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Abstract: An outbreak of rapidly spreading coronavirus established human to human transmission
and now became a pandemic across the world. The new confirmed cases of infected individuals of
COVID-19 are increasing day by day. Therefore, the prediction of infected individuals has become of
utmost important for health care arrangements and to control the spread of COVID-19. In this study, we
propose a compartmental epidemic model with intervention strategies such as lockdown, quarantine,
and hospitalization. We compute the basic reproduction number (R0), which plays a vital role in
mathematical epidemiology. Based on R0, it is revealed that the system has two equilibrium, namely
disease-free and endemic. We also demonstrate the non-negativity and boundedness of the solutions,
local and global stability of equilibria, transcritical bifurcation to analyze its epidemiological relevance.
Furthermore, to validate our system, we fit the cumulative and new daily cases in India. We estimate
the model parameters and predict the near future scenario of the disease. The global sensitivity analysis
has also been performed to observe the impact of different parameters on R0. We also investigate the
dynamics of disease in respect of different situations of lockdown, e.g., complete lockdown, partial
lockdown, and no lockdown. Our analysis concludes that if there is partial or no lockdown case,
then endemic level would be high. Along with this, the high transmission rate ensures higher level of
endemicity. From the short time prediction, we predict that India may face a crucial phase (approx
6000000 infected individuals within 140 days) in near future due to COVID-19. Finally, numerical
results show that COVID-19 may be controllable by reducing the contacts and increasing the efficacy
of lockdown.
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1. Introduction

Many cases of common cold (flu) are due to different coronaviruses. However, in the past two
decades, two of these viruses have left their impact at large scale: (i) Severe Acute Respiratory
Syndrome Coronavirus (SARS-CoV) in 2002 (ii) Middle East Respiratory Syndrome Coronavirus
(MERS-CoV) in 2012. Infection with these viruses have become serious because they are known to
be evolved with animals then jump to humans via intermediate hosts [1]. For example, in SARS-CoV,
the host animal was Palm Civet while intermediate animal was Raccon Dog. On 12th December
2019, 27 new cases of viral pneumonia including seven of them being critically ill, were reported by
Wuhan Municipal Health Commission (WMHC). Most of them had a recent history of exposure to
wildlife animals at the Huanan Seafood Wholesale Market in Wuhan, China, where snake, poultry,
bats, and farm animals were also sold [2]. This was recognized to be a cause of a new type of
coronavirus, officially named COVID-19 by the WHO [3]. In case of current global pandemic
COVID-19, coronavirus is believed to jump from Bat to Pangolin to Human. The coronavisues are
important pathogens of mammals (including humans) and birds and belong to the Coronaviridae
family of enveloped, capped, positive sense (single stranded) RNA viruses [4]. Due to positive sense,
the Coronavirus can easily replicate in host cells causing fast spread of severe COVID-19 cases. A
typical genetic structure of Coronavirus is made of several parts containing different types of proteins:
nucleocapsid, membrane and spike proteins [5–8]. Among all these proteins, spike proteins are very
important in case of COVID-19, because these spike proteins are responsible for the interactions with
human cells and it also help into entry process to the host cells.

The COVID-19 outbreak has resulted 7,082,263 confirmed cases and 405,081 deaths in 213
countries and territories all over the world by June 7, 2020. According to WHO, most of people who
are infected with COVID-19 virus experience mild to moderate respiratory illness and recover
without needing special treatment. Older people or who have underlying medical problems, for
example, diabetes, cardiovascular disease, cancer, and chronic respiratory disease are more severe to
develop the illness. Common symptoms of COVID-19 are dry cough, fever, tiredness, sore throat,
aches, and shortness of breath. In general, many times it is possible to have infection without any
symptoms like parasitic infection by Cryptosporidia. Also, in case of current pandemic COVID-19,
according to New York times [9], some individuals who are infected with the coronavirus can spread
it even though they have no symptoms. It is also called incubation period (time from exposure to the
development of symptoms), reported between 2–14 days [10]. However, incubation period found as
long as 27 days [11]. But in the case of COVID-19 spread, it is more reasonable to call it as
asymptomatic stage. According to Center for disease control and Prevention (CDC) [12], after the
incubation period, illness causes mild symptoms to severe conditions and death. People who are
healthy or have mild symptoms should keep themselves in self-quarantine and contact COVID-19
information line for guidance on testing and referral. People with cough, fever or difficulty in
breathing should seek medical treatment.

Coronavirus is a single-stranded RNA virus and many RNA viruses have already been adopted by
our body like HIV. Therefore, sometimes drugs used for the diseases with RNA virus are also being
used in case of COVID-19. However, the treatment strategies like, antibiotics and other medicines are
just supporting systems not any specific treatment for COVID-19. The good point is that throughout
the world, different research and development section’s researchers/doctors/consultants are working
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and performing different kinds of experiments to investigate specific treatment/vaccine particularly
targeted to COVID-19. However, the development of vaccine/medicine must take sufficient time due
to different steps involved in the drug/vaccine development procedure. Therefore, at present, the key
question is how to prevent/control the spread of COVID-19 until there is no treatment/vaccines
available. In general, there are several ways for minimizing the transmission rate of a particular
epidemic like, vaccination, use of antibiotics, maintaining proper hygiene, avoiding crowded places,
washing hands, wearing protective masks, awareness programs etc. In case of COVID-19, social
distancing has emerged as one of the most broadly adopted intervention strategies (e.g., social
distancing, quarantine of exposed individuals, isolation of infected individuals, promoting social
consensus on self-protection like wearing a face mask in the public area, washing hands regularly
etc.) to reduce the infection risk/transmission rate and control the spread of COVID-19 through the
reduction of social contacts. More importantly, at this stage of the outbreak, it is important to
understand the human to human transmission and deployment of different control strategies such as
quarantine of susceptible individuals, isolation of seriously ill individuals, quarantine of
asymptomatic individuals, etc. Human-to-human transmission of COVID-19 virus was confirmed by
Chan et al. [13], who had reported a case of five patients in a family cluster.

Isolation and quarantine are two important measures by which asymptomatic or infected
individuals could be detached from the population to stop further spread of the disease. Quarantine is
generally used for seemingly healthy but possibly infected individuals, while isolation applies to
already infected individuals. Quarantine was also applied as one of the effective intervention
strategies during the SARS epidemic of 2002–2003 [14]. More than this, to control the outbreak of
COVID-19, different governments are actively restricting the movement of people by imposing
lockdown, which may be known as one of the largest quarantine in history. The central government of
India implemented a 14-hours public curfew on March 22, 2020, after that, the Prime Minister of
India ordered a complete lockdown (Phase 1) of 21 days on March 24, 2020. At the end of first
lockdown period, the Indian government recommended the extension of lockdown (Phase 2) until
May 3, 2020, with some conditional relaxation after April 20, 2020. Furthermore, on May 1, 2020 the
lockdown (Phase 3) was again extended for two weeks until May 17, 2020. In between, the
government also divided the nation into three zones- red, orange and green, with some relaxation
accordingly. Finally, on May 17, 2020, lockdown (Phase 4) has further been extended upto May 31,
2020. After that government has announced lockdown (Phase 5) only for containment zones from
June 1, 2020 to June 30, 2020 (it is termed as Unlock 1). Except lockdown, Indian goverment along
with different countries/territories is also adopting various steps and imposing different types of
intervention strategies, for instance, social distancing, washing hands for at least 30 seconds, wearing
masks on public places, tracing close contacts. Therefore, in respect of transmission control,
investigation of role of different intervention strategies remain an important problem.

