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Abstract: Accurate pulse diagnosis is often based on extensive clinical experience. Recently, modern 
computer-aided pulse diagnostic methods have been developed to help doctors to quickly determine 
patients’ physiological conditions. Most pulse diagnostic methods used low-dimensional feature 
vectors to classify pulse types. Therefore, some important but subtle pulse information might be 
ignored. In this study, a novel high-dimensional pulse classification method was developed to improve 
pulse diagnosis accuracy. To understand the underlying physical meaning or implications hidden in 
pulse discrimination, 71 pulse features were extracted from the time, spatial, and frequency domains 
to cover as much pulse information as possible. Then, Principal Component Analysis (PCA) was 
applied to extract the most representative components. Artificial neural networks were trained to 
classify 10 different pulse types. The results showed that PCA accounted for 95% of the total variances 
achieved the highest accuracy of 98.2% in pulse classification. The results also showed that pulse 
energy, local instantaneous characteristics, main frequency, and waveform complexity were the major 
factors determining pulse discriminability. This study demonstrated that using high-dimensional 
features could retain more pulse information and thus, effectively improve pulse diagnostic accuracy. 

Keywords: high-dimensional features; pulse classification; principal component analysis; artificial 
neural network 

 

1. Introduction  

Pulse taking has been used as one of the most important diagnostic methods in traditional Chinese 
medicine (TCM). TCM doctors use their index, middle, and ring fingers to take pulses at a patient’s 
wrist. Based on the tactile sensations on the fingertips, doctors can determine patients’ physiological 
conditions. However, accurate pulse diagnosis often requires rich clinical experience [1]. In addition, 
a doctor’s finger tactile sensation might be affected by many subjective and objective factors. 
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Therefore, modern computer-aided pulse diagnostic methods have been developed to help doctors to 
rapidly and precisely determine a patient’s physiological conditions. 

Most computer-aided pulse diagnostic methods first extract pulse features and then use certain 
classifiers to identify diseases or pulse types. The most commonly used classifiers are support vector 
machine (SVM) and artificial neural network (ANN). For example, Wang et al. [2] used multiscale 
sample entropy (Multi-SampEn) to extract 4 pulse features and then used SVM to classify healthy 
persons and diabetic patients. Guo et al. [3] used the wavelet packet transform (WPT) to extract 7 pulse 
features and then used SVM to hierarchically discriminate cholecystitis patients and nephrotic patients 
out of the rest of the population. Wang et al. [4] designed a multichannel sensor fusion device to create 
a 1572-dimension fusion feature vector and then used SVM to classify healthy persons and diabetic 
patients. Zhang et al. [5] applied the Jin’s pulse diagnosis method to extract 26 features and then used 
a cubic SVM algorithm to classify healthy individuals and lung cancer patients. 

Other than using pulse features only, some studies integrated parameters from the pulse-taking 
devices to enhance classification performance. For example, Zhang et al. [6] used 5 Doppler ultrasonic 
diagnostic parameters and 16 pulse features extracted from WPT and then used SVM to discriminate 
the cholecystitis group from the healthy group. Chen et al. [7] used 4 Doppler ultrasonic diagnostic 
parameters and 2 pulse features extracted from an auto-regressive model and then used SVM to classify 
appendicitis patients and healthy persons. SVM was developed mainly for binary classification. If 
there were more than two groups, SVM usually compared each group alone against the whole set of 
other groups [3,8,9]. 

Artificial neural network (ANN) also has been used in the medical fields to help identify diseases. 
For example, Tang et al. [10] used a visual scale to extract 8 pulse features and then used an ANN to 
differentiate essential hypertension from normotension. Du and Stephanus [11] generated 4 features 
from photoplethysmography signals and then used an ANN to classify the degree of arteriovenous 
fistula stenosis in hemodialysis patients. 

Contrary to the above hand-designed feature extractors, advanced machine learning techniques 
can extract features automatically [12]. Machine learning techniques can extract informative 
abstraction and features directly from the input pulse images. For example, Li et al. [13] used a 
convolution neural network (CNN) to classify 5 cardiovascular diseases and healthy persons. Although 
CNN has the advantage of excluding additional feature extraction tools, it fails to reveal the underlying 
physical meaning or implications hidden in pulse discrimination. 

