
1

2
, 

then by direct calculation we obtain that    
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Therefore, all the conditions of Theorem 2 are satisfied by BVP (13). Hence by an application of 
Theorem 2, we can say that the BVP (13) has at least one positive solution. 

Example 3. Consider the BVP for coupled system of Riemann-Liouville-type NLFDEs provided by  
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          (14) 

where for all            
1 1
4 31 2 1 1 2 1 2 2 1 2 1 2, 0, , , 0, , , 0,u u f t u u u t u t f t u u u t u t              

       1 2 1 2 1 2 1 2
7 10 1 3 9, 3,4 , 0,1 , 1,2 , 2,3 ,
2 3 3 2 4

                    

  1 21 1
1 2 1 2 1 1 2 2

11, 0,1 , 0 1, 0 1
2

                  , 1 2 1 0,    for all  0,1t

    2
1 20, 0,a t t a t t    and        2 3

1 21 , 1g t t g t t    . For the above values it is clear that 

   1 2andH H are satisfied. 

Now if we consider 𝑚 𝑡 = 𝑢1 𝑡  𝑢1 𝑡 + 𝑢2 𝑡  
1

2 , 𝑚  𝑡 = 𝑢1 𝑡  𝑢1 𝑡 + 𝑢2 𝑡  
1

5 𝑎𝑛𝑑 𝜇 =
1

2
,  

then by direct calculation we obtain that    
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 ,  that 

is the conditions      3 4 5, ,H H H and  6H are satisfied.  

Furthermore, since    1 2, , , 0G t s G t s  , then we have  
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Therefore, all the conditions of Theorem 3 are satisfied by BVP (14). Hence by an application of 
Theorem 3, we can say that the BVP (14) has at least one positive solution. 

4. Conclusion 

In this paper, some new existence criteria of at least one positive solution to the three-point 
BVP for coupled system of Riemann-Liouville-type NLFDEs given by (1) have been studied by 
applying Schauder’s fixed point theorem. Proven theorems (Theorem 1-3) of this paper have been 
used as the efficient method to checked the existence of at least one positive solution to the 
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coupled system of BVP for NLFDEs given by (1). The established results provide an easy and 
straightforward technique to cheek the existence of positive solutions to the considered BVP given 
by (1). Moreover, the results of this paper extend the corresponding results of  Han and Yang [10] 
and Hao and Zhai [27]. 
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