The transmission potential is often measured in terms of the basic reproduction numbers, the
outbreak peak value, time and duration under current and evolving intervention measures [15, 16].
The basic reproduction number (R0) is described as the expected number of secondary infections
appearing from a single infectious individual throughout his/her whole infectious period, in the entire
susceptible population [15, 17, 18]. In the study of epidemiology, the fundamental concept of
reproduction number (R0) is one of the most valuable ideas that the mathematical thinking has
conveyed to epidemic theory [15]. Most significantly, R0 frequently used as a threshold value that
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forecasts whether the disease will die out or spread. Estimation of R0 by mathematical modeling can
be effective for determining the potential and severity of an outbreak and providing crucial
information for recognizing the disease intensity and interventions. From the explanation of R0, it is
obvious that if R0 < 1, each infected individual makes, on average, less than one new infected
individual, and we can predict that the infection will die out from the population. If R0 > 1, the
pathogen is capable to attack the susceptible population and human-to-human transmission with
continued transmission chains will appear. In an epidemic disease, it could be determined that which
control measures (intervention strategies) would be most helpful for suppressing R0 below one and
which may also provide important advice for public health initiatives. More importantly, the R0 is also
called a controlled reproduction number when it depends on the control strategies, it is computed for
mathematical models including control strategies [16]. In case of COVID-19, the estimation of R0 is
different from different research teams and has continuously been updated as new information arises
time to time. Using early evidence, WHO estimated R0 to be between 1.4–2.5 [20]. In another
preliminary study done by Zhao et al. [21], the R0 has been estimated between 3.6–4.0 and 2.24–3.58.
Further, R0 has also been estimated between 1.5–3.5 in [22–24].

In 1927, Kermack and Mckendrick [25] introduced a prominent compartmental model to analyze
the plague disease in Mumbai and succeeded in revealing its epidemiology. After that mathematical
modeling have been playing a significant role in analyzing the spread and control of different
infectious diseases [26, 27]. A number of compartmental models have already been proposed and
analyzed for the COVID-19 outbreak in different countries [28–36]. In particular, Yang et al. [29]
proposed a mathematical model for COVID-19 incorporating multiple transmission pathways,
including both human-to-human and environment-to-human transmission routes. The authors
employed a bilinear incidence rate based on the law of mass action and fitted the model with the data
of Wuhan city of China and estimated the reproduction number. They also found that the contribution
of the environmental reservoir is significant in shaping the overall disease risk. Their results also
indicate that the COVID-19 infection remain endemic, which necessitates intervention programs and
long-term disease prevention policies. Li et al. [30] proposed an SEIQR difference-equation model
for COVID-19 outbreak of Shanxi Province of China and made predictions, risk analysis and
performed assessment. The authors also revealed the effects of city lockdown date on the final scale
of cases. More importantly, it was also found that a little earlier lockdown in Wuhan city may result
the fewer infectious cases in Shanxi and other nearby provinces. Ngonghala et al. [31] developed a
mathematical model of COVID-19 pandemic in US (particularly, in New York) for assessing the
population-level impact of the mitigation strategies. The authors performed the rigorous analysis of
the model and the impacts of non-pharmaceutical intervention strategies, social distancing,
quarantine, contact-tracing, isolation, face mask, etc. Eikenberry et al. [32] proposed a compartmental
model of COVID-19 to estimate the community-wide effect of mask used by the general,
asymptomatic public, a portion of which may be asymptotically infectious. The authors used the data
of US states of New York and Washington for model simulation. The findings indicate that use of
mask decreases the effective transmission rate, reduce the community transmission, decreases deaths
and peak hospitalizations. Garba et al. [34] proposed a compartmental model to analyze the dynamics
of COVID-19 in South Africa. The model system in [34] was used to estimate the effect of mitigation
strategies and various control. The results of this particular study was twofold: (i) the disease may die
out if control measures are implemented early and for a sustainable period of time (ii) effectiveness of
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self-isolation reduces the number of cases.
Several compartmental models of COVID-19 outbreak in India, have also been

studied [37–39, 41]. Khajanchi et al. [37] proposed a compartmental model with quarantine for the
transmission dynamics of COVID-19 and calibrated the model with daily and cumulative cases for the
four provinces of India. The authors have performed a detailed theoretical analysis in terms of the
basic reproduction number and predicted the cumulative cases. Moreover, the study suggests that
quarantine, unreported and reported individuals as well as intervention policies like social distancing,
lockdown, and media effect can play an important role in controlling the transmission of COVID-19.
Sarkar et al. [38] proposed a mathematical model that predicts the dynamics of COVID-19 in India
along with its 17 provinces. Their findings revealed the fact that the contact rate between susceptible
and infected individuals could be reduced by a strict isolation imposed for susceptible individuals.
Moreover the numerical evaluations of the model system [38] suggested the complete elimination of
COVID-19 via suitable combination of contact tracing and restrictive social distancing. Further the
authors also indicated that the accurate course of epidemic largely depends on how and when
precautionary measures, isolation, and quarantine are enforced. In this direction, Sardar et al. [39]
also considered a mathematical model on COVID-19 to analyze the impact of social distancing and
lockdown. The authors have done a detailed analysis and validated the model with the data of India
and its five different states. Their results suggested that the lockdown will be effective in those
locations where a higher percentage of symptomatic infections exist.

As we have discussed that the government of India implemented different levels of lockdown for
different time periods, e.g., full lockdown followed by lockdown with some relaxation. Therefore in
Indian perspective, the analysis of different lockdown strategies on COVID-19 transmission dynamics
in the presence of different intervention schemes becomes significant. In particular, the partial vs. full
lockdown with other intervention strategies, like, quarantine of asymptomatic individuals and
hospitalization of symptomatic individuals. In the present work, taking care the significant role of
intervention strategies, we propose a new epidemic model system with different intervention
strategies of COVID-19 in a homogeneous host population to control the spread of COVID-19. The
general aim of the present work is to infer significant epidemiological characteristics by investigating
the role of social distancing, lockdown, quarantine, and isolation for the proposed epidemic system.
Here we will mainly investigate the impact of social distancing, quarantine, and isolation via
parameter estimation through the best empirical data fitting. The objectives of the present study are:

1. To analyze the transmission dynamics of COVID-19 among humans via mathematical modeling.

2. To investigate the impact of control strategies such as lockdown, quarantine and isolation to
control the spread of the global pandemic (COVID-19).