In TCM, pulses are classified into 28 single pulse types based on four main elements, pulse depth, 
pulse rate, pulse shape, and pulse strength [1,14]. Pulse depth describes the vertical position of a pulse. 
Pulse rate describes the number of pulses per unit time. Pulse shape describes the width and length of 
a pulse. Pulse strength describes the forcefulness of a pulse. If the normal pulse, i.e., the pulse of a 
healthy person, is included, totally, there are 29 single pulse types. A patient’s pulse might be a 
composition of several single pulse types, which is called a complex pulse [15]. In this study, a complex 
pulse is represented in the form of (single pulse A + single pulse B). Complex pulses might carry more 
physiological information than single pulses. For example, the (floating + rough) pulse might be 
related to a cold; the (slow + slippery) pulse might be related to asthma. 

Some researchers have attempted to classify multiple TCM pulse types. For example, Wang and 
Cheng [16] extracted 13 features directly from the time-domain pulse waveforms and then used 
Bayesian networks to classify 5 TCM pulse types. Xu et al. [17] extracted 4 pulse features from the 
time-domain pulse waveforms and then used the Lempel-Ziv analysis to classify 7 TCM pulse types. 
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Xu et al. [18] extracted 17 pulse features from the time-domain pulse waveforms and then used a fuzzy 
ANN to classify 16 TCM pulse types. Shu and Sun [19] used the gamma density function to obtain 7 
pulse features to classify 13 TCM pulse types. 

Most of the above-mentioned pulse classification methods used low-dimensional feature vectors 
to classify certain diseases or pule types. However, a feature generation method might only be effective 
for extracting certain features but not for others. For example, time domain features could not reveal 
the same pulse complexity as approximate entropy (ApEn) [20] and Multi-SampEn [21]. Some 
important pulse information is even too subtle to be extracted. To understand the underlying physical 
meaning or implications hidden in pulse discrimination, this study attempted to generate a high-
dimensional feature vector from the time, spatial, and frequency domains to cover as much pulse 
information as possible to increase pulse classification accuracy.  

2. Data collection 

In this study, pulse signals were measured using an ANSWatch wrist monitor (Taiwan Scientific 
Corp., Taipei, Taiwan). The measurement results given by ANSWatch include pulse types. Ten 
different wrist pulse types were collected, including floating pulse, rapid pulse, moderate pulse, normal 
pulse, sunken pulse, (rapid + stirred) pulse, (long + replete) pulse, (rapid + sunken) pulse, (normal + 
replete) pulse, (sunken + rapid + stirred) pulse. In TCM, floating pulse and sunken pulse are recognized 
by the depth of a pulse. Rapid pulse and moderate pulse are recognized by the rate of a pulse. Stirred 
pulse and long pulse are recognized by the shape of a pulse. Replete pulse is recognized by the strength 
of a pulse. The sampling rate was 500 Hz. Fifty 6-second data sets were collected for each pulse type. 
Since there were 10 pulse types, in all total, there were 500 data sets. The device used a pressure sensor 
to measure pulse signals, and they were converted to digital signals using a Micro Control Unit (MCU), 
ranging from 0 to 4095 digits. The digit is proportional to the pressure measured by the device sensor. 
However, because the actual pressure is unknown, “pressure index” is used as the unit of the vertical 
axis coordinate, as shown in Figure 1. 

It is essential to record high quality pulse signals for precise computer-aided diagnosis. However, 
a subject’s movement or respiration might easily cause baseline drift in pulse signals. In this study, to 
achieve high classification accuracy, Zhang et al.’s iterative sliding window algorithm was used to 
remove baseline drift [5]. First, a cubic spline was created to fit the local minimums of the pulse signals, 
as shown in Figure 2(a). Then, the cubic spline was subtracted from the original pulse signals to remove 
the baseline drift, as shown in Figure 2(b). After the baseline drift was removed, the following feature 
extraction methods were applied to extract pulse features. 

2.1. Waveform shape 

Seven features were extracted directly from the time series waveforms, including mean, standard 
deviation, variance, root mean square, average of the pulse intervals, standard deviation of the pulse 
intervals, and average of the peak amplitudes, and they are corresponding to “Mean”, “SDV”, 
“Variance”, “RMS”, “Avg. of the pulse interval”, “SDV of the pulse interval”, and “Avg. of the peak 
amp.” in Table 1, respectively. 
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(a) A floating pulse (b) A rapid pulse 

(c) A moderate pulse (d) A normal pulse 

(e) A sunken pulse (f) A (rapid + stirred) pulse 

(g) A (long + replete) pulse (h) A (rapid + sunken) pulse 

(i) A (normal + replete) pulse (j) A (sunken + rapid + stirred) pulse 

Figure 1. Ten pulse types collected in this study. 

   
(a)           (b) 

Figure 2. (a) Before baseline removal; (b) after baseline removal. 
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2.2. Power spectral density (PSD) 

Fourteen features were extracted from PSD [22]. PSD is a measure of the distribution of the power 
contents of signals in the frequency domain. Band energy ratio (BER) is derived from the frequency 
spectrum to show the energy distribution in a specific range. Since the human pulse energy distribution 
is concentrated below 10 Hz, BER in a particular band with respect to the total energy in the range of 
0 to 10 Hz is calculated as follows. 

𝐵𝐸𝑅ሺ𝑛ሻ ൌ
𝐸௡

𝐸௧
∗ 100 (1)

where 𝐸௡ is the energy in the nth band, and 𝐸௧ is the total energy in the interval [0–10] Hz. In this 
study, signals in the interval [0–10] Hz were divided into 11 bands, as shown in Figure 3. Thus, 11 
BERs were extracted, and they are corresponding to “BER1” to “BER11” in Table 1. 
 

Figure 3. Divide the interval [0, 10] Hz frequency into 11 bands. 

The main frequency is the frequency with the largest energy. After the baseline drift is removed, 
the main frequency is the frequency of the pulse signals. The main frequency of the pulse signals and 
its PSD were extracted as 2 features, and they are corresponding to “Main freq.” and “Main freq. PSD” 
in Table 1, respectively. For example, in Figure 3, the main frequency and its PSD are 1.4648 and 2.62 
× 105, respectively. 

Mean frequency, which is corresponding to “Mean freq.” in Table 1, is the sum of the product of the 
frequency and the corresponding PSD divided by the total PSD in the interval [0–10] Hz: 

Mean frequency ሺMNFሻ ൌ
∑ 𝑓௝𝐸௝

௟
௝ୀଵ

∑ 𝐸௝
௟
௝ୀଵ

 (2)

where, 𝐸௝ is the energy at frequency 𝑓௝, and l is the data length in the interval [0–10] Hz. 

2.3. Gamma density function 

Five pulse features were extracted from a signal using a gamma density function. Shu and Sun 
[19] decomposed a time series pulse waveform into a forward wave and a backward wave using a 
gamma density function: 

11 bands 
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𝐹ሺ𝑡|𝛼, 𝛽, ∆, 𝐴, 𝐵ሻ ൌ 𝐴 ∗ 𝑓ሺ𝑡|𝛼, 𝛽, 0ሻ ൅ 𝐵 ∗ 𝑓ሺ𝑡|𝛼, 𝛽, ∆ሻ

                           ൌ 𝐴 ∗ 𝑡ఈ𝑒ି ഁ೟
భబ ൅ 𝐵 ∗ ሺ𝑡 െ ∆ሻఈ𝑒ି ഁሺ೟ష∆ሻ

భబ   
(3)

where A is the amplitude of the forward wave, B is the amplitude of the backward wave, α is the shape 
parameter of the pulse waveform, β is the rate parameter of the pulse waveform, and Δ is the phase 
shift or time delay between two waves. The best curve fitting was determined based on minimizing the 
difference between the recorded waveform and the gamma density function 𝐹ሺ𝑡|𝛼, 𝛽, ∆, 𝐴, 𝐵ሻ.  

For example, in Figure 4, the red dots are an actual floating pulse, and the solid line is the 
corresponding fitted gamma density function 𝐹ሺ𝑡|𝛼, 𝛽, ∆, 𝐴, 𝐵ሻ . In this study, particle swarm 
optimization (PSO) was used to acquire the optimized parameters. The average correlation of the fitted 
gamma density functions and the actual pulse waveforms was 0.99. After a fitted gamma density 
function 𝐹ሺ𝑡|𝛼, 𝛽, ∆, 𝐴, 𝐵ሻ was found, parameters α, β, Δ, А, and В were taken as 5 pulse features, as 
shown in Table 1. 

 

Figure 4. A gamma density function (solid line) was used to fit a floating pulse (red dot 
line) using the PSO algorithm. 

2.4. Hilbert-huang transform (HHT) 

Twelve features were extracted using HHT [23]. HHT is the result of the empirical mode 
decomposition (EMD) and Hilbert transform (HT) analysis. HHT was designed to analyze nonlinear 
and nonstationary data. HHT can provide a meaningful time-frequency-energy description of a time 
series. EMD decomposes signals into several intrinsic mode functions (IMFs) [24]. Figure 5 shows an 
example of using EMD to decompose a floating pulse into 7 IMFs and one residue. After obtaining all 
IMFs, average instantaneous amplitude ℎത௡, average instantaneous frequency 𝜔ഥ௡, and power 𝑃௡ can 
be calculated as follows [8]. 