3. The impact of lockdown/quarantine of susceptible individuals. What would be the outcomes if
there is partial/full lockdown?

The remaining part of the paper is organized as follows: Section 2 describes the proposed system;
Section 3 represents the non-negativity and boundedness; Section 4 discusses the dynamics of the
model system including the reproduction number, local and global stability of disease-free and endemic
equilibrium, bifurcation analysis; Section 5 presents the data fitting and parameter estimation; Section 6
demonstrates numerical simulation and sensitivity analysis; and Section 7 concludes the paper.
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2. A dynamical model

In this section, we propose a compartmental mathematical model “S Q1AQ2IMR” on
epidemiology of COVID-19 virus infection. Here, the population is divided into seven compartments:
S is the compartment of susceptible individuals; A is the compartment of asymptomatic individuals
but having infection, these individuals also contribute to the distribution of the disease; Q1 is
compartment of quarantined susceptible individuals due to lockdown; Q2 is the compartment of
self-quarantined individuals who are asymptomatic; I is the compartment of seriously ill individuals;
M is the compartment of individuals who are isolated via medical care; R is the compartment of
recovered individuals. Let N(t) be the total population at time t and
N(t) = S (t) + A(t) + Q1(t) + Q2(t) + I(t) + M(t) + R(t). The proposed system is given by the following
system of nonlinear ordinary differential equations:

Figure 1. Schematic diagram of the model system (2.1).

dS
dt

= (1 − p)ΛN −
βS (A + I)

N
− µS − κS + ζQ1,

dQ1

dt
= pΛN −

σβQ1(A + I)
N

+ κS − (µ + ζ)Q1,

dA
dt

=
βS (A + I)

N
+
σβQ1(A + I)

N
− (q1 + q2 + µ)A,

dQ2

dt
= q1A − (q3 + q4 + µ)Q2,

dI
dt

= q3Q2 + q2A − (δ + γ + µ)I,

dM
dt

= γI − (η + µ)M,

dR
dt

= q4Q2 + ηM − µR,

(2.1)
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with nonnegative initial conditions S (0) > 0,Q1(0) ≥ 0, A(0) ≥ 0,Q2(0) ≥ 0, I(0) ≥ 0,M(0) ≥
0,R(0) ≥ 0 and N(0) > 0. It is assumed that all the parameters are nonnegative. The biological
interpretations of parameters and schematic diagram of the system (2.1) are given in Table 1 and
Figure 1, respectively.

Table 1. Biological interpretations of parameters.

Parameters Biological interpretations
Λ The recruitment rate at which new individuals enter in the susceptible

population
p The fraction of individuals those are in quarantine due to lockdown, p ∈ (0, 1]
β The transmission rate between asymptomatic and susceptible; and between

infected and susceptible individuals
σ A scaling factor that describes the efficacy of lockdown, i.e., whether there is

no lockdown or complete lockdown or partial lockdown
µ The natural death rate
κ The rate of transmission by which susceptible individuals move into

quarantine class Q1

ζ The rate of transmission of quarantine individuals to the susceptible
compartment

q1 The rate at which asymptomatic individuals become self-quarantined
q2 The rate at which asymptomatic individuals show symptoms
q3 The rate by which the infected individuals come from self-quarantined class
q4 The recovery rate of self-quarantined individuals
δ Disease related death rate
γ The rate at which the infected individuals are exposed to medical treatment
η The rate at which the infected individuals become recovered via medical

treatment

In system (2.1), we assume that susceptible individuals under quarantine (those in compartment Q1)
due to lockdown make contact with infected individuals but at a lower rate than susceptible (those in
compartment S ). This particular idea has been modeled via multiplying the effective contact rate β by
a scaling factor σ (0 ≤ σ ≤ 1, where 1 − σ describes lockdown effectiveness). Here, σ = 0 represents
complete lockdown scenario which means susceptible individuals are under quarantine, while σ = 1
tells no lockdown situation.

To simplify our notations in system (2.1), the occupation variables associated with different
compartments (S ,Q1, A,Q2, I,M,R) are defined as the respective fractions of population (N) that
belong to each of the corresponding compartments:

S̃ (t) =
S (t)
N(t)

, Q̃1(t) =
Q1(t)
N(t)

, Ã(t) =
A(t)
N(t)

, Q̃2(t) =
Q2(t)
N(t)

,

Ĩ(t) =
I(t)
N(t)

, M̃(t) =
M(t)
N(t)

, R̃(t) =
R(t)
N(t)

.

However, to avoid complications in presentation, we still write the occupation variable of
compartments as S ,Q1, A,Q2, I,M,R. Therefore, the system (2.1) can be rewritten in the following

Mathematical Biosciences and Engineering Volume 17, Issue 5, 5961–5986.



5968

form:
dS
dt

= (1 − p)Λ − βS (A + I) − µS − κS + ζQ1,

dQ1

dt
= pΛ − σβQ1(A + I) + κS − (µ + ζ)Q1,

dA
dt

= βS (A + I) + σβQ1(A + I) − (q1 + q2 + µ)A,

dQ2

dt
= q1A − (q3 + q4 + µ)Q2,

dI
dt

= q3Q2 + q2A − (δ + γ + µ)I,

dM
dt

= γI − (η + µ)M,

dR
dt

= q4Q2 + ηM − µR.

(2.2)

Here, now onward, we consider the system (2.2) for further analysis.

3. Non-negativity and boundedness of solutions

It is important to show that all the population variables are nonnegative for all t ≥ 0, which implies
that any trajectory which starts with positive initial condition will remain positive for t ≥ 0. It is an
important feature of an epidemiological model. From the first equation of system (2.2), we have

dS
dt
≥ −(µ + κ)S ,

integrating the above inequality and using initial condition, we obtain

S (t) ≥ S (0)e−(µ+κ)t > 0.

Thus S (t) > 0. Similarly, one can show that all the variables are non-negative for all t ≥ 0.

Theorem 3.1. The closed region

Ω =

{
(S ,Q1, A,Q2, I,M,R) ∈ R7

+ : 0 < S + Q1 + A + Q2 + I + M + R ≤
Λ

µ

}
is a positively invariant set for the system (2.2).