ℎത௡ ൌ
∑ 𝑎௡ሺ𝑡ሻ௟

௧ୀଵ

𝑙
 (4)

𝜔ഥ௡ ൌ
∑ 𝑎௡ሺ𝑡ሻ௟

௧ୀଵ 𝑓௡ሺ𝑡ሻ
∑ 𝑎௡ሺ𝑡ሻ௟

௧ୀଵ
 (5)

𝑃௡ ൌ
∑ |𝐼𝑀𝐹௡ሺ𝑡ሻ|ଶ௟

௧ୀଵ

ට∑ ∑ |𝐼𝑀𝐹௡ሺ𝑡ሻ|ଶ௟
௧ୀଵ

ே
௡ୀଵ

 
(6)
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Figure 5. A floating pulse is decomposed into 7 IMFs and one residue. 

where l is the data length, N is the number of IMFs, 𝑎௡ሺ𝑡ሻ is the instantaneous amplitude, and 𝑓௡ሺ𝑡ሻ 
is the instantaneous frequency. In this study, the first 4 IMFs were extracted. For each IMF, the average 
instantaneous amplitude, average instantaneous frequency, and power were calculated, and they are 
corresponding to “IMF1 (inst. amp.)” to “IM4 (inst. amp.)”, “IMF1 (inst. freq.)” to “IM4 (inst. freq.)”, 
and “IMF1 (power)” to “IM4 (power)” in Table 1, respectively. Therefore, 12 features were obtained 
using HHT. 

2.5. Approximate entropy (ApEn) 

Five features were derived using ApEn [20]. ApEn measures the complexity of a time series. 
Higher entropy values indicate a system exhibiting a greater degree of complex dynamics. Prior 
research found that the ApEn value of a normal health condition was higher than that of an abnormal 
health condition [25,26]. In this study, the ApEn of the original pulse signals and the first four IMFs 
were calculated to obtain 5 ApEn features, and they are corresponding to “ApEn” and “ApEn (IMF1)” 
to “ApEn (IMF4)” in Table 1, respectively. 
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2.6. Multiscale sample entropy (Multi-SampEn) 

Sample entropy (SampEn) is a modification of ApEn [27] and has the advantage of being less 
dependent on the time series length. However, a single-scale SampEn might not be sufficient to 
separate healthy and pathologic individuals. Costa et al. [21] calculated entropy using multiple time 
scales, called Multi-SampEn, to robustly separate the time series of healthy subjects and patients with 
severe heart disease. Compared with the traditional entropy method, Multi-SampEn can yield a higher 
complexity and more meaningful measure. 

For the original signals with length l, a consecutive coarse-grained time series which represented 
the original time series on different time scales is constructed by 

𝑦ሺఛሻሺ𝑗ሻ ൌ
1
𝜏

෍ 𝑥ሺ𝑖ሻ

௝ఛ

௜ୀሺ௝ିଵሻఛାଵ

, 1 ൑ 𝑗 ൑
𝑙
𝜏
 (7)

where τ is a scale factor. The original time series is divided into non-overlapping windows of length τ, 
and the data points inside each window are averaged. By acquiring the SampEn of the new coarse-
grained time series, the Multi-SampEn of the signals at scale τ can be obtained. In this study, Multi-
SampEn with 7 time scales (𝜏  = 1, 5, 10, 15, 20, 25, and 30) were calculated for each data set. 
Therefore, 7 features were derived using Multi-SampEn, as shown in Table 1. 

2.7. Wavelet transform (WT) 

Five features were extracted using WT [28]. WT has been widely used in various fields such as 
signal processing and data compression. Using WT, a signal is split into two coefficient groups, a low-
frequency approximation group (cAx) and a high-frequency detail group (cDx), where x is the level 
number. The decomposition process is iterated, with the successive approximation groups being 
decomposed in turn until a predefined level is reached. 

In this study, a Daubechies wavelet of order 2 (db2) was used as the filter, and the decomposition 
process was carried out until level 4 [6,29]. The result included 4 detail coefficients (cD1-cD4) and 1 
approximation coefficient (cA4). After calculating the wavelet coefficients, the wavelet powers were 
calculated as follows: 

𝐸௖஽೔
ൌ ෍ 𝑐𝐷௜

ଶ

௅೎ವ೔

௞ୀଵ

ሺ𝑘ሻ, 𝑖 ൌ 1, … ,4 (8)

𝐸௖஺ర
ൌ ෍ 𝑐𝐴ସ

ଶ

௅௖஺ర

௞ୀଵ

ሺ𝑘ሻ (9)

where LcDi is the data length of cDi, LcA4 is the data length of cA4, k is the sample data, and i is the 
level number. The wavelet powers of the approximation coefficient (cA4) and 4 detail coefficients (cD1-
cD4) are corresponding to “power (cA4)” and “power (cD1)” to “power (cD4)” in Table 1, respectively. 