Proof. Consider N(t) = S (t) + A(t) + Q1(t) + Q2(t) + I(t) + M(t) + R(t). Here we obtain

dN
dt

=
dS
dt

+
dQ1

dt
+

dA
dt

+
dQ2

dt
+

dI
dt

+
dM
dt

+
dR
dt
,

which yields

dN
dt

= Λ − µN − δI =⇒ Λ − (µ + δ)N ≤
dN
dt
≤ Λ − µN.
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This implies that dN
dt is bounded above by Λ − µ and bounded below by Λ − (µ + δ). Now integrating

the above inequality and using initial conditions, we obtain

Λ

µ + δ
+

(
N(0) −

Λ

µ + δ

)
e−(µ+δ)t ≤ N(t) ≤

Λ

µ
+

(
N(0) −

Λ

µ

)
e−µt.

Considering t → ∞, we have

Λ

µ + δ
≤ lim inf

t→∞
N(t) ≤ lim sup

t→∞
N(t) ≤

Λ

µ
=⇒

Λ

µ + δ
≤ N(t) ≤

Λ

µ
.

Hence the feasible region for the system (2.2) is

Ω =

{
(S ,Q1, A,Q2, I,M,R) ∈ R7

+ : 0 < S + Q1 + A + Q2 + I + M + R ≤
Λ

µ
⊂ R7

+

}
.

�

Hence the region Ω is positively invariant so that no solution path moves beyond the boundary of Ω.
Thus above theorem ensures that the proposed model is feasible both epidemiologically and
mathematically.

4. Dynamics of system (2.2)

4.1. Disease free equilibrium and basic reproduction number

System (2.2) always has a disease-free equilibrium

E0 =
(
S 0,Q0

1, A
0,Q0

2, I
0,M0,R0

)
=

(
Λ(ζ + µ(1 − p))
µ(ζ + κ + µ)

,
Λ(κ + µp)
µ(ζ + κ + µ)

, 0, 0, 0, 0, 0
)
.

Using next generation method [45], the basic reproduction number R0 can be calculated from the
relation R0 = ρ(V−1F). Let x = (A,Q2, I,M)T , then the system (2.2) can be rewritten as

x′ = F(x) − V(x), (4.1)

where

F(x) =


βS (A + I) + σβQ1(A + I)

0
0
0

 , V(x) =


(q1 + q2 + µ)A

−q1A + (q3 + q4 + µ)Q2

−q3Q2 − q2A + (δ + γ + µ)I
−γI + (η + µ)M

 .
The Jacobian of F(x) and V(x) at E0 are

DF(E0) =


β(σQ0

1 + S 0) 0 β(σQ0
1 + S 0) 0

0 0 0 0
0 0 0 0
0 0 0 0

 , DV(E0) =


q1 + q2 + µ 0 0 0
−q1 q3 + q4 + µ 0 0
−q2 −q3 γ + δ + µ 0

0 0 −γ η + µ

 ,
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and F = DF(E0) and V = DV(E0). Therefore V−1F is the next generation matrix of system (2.2) and
the spectral radius of matrix V−1F is

ρ(V−1F) =
β(σQ0

1 + S 0)(q1q3 + (µ + q3 + q4)(γ + δ + µ + q2))
(γ + δ + µ)(µ + q1 + q2)(µ + q3 + q4)

.

According to the Theorem 2 of [19], the basic reproduction number R0 is

R0 = ρ(V−1F) =
β(σQ0

1 + S 0)(q1q3 + (µ + q3 + q4)(γ + δ + µ + q2))
(γ + δ + µ)(µ + q1 + q2)(µ + q3 + q4)

.

Remark 4.1. For σ = 0, system (2.2) reduces to “S AQ2IMR” system with complete lockdown. The
basic reproduction number R1 for the model “S AQ2IMR” is given by

R1 =
βΛ(q1q3 + (µ + q3 + q4)(γ + δ + µ + q2))
µ(γ + δ + µ)(µ + q1 + q2)(µ + q3 + q4)

. (4.2)

From the Remark 4.1, R0 can be rewritten as

R0 =
β(q1q3 + (µ + q3 + q4)(γ + δ + µ + q2))
(γ + δ + µ)(µ + q1 + q2)(µ + q3 + q4)

(S 0 + σQ0
1)

=
β(q1q3 + (µ + q3 + q4)(γ + δ + µ + q2))
(γ + δ + µ)(µ + q1 + q2)(µ + q3 + q4)

Λ(ζ + µ(1 − p) + (κ + µp)σ)
µ(ζ + κ + µ)

=R1
(ζ + µ(1 − p) + (κ + µp)σ)

(ζ + κ + µ)
.

4.2. Local and global stability of E0

The following theorems discuss the local and global stability of E0.

Theorem 4.1. The disease free equilibrium E0 is locally asymptotically stable if R0 < 1 and unstable
if R0 > 1.

Proof. The Jacobian matrix of system (2.2) at E0 is given by

JE0 =



−κ − µ ζ −S 0β 0 −S 0β 0 0
κ −ζ − µ −Q0

1βσ 0 −Q0
1βσ 0 0

0 0 −q1 − q2 − µ + β(S 0 + Q0
1σ) 0 β(S 0 + Q0

1σ) 0 0
0 0 q1 −q3 − q4 − µ 0 0 0
0 0 q2 q3 −γ − δ − µ 0 0
0 0 0 0 γ −η − µ 0
0 0 0 q4 0 η −µ


.

It is obvious that λ1 = −µ and λ2 = −η− µ are two negative eigenvalue of JE0 . Remaining eigenvalues
are given by the following two block matrices

J1E0 =

(
−κ − µ ζ
κ −ζ − µ

)
, J2E0 =

 −q1 − q2 − µ + β(S 0 + Q0
1σ) 0 β(S 0 + Q0

1σ)
q1 −q3 − q4 − µ 0
q2 q3 −γ − δ − µ

 .
The eigenvalues of block matrix J1E0 are λ3 = −ζ−κ−µ and λ4 = −µ and the characteristic polynomial
of block matrix J2E0 is given by

a3λ
3 + a2λ

2 + a1λ + a0 = 0,
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with

a3 =1, a2 = (µ + q1 + q2) + (γ + δ + 2µ + q3 + q4) − β(Q0
1σ + S 0),

a1 =(γ + δ + µ)(µ + q3 + q4) + (γ + δ + 2µ + q3 + q4)((µ + q1 + q2) − β(Q0
1σ + S 0)),

a0 =(γ + δ + µ)(µ + q1 + q2)(µ + q3 + q4)(1 − R0).

It is obvious that a3 > 0. Since R0 < 1, then a0, a1, a2 > 0. Using the Routh-Hurwitz stability
criterion [16], it can be shown that all the eigenvalues of matrix J2E0 have negative real parts i.e.
<(λ4),<(λ5),<(λ6) < 0. If R0 > 1, then a0 < 0, thus matrix J2E0 has at least one eigenvalue with
positive real part. Hence, disease free equilibrium (E0) of the system (2.2) is locally asymptotically
stable if R0 < 1 and unstable if R0 > 1. �

Theorem 4.2. If R0 ≤ 1, E0 is globally stable in its feasible region.

Proof. Consider the following Lyapunov function:

L =(µ + q3 + q4)(γ + δ + µ)A +
Λ

µ

β(ζ + µ(1 − p) + (κ + µp)σ)
(ζ + κ + µ)

q3Q2

+
Λ

µ

β(ζ + µ(1 − p) + (κ + µp)σ)
(ζ + κ + µ)

(q3 + q4 + µ)I.

The derivative of L along the solution of system (2.2) gives

dL
dt

=(µ + q3 + q4)(γ + δ + µ)
dA
dt

+
Λ

µ

β(ζ + µ(1 − p) + (κ + µp)σ)
(ζ + κ + µ)

q3
dQ2

dt

+
Λ

µ

β(ζ + µ(1 − p) + (κ + µp)σ)
(ζ + κ + µ)

(q3 + q4 + µ)
dI
dt

=(µ + q3 + q4)(γ + δ + µ)
[
β(S + σQ1)(A + I) − (q1 + q2 + µ)A

]
+

Λ

µ

β(ζ + µ(1 − p) + (κ + µp)σ)
(ζ + κ + µ)

q3
[
q1A − (q3 + q4 + µ)Q2

]
+

Λ

µ

β(ζ + µ(1 − p) + (κ + µp)σ)
(ζ + κ + µ)

(q3 + q4 + µ)
[
q3Q2 + q2A − (δ + γ + µ)I

]
≤

[
Λ

µ

β(ζ + µ(1 − p) + (κ + µp)σ)
(ζ + κ + µ)

(q1q3 + (µ + q3 + q4)(γ + δ + µ + q2))

−(γ + δ + µ)(µ + q1 + q2)(µ + q3 + q4)
]

A

≤(γ + δ + µ)(µ + q1 + q2)(µ + q3 + q4)(R0 − 1)
≤0, if R0 ≤ 1.

It is easy to verify that the maximal compact invariant set in
{
(S ,Q1, A,Q2, I,M,R) ∈ Ω : dL

dt = 0
}

is{
E0

}
when R0 ≤ 1. Hence from the LaSalle invarience principle [43], E0 is globally stable if R0 ≤ 1. �

4.3. Existence of endemic equilibrium

In this subsection, we investigate the existence of endemic equilibrium
E∗ = (S ∗,Q∗1, A

∗,Q∗2, I
∗,M∗,R∗) of system (2.2). For this, we need to solve the following system of
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equations:
(1 − p)Λ − βS (A + I) − µS − κS + ζQ1 = 0,
pΛ − σβQ1(A + I) + κS − (µ + ζ)Q1 = 0,
βS (A + I) + σβQ1(A + I) − (q1 + q2 + µ)A = 0,
q1A − (q3 + q4 + µ)Q2 = 0,
q3Q2 + q2A − (δ + γ + µ)I = 0,
γI − (η + µ)M = 0,
q4Q2 + ηM − µR = 0.

By solving the above system of equations, we obtain

S ∗ =
Λ

µR1
− σQ∗1, Q∗1 =

Λ

µR1

pµR1 + κ

σκ + µ + ζ + σβ(A∗ + I∗)
,

A∗ =
(γ + δ + µ)(µ + q3 + q4)
q1q3 + q2(µ + q3 + q4)

I∗, Q∗2 =
I∗(γ + δ + µ)q1

q1q3 + q2(µ + q3 + q4)
, M∗ =

γ

(η + µ)
I∗,

R∗ =
1
µ

(
q1q4(δ + γ + µ)

q2(q3 + q4 + µ) + q1q3
+

γ

η + µ

)
I∗.

From the second and third equation, we have β(q1q3 + (µ + q3 + q4)(γ + δ + µ + q2))(S + σQ1) =

(γ + δ + µ)(µ + q1 + q2)(µ + q3 + q4). Since S + σQ1 <
Λ
µ
, then there is no endemic equilibrium if

βΛ(q1q3 + (µ+ q3 + q4)(γ+ δ+ µ+ q2)) ≤ µ(γ+ δ+ µ)(µ+ q1 + q2)(µ+ q3 + q4) i.e., R1 ≤ 1. For R1 > 1,
the endemic equilibria can be obtained by solving the following equation:

P(I) = P1I2 + P2I + P3 = 0, (4.3)

where

P1 =Λσβ2
(
(γ + δ + µ)(µ + q3 + q4)
q1q3 + q2(µ + q3 + q4)

+ 1
)2

,

P2 =βΛ(σ(κ + µ) + µ + ζ − µσR1)
(
(γ + δ + µ)(µ + q3 + q4)
q1q3 + q2(µ + q3 + q4)

+ 1
)
,

P3 =Λµ(µ + ζ + κ)(1 − R0).

Here Eq (4.3) can have zero/one/two positive roots, depending on the parameter values. For the case
0 < σ ≤ 1, P3 < 0 if R0 > 1, P3 = 0 if R0 = 1, P3 > 0 if R0 < 1. Since Eq (4.3) is quadratic, therefore
if R0 > 1, then Eq (4.3) has a unique positive root and there is a unique endemic equilibrium. If R0 = 1,
then P3 = 0 and there is unique non-zero solution of (4.3) given by I = −P2

P1
, which is positive if and

only if P2 < 0. If R0 = 1, P3 = 0, then

ζ + κ + µ = R1(ζ + µ(1 − p) + (κ + µp)σ). (4.4)

The condition P2 < 0 gives
σ(κ + µ) + µ + ζ < µσR1,

with R1 is determined by Eq (4.4). Further, we have

(σ(κ + µ) + µ + ζ)(ζ + µ(1 − p) + (κ + µp)σ) < µσ(ζ + κ + µ),
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which gives

σκζ + (µ + ζ)ζ + µ(1 − p)(µ + ζ + σ(κ + µ)) + σ(κ + µp)(σ(κ + µ) + ζ) < 0,

which is not possible. Hence, if R0 ≤ 1, there is no endemic equilibrium.

Remark 4.2. If σ = 0 (complete lockdown), then from Eq (4.3), we can easily observe that
P1 = 0, P2 > 0 and R0 = R1. Hence Eq (4.3) has a unique positive root if R1 > 1 and no positive root
if R1 ≤ 1. Thus for the case of σ = 0, the system (2.2) has a unique endemic equilibrium if R1 > 1 and
no endemic equilibrium if R1 ≤ 1.

4.4. Transcritical bifurcation

From the above discussion, we observe that the system (2.2) may undergo a transcritical bifurcation
at E0 when R0 = 1. In this subsection, we establish the conditions on the parameters using Theorem 4.1
from Castillo-Chavez and Song [26] and center manifold theory [44]. Here we omit the variable R as
R does not play any role in the remaining six equations in system (2.2). We choose β as a bifurcation
parameter. By solving R0 = 1, we obtain

β = β∗ =
µ (µ + q1 + q2) (µ + q3 + q4) (γ + δ + µ)(ζ + κ + µ)

Λ ((µ + q3 + q4) (γ + δ + µ + q2) + q1q3) (ζ + σ(κ + µp) + µ(1 − p))
.