2.8. Wavelet packet transform (WPT) 

Sixteen features were extracted using WPT [6,30]. Contrary to WT, WPT splits both the detail 
coefficients and the approximation coefficients. Thus, WPT provids a more sophisticated analysis of 
the signals. In this study, a Daubechies wavelet of order 2 (db2) was used as the filter, and the 
decomposition process was carried out until level 4. Therefore, the signals were decomposed into 16 



6783 

Mathematical Biosciences and Engineering  Volume 17, Issue 6, 6775–6790. 

sub-bands. The wavelet packet power of each sub-band was calculated as follows. 

𝐸௜ ൌ ෍ 𝐶ሺସ,௜ሻ
ଶ

௅಴ሺర,೔ሻ

௞ୀଵ

ሺ𝑘ሻ 𝑖 ൌ 1, … 16 (10)

where Lc(4, i) is the length of the i-th sub-band at level 4, and k is the sample data. The wavelet packet 
power of the 16 sub-bands are corresponding to “power C(4,0)” to “power C(4,15)” in Table 1, 
respectively. 

2.9. High-dimensional feature vector 

In this study, 500 pulse data sets were collected. For each original data set, a 71-dimensional 
feature vector was created using the above-mentioned feature extraction methods. Table 1 shows the 
final pulse features and the corresponding values of the original 500 dataset and the loadings of each 
feature element in the first 3 Principal Components (PCs). 

Table 1. Features of the 500 data sets and the loadings of the first 3 PCs. 

Features 
Original data set Principal component

1 2  500 PC1 PC2 PC3

Waveform 
shape 

Mean 585.992 559.883 … 551.754 −0.151 0.197 −0.041
SDV 550.465 545.270 … 538.055 −0.109 0.017 0.098

Variance 303012 297320 … 289503 −0.133 0.043 0.197
RMS 803.923 781.464 … 770.600 −0.148 0.049 0.209

Avg. of the pulse 
interval 

0.720 0.741 … 0.743 −0.129 -0.015 0.252

SDV of the pulse 
interval 

0.029 0.072 … 0.053 −0.143 0.204 −0.068

Avg. of the peak amp. 1832.130 1824.517 … 1780.895 −0.129 0.183 −0.124

Power spectral 
density 

Main freq.  1.465 1.465 … 1.465 −0.135 0.199 −0.113
Main freq. PSD 260585 226554 … 238887 −0.135 0.212 −0.112

BER1 (0-0.488HZ) 28.609 23.850 … 22.926 −0.134 0.215 −0.113
BER2 (0.488-1.465HZ) 42.456 44.513 … 47.382 −0.133 0.216 −0.109
BER3 (1.465-2.441HZ) 9.975 12.375 … 11.247 −0.133 0.212 −0.111
BER4 (2.441-3.418HZ) 11.778 9.472 … 10.190 −0.009 −0.076 0.004
BER5 (3.418-4.395HZ) 5.184 7.071 … 5.596 0.178 0.043 −0.050
BER6 (4.395-5.371HZ) 0.903 1.241 … 1.275 −0.016 0.063 −0.012
BER7 (5.371-6.348HZ) 0.634 0.708 … 0.853 0.141 −0.193 0.122
BER8 (6.348-7.324HZ) 0.337 0.533 … 0.380 −0.095 0.086 −0.181
BER9 (7.324-8.301HZ) 0.087 0.179 … 0.109 −0.123 0.139 −0.051

BER10 (8.301-
9.277HZ) 

0.028 0.041 … 0.035 −0.042 0.058 −0.138

BER11 (9.277-
10.254HZ) 

0.009 0.018 … 0.007 −0.102 0.174 −0.021

Mean freq. 1.611 1.714 … 1.677 −0.013 0.001 0.268
Continue next page
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Features 
Original data set Principal component

1 2  500 PC1 PC2 PC3

Gamma 
density 
function 

α 1.813 1.210 … 1.786 −0.045 0.132 0.057
β 3.850 2.059 … 4.625 −0.019 0.184 0.094
A 2563.632 2221.687 … 2549.752 −0.044 0.184 0.048
B 865.356 991.690 … 711.243 −0.024 0.153 0.206
∆ 7 10 … 8 −0.118 0.148 −0.057