It can easily be obtained that the Jacobian J(E0,β∗) evaluated at E0 and β = β∗ has a simple zero
eigenvalue and other eigenvalues have negative sign. Hence E0 is a non-hyperbolic equilibrium, when
β = β∗. Now, we calculate a right eigenvector W = (w1,w2,w3,w4,w5,w6) and a left eigenvector
V = (v1, v2, v3, v4, v5, v6) associated to the zero eigenvalues. Here

w1 = −
(η + µ) (µ + q1 + q2) (µ + q3 + q4) (γ + δ + µ)

(
ζ2 + ζ(κσ + µ(2 − p + pσ))) + µ2(1 − p)

)
γµ (q2 (µ + q3 + q4) + q1q3) (ζ + κ + µ)(ζ + κσ + µ(1 − p) + µpσ)

,

w2 = −
(η + µ) (µ + q1 + q2) (µ + q3 + q4) (γ + δ + µ)

(
ζκ + κ2σ + κµ((1 − p) + σ(1 + p)) + µ2 pσ

)
γµ (q2 (µ + q3 + q4) + q1q3) (ζ + κ + µ)(ζ + κσ + µ(1 − p) + µpσ)

,

w3 =
(q3 + q4 + µ)(η + µ)(γ + δ + µ)
γ(q1q3 + q2(q3 + q4 + µ))

, w4 =
q1(η + µ)(γ + δ + µ)

γ(q1q3 + q2(q3 + q4 + µ))
,

w5 =
η + µ

γ
, w6 = 1,

v1 =0, v2 = 0, v3 =
µ(γ + δ + µ + q2) + q3(γ + δ + µ) + q4(δ + γ + µ + q2) + (q1 + q2)

(µ + q1 + q2) (µ + q3 + q4)
,

v4 =
q3

µ + q3 + q4
, v5 = 1, v6 = 0.

Now from Theorem 4.1 of [26], we need to calculate the bifurcation constants a and b. Choosing f3 as
third equation in system (2.2) and calculating partial derivatives of f3 (evaluated at E0,
x1 = S , x2 = Q1, x3 = A, x4 = Q2, x5 = I, x6 = M), we obtain
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a =2v3

(
w1w3

∂2 f3

∂S ∂A
+ w1w5

∂2 f3

∂S ∂I
+ w2w3

∂2 f3

∂Q1∂A
+ w2w5

∂2 f3

∂Q1∂I

)
=2v3β

∗(w1w3 + w1w5 + σ(w2w3 + w2w5)) < 0,

b =2v3

(
w3

∂2 f3

∂A∂β
+ w5

∂2 f3

∂I∂β

)
=2v3(w3 + w5)(S 0 + Q0

1σ) > 0.

Here w1, w2 are negative and w3, w5 are positive so that a is negative and b is positive. Therefore,
from Theorem 4.1 of [26], E0 changes its stability from stable to unstable at β = β∗ and there exists
a positive equilibrium as β crosses its critical value. Hence the system (2.2) undergoes a transcritical
bifurcation at β = β∗. Thus the transmission rate β plays an important role in the disease spread. If β is
less than the critical value then its easy to control the disease but if the transmission rate β is above the
critical value then the society will experience endemic disease spreading.

4.5. Global stability of endemic equilibrium

In this subsection, we investigate the global stability [40] of endemic equilibrium by constructing a
suitable Lyapunov function when R0 > 1. Define the Lyapunov function:

L(S ,Q1, A,Q2, I,M,R) = |S − S ∗| + |Q1 − Q∗1| + |A − A∗| + |Q2 − Q∗2| + |I − I∗| + |M − M∗| + |R − R∗|.

Clearly, L(E∗) = 0 and L(E) , 0 when E , E∗. The upper right derivative of L(S ,Q1, A,Q2, I,M,R) is
given by

D+L =sgn(S − S ∗)
[
− µ(S − S ∗) − κ(S − S ∗) + ζ(Q1 − Q∗1) − β

(
S (A + I) − S ∗(A∗ + I∗)

)]
+ sgn(Q1 − Q∗1)

[
− βσ

(
S (A + I) − S ∗(A∗ + I∗)

)
+ κ(S − S ∗) − (µ + ζ)(Q1 − Q∗1)

]
+ sgn(A − A∗)

[
β
(
S (A + I) − S ∗(A∗ + I∗)

)
+ σβ

(
S (A + I) − S ∗(A∗ + I∗)

)
− (q1 + q2 + µ)(A − A∗)

]
+ sgn(Q2 − Q∗2)

[
q1(A − A∗) − (q3 + q4 + µ)(Q2 − Q∗2)

]
+ sgn(I − I∗)

[
q3(Q2 − Q∗2) + q2(A − A∗) − (δ + µ + γ)(I − I∗)

]
+ sgn(M − M∗)

[
γ(I − I∗) − (η + µ)(M − M∗)

]
+ sgn(R − R∗)

[
q4(Q2 − Q∗2) + η(M − M∗) − µ(R − R∗)

]
.

In the above equation, there are 14 types of situations depending on the size of S and S ∗, Q1 and Q∗1, A
and A∗, Q2 and Q∗2, I and I∗, M and M∗, R and R∗. It is sufficient to analyze for S > S ∗,Q1 > Q∗1, A >

A∗,Q2 > Q∗2, I > I∗,M > M∗,R > R∗, similarly one can do for the other cases. Here

D+L < − µ|S − S ∗| − µ|Q1 − Q∗1| − µ|A − A∗| − µ|Q2 − Q∗2| − µ|I − I∗|

− µ|M − M∗| − µ|R − R∗|

< − µL.
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Integrating from t0 to t both sides, we obtain

L(t) + µ

∫ t

t0
Ldt ≤ L(t0) < +∞.

The boundedness of S ,Q1, A,Q2, I,M,R implies that all S ,Q1, A,Q2, I,M,R have bounded derivatives
for [t0,+∞). Therefore, L is uniformly continuous on [t0,+∞). From Barbalat’s Lemma [46],
lim

t→+∞
L(t) = 0. Hence D+L < −µL < 0, which implies that E∗ is globally stable.

5. Data fitting, cumulative and daily new cases of India

In this section, we fit data by least-square approach by taking the daily new cases and cumulative
cases of COVID-19 in India. We have collected data for the period April 1, 2020 to June 7, 2020,
i.e. data for 68 days from Coronavirus-Worldometer [42]. Using system (2.2), we simulate cumulative
number of cases for the period April 1, 2020 to June 7, 2020 in India. In our paper, Z(t) represents
cumulative number of cases, where

Z(t)
dt

= q3Q2 + q2A.
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Figure 2. (a) The histogram of MCMC chain for parameters β and q3 with 100000 sample
realizations. (b) Fitting results of theoretical cumulative number of confirmed COVID-19
cases with its actual reported number.

We assume and calculate some parameters and initial conditions except β and q3 by least-square
approach, which are shown in Tables 2 and 4. In order to estimate the values of parameters β and q3,
we use extensive Markov-chain Monte-Carlo (MCMC) simulations based on the adaptive combination
Delayed Rejection and Adaptive Metropolis (DRAM) algorithm [30, 48, 49] for system (2.2). Using
100000 sample realizations, we can acquire the parameter values for β and q3 with MCMC chain
histogram and the time evolution of both infection cases and comparison with the confirmed cases of
COVID-19 and cases with three different stages in Figure 2. We further compute the mean values,
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the standard deviation, Geweke values of β and q3 and the mean value and standard deviation of the
reproduction number for these three different stages, which are shown in Table 3.

On the other hand, the fitness of the model system (2.2) can be verified by computing the residual.
The residuals are defined as

Residuals =
{
Y j − I(t j)| j = 1, 2, 3..., n

}
,

where Y j is the daily cumulative infection data and I(t j) is the model predictive cumulative data of
the same day. If the residuals are small and randomly distributed, then we can say that the fitness is
reasonably good.

The system (2.2) is fitted with respect to the cumulative number of cases in India in Figure 3(a).
Figure 3(b) represents the residuals of fit in Figure 3(a). In Figure 4(a)–(b), we have performed the
current scenario of infected individuals and we make a short time prediction for cumulative number
of cases and new daily cases for 140 days. It is clear from Figure 4(a) that the cumulative number of
cases are increasing for 140 days. From Figure 4(b), it is clear that the burden of disease will continue
in the month of June and July. Thus we can conclude that if all the conditions remain same then in the
month of July, India will observe the uncontrollable number of infections.

(a)
0 10 20 30 40 50 60 70

0

0.5

1

1.5

2

2.5
x 10

5

Time in days

C
um

ul
at

iv
e 

nu
m

be
r 

of
 c

as
es

(b)
0 10 20 30 40 50 60 70

−3000

−2000

−1000

0

1000

2000

3000

Time

R
es

id
ua

ls

(c)
0 10 20 30 40 50 60 70

0

2000

4000

6000

8000

10000

12000

Time in days

N
ew

 d
ai

ly
 c

as
es

(d)
0 10 20 30 40 50 60 70

−1500

−1000

−500

0

500

1000

1500

Time

R
es

id
ua

ls

Figure 3. (a) Fitting of system with respect to cumulative number of cases in India. The
red dots are real data values and black line is our model prediction. (b) Residuals of the fit
(a). (c) Fitting the system with respect to daily new cases in India. The red dots are real data
values and black curve is our model prediction. (d) Residuals of the fit (c).
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Figure 4. Prediction in India for 140 days. The red dots are real data values and black curve
is our model prediction. (a) Cumulative number of cases. (b) Daily new cases.

Table 2. Estimated parameters with respect to COVID-19 cases in India.

Parameters Estimated value Range Reference
Λ 0.0000421 1/(65 × 365)
µ 0.0000421 1/(65 × 365)
ζ 1/14 Quarantine 2 weeks
δ 0.05 Estimated
p 0.5 0–1 Assumed
κ 0.5 0–1 Assumed
σ 0.5 0–1 Assumed
q1 0.2 0-1 Assumed
q2 1/7 Incubation (7 days)
q4 0.08 Estimated
γ 0.11 0–1 Estimated
η 0.0917 0–1 Estimated

Table 3. Parameter estimation with the method of MCMC.

Notation Mean Standard Geweke
β 0.3004 0.0028 0.9993
q3 0.2108 0.0156 0.9945

Table 4. Initial conditions for the system (2.2) with respect to COVID-19 cases in India.

S (0) Q1(0) A(0) Q2(0) I(0) M(0) R(0)
0.69 × 109 0.7 × 109 3800 800 601 825 566

6. Numerical simulation and sensitivity analysis

In this section, we perform global sensitivity analysis and numerical simulation to support our
analytical results. The values of parameters are given in Table 2 and it is to be noted that the unit of
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parameters (rate constants) is per day. From the viewpoints of biological significances, R0 plays a
significant role in determining the severity (burden of disease), outcome and process of the infection.
Firstly, we perform sensitivity analysis using the methodology of Latin Hypercube Sampling (LHS)
and partial rank correlation coefficients (PRCCs) [47] to investigate the dependence of R0 on the
parameters. We also examine that the effect of sensitivity of the parameters on the population size Q1

in the presence of complete lockdown (σ = 0), partial lockdown (σ = 0.25) and no lockdown (σ = 1).
From Figure 5(a–c), we observe that recruitment rate Λ and transmission rate β are the most sensitive
parameters in every situation e.g., complete/partial and no lockdown. Also from Figure 5(d), we
observe that recruitment rate Λ and transmission rate β are the most sensitive parameters for R0. To
generate the LHS matrices, we assume that all the model parameters are uniformly distributed. Then
using the baseline values from Table 2, a total of 1000 simulations of the system (2.2) per LHS run
were carried out.
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Figure 5. (a) PRCC sensitivity on Q1 in case of complete lockdown (σ = 0). (b) PRCC
sensitivity on Q1 in case of partial lockdown (σ = 0.25). (c) PRCC sensitivity on Q1 in case
of no lockdown (σ = 1). (d) PRCC sensitivity on R0.

Further we show the variation of R0 with respect to transmission rate β in Figure 6. It can easily be
observed that R0 increases with the value β and after a certain value of β, R0 becomes greater than 1.
It implies that up to a certain value of β, disease-free equilibrium is stable and beyond that value of β,
disease-free equilibrium becomes unstable. In Figures 7, 8, 9 and 10, we have demonstrated the impact
of different parameters on R0. Form Figure 7, it is clear that the transmission rate β has more impact
on R0 as compared to κ which is the rate that susceptible individuals move into quarantine class Q1.
From Figure 8, we can see that the parameter β has more impact on R0 than ζ which is the rate that
quarantine individuals move into susceptible class. From Figure 9, it is easy to ensure that parameter
q1 which is the rate that asymptomatic individuals become self-quarantined have more influence on R0
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rather than the rate at which self-quarantined individuals become infected (q3). Again, from Figure 10,
we obtain that the parameters q2 and q3 have almost equal influence on R0.
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Figure 6. Variation of R0 with respect to transmission rate β.
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Figure 7. Impact of β and κ on R0.
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Figure 8. Impact of β and ζ on R0.