HHT 

IMF1 (inst. amp.) 83.463 49.466 … 5.519 0.200 0.049 −0.054
IMF2 (inst. amp.) 237.164 257.480 … 281.664 0.149 0.178 0.152
IMF3 (inst. amp.) 354.514 342.040 … 511.438 0.166 0.188 0.056
IMF4 (inst. amp.) 442.211 444.300 … 443.832 0.171 0.174 0.046
IMF1 (inst. freq.) 0.077 0.008 … 0.046 0.174 0.164 0.029
IMF2 (inst. freq.) 0.010 0.023 … 0.023 0.200 0.049 −0.054
IMF3 (inst. freq.) 0.005 0.011 … 0.004 0.174 0.164 0.029
IMF4 (inst. freq.) 0.012 0.009 … 0.004 0.173 0.167 0.028

IMF1 (power) 1286.833 465.873 … 12.844 0.128 0.185 0.139
IMF2 (power) 4571.933 5682.005 … 5538.122 0.174 0.169 0.037
IMF3 (power) 11795.380 9420.495 … 16683.370 0.124 0.183 0.147
IMF4 (power) 11237.530 11440.120 … 8996.956 −0.051 0.113 0.006

ApEn 

ApEn 0.056 0.057 … 0.055 0.028 0.103 0.096
ApEn (IMF1) 0.087 0.110 … 0.024 0.110 0.118 0.091
ApEn (IMF2) 0.102 0.110 … 0.103 0.109 0.155 0.168
ApEn (IMF3) 0.039 0.048 … 0.039 0.022 0.113 0.167
ApEn (IMF4) 0.033 0.032 … 0.027 0.075 0.110 0.191

Multi-SampEn 

𝜏=1 0.035 0.034 … 0.031 0.017 0.041 0.116
𝜏=5 0.122 0.122 … 0.109 0.008 0.024 0.160

𝜏=10 0.159 0.1558 … 0.157 0.016 0.079 0.157
𝜏=15 0.193 0.191 … 0.191 0.030 0.030 0.149
𝜏=20 0.216 0.215 … 0.223 0.142 0.083 −0.122
𝜏=25 0.237 0.233 … 0.248 0.126 0.029 −0.237
𝜏=30 0.259 0.247 … 0.261 0.160 −0.005−0.052

WT 

power (cA4) 1.85E+09 1.77E+09 … 1.54E+09 0.093 −0.091 0.142
power (cD1) 1570.188 1549.465 … 1434.384 −0.066 0.000 0.039
power (cD2) 6239.389 6607.213 … 5080.174 −0.099 −0.027 0.155
power (cD3) 85840 95480 … 74108 −0.084 0.031 0.083
power (cD4) 1263707 1381416 … 1090375 −0.080 0.011 0.117

WPT 

power C(4,0) 1.85E+09 1.77E+09 … 1.54E+09 0.107 0.099 −0.115
power C(4,1) 1263707 1381416 … 1090375 0.069 0.031 −0.236
power C(4,2) 82527.030 92128.26 … 71890.45 0.140 −0.017−0.013
power C(4,3) 3813.841 3635.693 … 2255.475 0.050 −0.104 0.186
power C(4,4) 5628.319 5902.739 … 4668.485 0.199 0.047 −0.088
power C(4,5) 327.595 413.234 … 209.324 0.193 0.001 −0.081

Continue next page
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Features 
Original data set Principal component

1 2  500 PC1 PC2 PC3

 

power C(4,6) 265.937 137.527 … 94.082 0.192 0.012 −0.050
power C(4,7) 224.138 201.812 … 113.029 0.200 0.028 −0.086
power C(4,8) 754.763 502.210 … 377.318 −0.009 −0.076 0.004
power C(4,9) 141.005 172.995 … 100.334 −0.051 0.113 0.006
power C(4,10) 146.798 167.296 … 148.572 0.192 0.019 −0.080
power C(4,11) 142.433 127.221 … 117.892 0.015 0.006 0.039
power C(4,12) 151.214 153.350 … 117.711 −0.011 −0.001 0.025
power C(4,13) 143.662 145.584 … 151.531 −0.005 −0.006−0.029
power C(4,14) 139.631 188.992 … 168.549 −0.013 0.000 0.054
power C(4,15) 189.569 185.274 … 268.314 0.012 −0.037−0.011

2.10. Dimension reduction 

Although a high dimensional feature vector contains more pulse information, it might also contain 
unwanted noises or redundant information, which might affect classification accuracy and increase 
computational complexity. To improve classification performance and understand the underlying 
physical meaning or implications hidden in pulse classification, PCA was applied to extract the most 
representative information. 