From Figure 11, it is clear that when R0 < 1, the system (2.2) has no endemic equilibrium and
the disease-free equilibrium is stable. When R0 > 1, a stable endemic equilibrium appears and the
disease-free equilibrium becomes unstable, i.e. exchange of stability of the equilibriums (transcritical
bifurcation) arises.
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Figure 10. Impact of q2 and q3 on R0.
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Figure 11. Transcritical bifurcation when R0 = 1. The blue line represents the stable
equilibrium point and red line represents the unstable equilibrium.
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To perform the stability analysis of system (2.2), we consider the parameter values from Table 2. For
E0, the reproduction number R0 = 0.183 and E0(928.5, 4.25 × 104, 0, 0, 0, 0, 0). Figure (12)(a) depicts
the stability of E0. For E∗, the reproduction number R0 = 2.149 and E∗(417.2, 5.749 × 105, 4.6 ×
105, 8.025 × 104, 9.238 × 104, 3.746 × 104, 6.557 × 104). Figure (12)(b) depicts the stability of E∗.
Figure (12)(c) demonstrates the variation of infected individuals with different values of σ. We observe
that if the lockdown will open then endemic level will increase (i.e., the disease burden increases).
In particular, different values of σ may be interpreting the lockdown situations with certain kind of
relaxation. Since β is most sensitive parameter for our system, therefore, we investigate the dynamics
of infected individuals with different values of β. Figure (12)(d) shows that an increase in the value of
transmission rate β could lead a high endemic level.
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Figure 12. (a) Variation of population with time: the stability of E0. (b) Variation of
population in long run: the stability of E∗. (c) Variation of infected individuals with long
time for different values of σ. (d) Variation of infected individuals with time for different
values of β.

7. Conclusion

In this work, a compartmental epidemic model “S Q1AQ2IMR” for the transmission dynamics of
the pandemic COVID-19 is proposed and analyzed. Since the transmission of COVID-19 virus is
between human to human and the daily confirmed cases are rising day by day, therefore, the prediction
of infected individuals is of utmost importance for health care arrangements and control the spread of
COVID-19 virus. Taking care this important issue, we incorporate different intervention strategies such
as lockdown, quarantine, isolation in our proposed system (2.2) and investigate the different dynamics
with respect to these strategies. The basic reproduction number R0 has been calculated for the proposed
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model. It is proved that the dynamics of the system totally depends on R0. Based on the reproduction
number R0, it is revealed that whenever R0 < 1, the system (2.2) has only disease free equilibrium E0

which is locally stable. By constructing a suitable Lyapunov function it has also been shown that E0

is globally stable when R0 < 1. When R0 > 1, the system (2.2) has a unique endemic equilibrium E∗

and E0 becomes unstable. It has also been shown that when R0 = 1, the system (2.2) undergoes the
transcritical bifurcation at E0 and E∗ is globally stable when R0 > 1.

Furthermore, we fitted data for the period of 68 days to our system by least-squares approach and
predicted the cumulative cases and daily new cases in India. Model parameters have also been
estimated and the residuals have been plotted for the associated fitting of data. The randomness of the
residuals depicts that the fitness is good. We have also made a short time prediction for 140 days and
observe that the peak of infection will not reach after 73 days from June 7, 2020 that means till the
middle of August if the all restriction remain same. From the short time prediction we observe that
India will experience to 6,000,000 infected individuals within 140 days (see Figure 4).

Furthermore from sensitivity analysis of R0, we observe that recruitment rate Λ and transmission
rate β are most sensitive parameter. PRCCs reveal that transmission rate β and rates ζ and σ are
positively correlated and rates κ and q1 are negatively correlated to R0. This indicates that increase of
quarantine and lockdown and decrease in transmission rate will reduce R0 and subsequently will reduce
the disease load. We have also performed sensitivity analysis for the population Q1 for different cases
for lockdown such as complete lockdown (σ = 0), partial lockdown (σ = 0.25), and no lockdown
(σ = 1). We observe that recruitment rate Λ and transmission rate β are most sensitive parameters to
our system (2.2). After that we have demonstrated the impact of different parameters on R0. Numerical
results support the fact that decrease in the transmission rate β causes the decrease in the value of R0

and after a certain level of β, R0 become less than one. Also decrease in the parameter ζ (the rate at
which the quarantined individuals due to lockdown move into susceptible compartment) also shows
positive impact on R0 as it causes decrease in the value of R0. Finally, an increase in the parameter
q1 which is the rate that asymptomatic individuals become self-quarantined has a positive influence to
decrease the value of R0. Therefore, COVID-19 is controllable by reducing the contacts, increasing the
efficacy of lockdown and quarantine of asymptomatic individuals.

Therefore, by analyzing all the results of the proposed system (2.2), we predict that India may face
a crucial phase in near future due to pandemic COVID-19. To prevent/control the pandemic, Indian
Government and population must consider some strategies other than usual
lockdown/quarantine/isolation. Moreover to prevent/control the pandemic, we need to decrease the
transmission and recruitment rates and to achieve this, the people should make rather less contacts
with infected individuals. To ensure lesser contacts, we may also spread awareness among population
about the COVID-19. One of the other strategies may be faster testing (to identify the infection
quickly, more peoples to be tested) to ensure that infected individuals do not spread the disease
further.

In the last few months, several mathematical models have been proposed for COVID-19 outbreak.
Therefore, it is interesting and necessary to compare our study with some of relevant previous
studies [37–39, 41]. In [37], the authors only considered quarantine of asymptomatic individuals as
intervention strategies. Sarkar et al. [38] considered quarantine of susceptible individuals and
isolation of infected individuals. The authors have not considered quarantine of asymptomatic
individuals. The authors in [39] have considered lockdown and hospitalization of symptomatic
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individuals. Further, in [41], the authors considered only quarantine of symptomatic individuals.
However, in our work, we have considered lockdown, quarantine of asymptomatic individuals, and
isolation of symptomatic individuals. We have investigated the impact of these intervention strategies
on R0 and have also compared the impact of no lockdown, partial lockdown and full lockdown.

Mathematical modeling with spatial effects play a significant role in characterizing and
understanding the spread of a particular infectious disease. Understanding the spatial spread of
COVID-19 is essential for clarifying mechanisms of transmission and targeting control
interventions [50–53]. More precisely, the spatial heterogeneity affects the transmission of dynamics
and spatially explicit models are more effective in evaluating control strategies. To prevent an
exponential spread over India, it is important to detect the spatial spread of COVID-19. In this
direction, to understand the precise impact of spatial heterogeneity on the dynamics of COVID-19, we
need to build a mathematical model following multi-group or multi-patch approach with different
intervention strategies (for instance, lockdown, partial lockdown or no lockdown) which will be our
future work. For this, one idea may be improving the existing model systems with different patches
because due to partial lockdown, people usually travel among different regions/countries.
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