Figure 6 shows that the first 3PCs covers about 52% of the total accumulative variances (PC1 
gives 32.7478%, PC2 gives 12.9812%, and PC3 gives 6.3234%). That means that the first 3 PCs 
explain about 52% of the variability in the original 71 variables. If the complexity of the data is reduced 
by using the first 3 PCs, 48% of data information will be lost. The last three columns in Table 1 show 
the coefficients (or loadings) of each feature element in the first 3 PCs. The larger the absolute value 
of the loading, the more important the corresponding feature is in calculating the component. The 
loadings in the first 3 PCs show that the first component (PC1) has large associations with HHT 
features and WPT features, which indicates that PC1 measures the energy and local instantaneous 
characteristics of the pulses. The second component (PC2) has large associations with PSD features 
around the main frequency, which indicates that PC2 measures the characteristics of the main 
frequency. The third component (PC3) has large associations with mean frequency, waveform features 
and entropy features, which indicates that PC3 measures the complexity of the waveforms. 

 

Figure 6. PCA scree plot. 
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3. Artificial neural network (ANN) 

After extracting all features, a basic ANN was used to classify the 10 pulse types. Although the 
first 3 PCs covered more than 50% of the total variances, because some pulse information was subtle, 
five ANN models using the first 8, 13, 21, 27, and 71 PCs, which accounted for 70%, 80%, 90%, 95%, 
and 100% of the total variances, were trained, respectively, using the scaled conjugate gradient back-
propagation algorithm to update the weights and bias values of the ANN. 

In this study, the number of nodes in the ANN input layer was based on the feature dimension, 
and the numbers of nodes in the hidden layer and the output layer were 10 each. The maximum number 
of epochs was 1000, the learning rate was 0.01, and the minimum gradient was e-6. The sigmoid 
activation function was used for the hidden layer, and the softmax function was used for the output 
layer. The training was terminated when the average error was less than 10-4. This study randomly 
selected 70% of the data for training, 15% for validation, and 15% for test. 

Table 2 shows that Model 4, using the first 27 PCs, has the highest overall average classification 
accuracy of 98.2%. Figure 7 shows the distances of the clusters of the 10 pulse types in the 27-
dimensional PC space, based on the Ward’s hierarchical clustering method. It reveals that pulses 7 and 
9, and pulses 3 and 4 have the shortest inter-cluster distances. It might affect their discriminability. 
However, since ANN is a nonlinear regression method, the distance between two pulses or two clusters 
might not be the only factor in determining pulse discriminability. 

Table 2. Average classification accuracy of each model. 

ANN model Model 1 Model 2 Model 3 Model 4 Model 5 

No. of PCs 8 13 21 27 71 

Accumulative variances (%) 70 80 90 95 100 

Classification accuracy (%) 92.8 94.6 97.4 98.2 96.6 

 

 
Figure 7. Clustering of the 10 pulses in the 27-dimensional PC space. 

Table 3 shows the confusion matrix of Model 4. Each row corresponds to the predicted pulse 
(Output class) and each column corresponds to the true pulse (Target class). The diagonal cells 
correspond to the results that are correctly classified. The far right column of the table is the precision 

1 floating 
2 rapid  
3 moderate  
4 normal  
5 sunken  
6 (rapid + stirred) 
7 (long + replete)  
8 (rapid + sunken) 
9 (normal + replete) 
10 (sunken + rapid + stirred)
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rates, which represent the percentages of all the predicted pulses in a row that are correctly classified. 
The row at the bottom of the table is the recall rates, which represent the percentages of all the true 
pulses in a column that are correctly predicted. The cell in the bottom right of the table is the overall 
accuracy. The result shows that the precision and recall rates differ for each pulse type. 

The F-measure (= 2 ∙ ௣௥௘௖௜௦௜௢௡∙௥௘௖௔௟௟

௣௥௘௖௜௦௜௢௡ା௥௘௖௔௟௟
ሻ , a balance between precision and recall, was used to 

represent the classification rate for each pulse type. Table 4 shows that pulses 7 ((long+ replete) pulse) 
and 9 ((normal + replete) pulse) have the lowest classification rates in average. Most models confuse 
pulses 7 and 9. It might be because pulses 7 and 9 both contain replete pulse features and have the 
shortest average inter-cluster distance in the 27-dimensional PC space. It indicates that replete pulse 
dominates long pulse and normal pulse. It also indicates that the strength features of a pulse dominates 
the shape features of a pulse. 

Table 3. Confusion matrix of Model 4. 

Pulses 

Target class 

1 2 3 4 5 6 7 8 9 10 Precision 

O
ut

pu
t c

la
ss

 

1 48 0 0 0 0 0 0 0 0 0 100% 
2 0 50 0 0 1 0 0 0 0 0 98% 
3 0 0 49 0 0 0 0 0 0 0 100% 
4 0 0 1 50 0 0 0 0 0 0 98% 
5 0 0 0 0 49 0 0 0 0 0 100% 
6 0 0 0 0 0 50 0 0 0 0 100% 
7 1 0 0 0 0 0 47 0 1 0 95.9% 
8 0 0 0 0 0 0 0 50 0 1 98% 
9 0 0 0 0 0 0 3 0 49 0 94.2% 
10 1 0 0 0 0 0 0 0 0 49 98% 

Recall 96% 100% 98% 100% 98% 100% 94% 100% 98% 98% 98.2% 

Table 4. F-measures of all pulse types in the five models. 

However, on the other hand, pulses 2 (rapid pulse), 6 ((rapid + stirred) pulse), 8 ((rapid + sunken) 
pulse), and 10 (sunken + rapid + stirred) contain rapid pulse and are neighboring each other in the 27-
dimensional PC space, their discrimination rates are very high, especially for pulse 6. It indicates that 
stirred pulse and sunken pulse are very distinct, and they dominate rapid pulse. It also indicate that the 
shape features and the depth features of a pulse are very distinct, and they dominate the rate features. 

 Pulse Type 1 2 3 4 5 6 7 8 9 10 

F
-m

ea
su

re
 Model 1 98 90.7 91.9 91.1 93.1 98.1 88.9 97.2 83.7 95.1

Model 2 97.2 92.9 98 97.2 96 97.1 85.2 99 84.4 100 

Model 3 100 97.1 100 98 99 100 92.5 99 89.8 99 

Model 4 98 99 99 99 99 100 95 99 96.1 98 

Model 5 92.4 93.9 99 97 98.1 97 99 99 96 96 
 

Avg. 97.1 94.7 97.6 96.5 97.0 98.4 92.1 98.6 90.0 97.6
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4. Discussions 

Table 5 shows a comparison between the proposed method and the prior TCM pulse classification 
methods. Most prior pulse classification methods used low-dimensional feature vectors. Therefore, 
some important but subtle pulse information might be ignored. The proposed high-dimensional feature 
classification method could retain more pulse information and thus achieved a higher classification 
accuracy. 

There are some limitations in this study. First, TCM doctors generally use their index, middle, 
and ring fingers to take patients’ pulses at three different locations (Cun, Guan, and Chi) on the wrists, 
using three different pressures (light touch, moderate touch, and heavy touch). However, in this study, 
pulses at the Guan location on the left wrist were taken only. In the future, pulses on both wrists with 
different pressing forces will be taken to include more pulse types in pulse classification. 

Table 5. Comparison between the proposed method and prior methods. 

5. Conclusions 

Most prior pulse classification research used low-dimensional feature vectors to classify few 
known diseases or pule types. However, a feature generation method might only be effective for 
extracting certain features but not for others. In order to increase pulse classification accuracy, this 
research proposed a novel high-dimensional feature extraction method to extract as much important 
and subtle pulse information as possible from the time, spatial, and frequency domains. Eight different 
feature generation methods were applied to construct a 71-dimensional feature vector. Extracting high-
dimensional features can also help to understand the underlying physical meaning or implications 
hidden in pulse discrimination. 

ANN results show that PCA accounted for 95% of the total variances achieved the highest 
accuracy of 98.2% in pulse classification. The results also showed that pulse energy, local 
instantaneous characteristics, main frequency, and waveform complexity are the major factors 
determining pulse discriminability. Some pulse features also outperform or dominate other pulse 
features. For example, the strength features dominate the shape features, and the shape features and 
the depth features dominate the rate features. 

Research Data Feature Dimension Classes Classifier Accuracy

Wang and Cheng 
[16] 

407 13 5 pulse types Bayesian networks 84.20% 

Xu et al. [31] 900 n/a 6 pulse types wavelet network 83% 

Xu et al. [17] n/a 4 7 pulse types
Lempel-Ziv 
complexity 

analysis 
97.10% 

Shu and Sun [19] n/a 4 13 pulse types n/a n/a 
Xu et al. [18] 320 17 16 pulse types FNN 90.25% 

The proposed 
method 

500 71 (w/o PCA) 10 pulse types ANN 96.60% 

500 27 (w. PCA) 10 pulse types ANN 98.20% 
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