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Abstract: In this paper, we present a mathematical model of the immune response to parasites. The
model is a type of predator-prey system in which the parasite serves as the prey and the immune re-
sponse as the predator. The model idealizes the entire immune response as a single entity although it
is comprised of several aspects. Parasite density is captured using logistic growth while the immune
response is modeled as a combination of two components, activation by parasite density and an autocat-
alytic reinforcement process. Analysis of the equilibria of the model demonstrate bifurcations between
parasites and immune response arising from the autocatalytic response component. The analysis also
points to the steady states associated with disease resolution or persistence in leishmaniasis. Numeri-
cal predictions of the model when applied to different cases of Leishmania mexicana are in very close
agreement with experimental observations.
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1. Introduction

The immune system response to pathogens or abnormal exogenous stimuli is a very complex and
well-orchestrated process whose aim is to keep the host safe and healthy. It is composed of two major
lines of defense: innate and adaptive immune responses, to counter any and all threats. Innate immu-
nity, which is the first line of defense, is made up of external defenses, such as the skin and mucous
membranes for inner surfaces, while phagocytic cells such as neutrophils, macrophages, and natural
killer cells are components of internal defenses. The innate response to an infection is immediate and
passive. Adaptive immunity only kicks in when the innate response is unsuccessful in getting rid of
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the pathogen. Though it takes a longer time to get activated, it targets the pathogen more accurately.
The adaptive response is antigen- specific, well diversified and has memory of past responses [1–3].

Despite its sophistication, some viruses, bacteria, and parasites are able to breach or escape the de-
fenses and infect the host, amongst which are the protozoa that causes leishmaniasis [4]. Leishmania
infects about 2 million people annually worldwide and is transmitted through the bite of infected sand-
fly. The transmission cycle begins when female sandflies in need of protein to develop eggs ingest the
Leishmania parasites in the course of taking blood meals from infected hosts. The parasites incubate
inside female sandflies, alternating through multiple developmental stages and in the process infecting
them. Infected female sandflies transmit the parasite when taking fresh blood meals from naive hosts,
thereby completing the transmission cycle [5–7].

The mechanism of Leishmania infection has been carefully considered and the parasite’s survival
depends on the availability of macrophages [8–10]. It is not well understood how the parasite enters in-
side macrophages. Some studies suggest that Leishmania are able first to get shelter within neutrophils
which usually arrive at the infection site before macrophages [11–13]. Once inside the macrophages,
the parasite differentiates into a smaller immobile form known as an amastigote. In order to survive
and replicate, the amastigote both manipulates and disables the macrophage’s ability to destroy it or
demonstrate signs of cellular infection, consequently avoiding being destroyed by other components
of the immune system. Through maneuvering the amastigote is also able to prolong the lifespan of the
macrophage giving itself enough time to replicate while simultaneously feeding on molecules within
the macrophage till the host cell is eventually destroyed releasing many more amastigotes.

To successfully evade destruction by the immune system and to proliferate, it is crucial for the
amastigote to induce an overexpression of genes that codes the surface of the host macrophage such as
receptors, antibodies and cytokines [14–16]. An Fc receptor is a protein found on the surface of certain
immune system cells including macrophages, neutrophils and natural killer cells. They play a critical
role in the protective functions of the immune system by enabling phagocytic or cytotoxic cells to bind
to antibodies that are attached to the surface of microbes or microbe infected cells, ear-marking them
for destruction. Fc gamma receptors (FcγR), divided into the subclasses FcγRI, -II, -III and -IV are the
most important for stimulating phagocytosis of marked cells. FcγRs are activated by immunoglobulin
G (IgG), the main type of antibody for controlling infection and made up of four subclasses IgG1, 2,
3, and 4, with IgG1 being the most abundant. For example, the activation of FcγRIII by IgG causes
the release of interferon gamma (IFNγ), a cytokine that is an important activator of macrophages and
is critical for the immune system response against an infection. IFNγ is a small protein secreted
by an immune cell that signals to other immune cells it is harboring an antigen. Unfortunately, the
synthesis of IFNγ along with others can be inhibited by another cytokine, IL-10, that is primarily
produced by monocytes. IL-10 has a strong ability to suppress the antigen-presentation capacity of
antigen presenting cells like macrophages and consequently leads to an infection establishing itself.
Additionally, IL-10 can down-regulate nitric oxide production in infected cells, thus preventing parasite
death [17–19].

Murine studies for different Leishmania species have been attributed to disease susceptibil-
ity and progression due to the parasite’s ability to interfere with the normal production of cy-
tokines [20–23]. These studies that aim at delineating the pathways of chronic infection utilize mice
in which genes responsible for producing specific immune cell proteins have been knocked out (KO).
Buxbaum et al. [24] observed that mice deficient in β2-microglobulin (β2m) ( a protein that is found
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on the surface of almost all nucleated cells), or the cytokine IL-10-, or FcγR were able to resolve infec-
tion with Leishmania mexicana. Further investigation of the FcγRIII subclass by Thomas et al. [25],
demonstrated that FcγRIII KO mice had a stronger immune response for resisting and resolving cuta-
neous Leishmania mexicana lesions. The implication being that Leishmania is able to trick FcγRIII
working in tandem with IL-10 in its favor, among many other pathways of establishing infection. Be-
cause FcγRIII has highest affinity for IgG1 and IgG1 also acts almost exclusively through FcγRIII
(Ravetch et al. [26]), Chu et al. [27] also investigated IgG1 KO mice for Leishmania mexicana and
came to the conclusion that IgG1 is indeed pathogenic by inducing immunosuppressive IL-10 through
FcγRIII.

Mathematical models studying the response of the immune system to different types of pathogens
have been considered in the literature [28–32]. In [28], two ordinary differential equations are used
to construct a model of the relationship between the immune system and a given target population.
The model generates several types of immune responses when different nonlinear interactions between
the immune system and its targets are considered. Although strongly idealized, the model is able
to predict a threshold level for eliminating the target population by the immune system. Because time
lags in population dynamics are common and in some cases natural, Buric et al. [29] updated the model
in [28] by introducing time delays only in the immune response equation. The time delays enabled the
model to qualitatively capture the irregular oscillations that are associated with the state of the immune
system. Most recently, Mendonca et al. [32] further updated the model of Mayer et al. [28] by also
introducing time delays in both the target population equation and the immune response equation. By
so doing, they observed that time delays in the immune response do lead to stability switches of the
fixed points. Also, delays in the target replication and cooperative immune response were shown to
induce bifurcations and chaos. A few models for the immune system response to Leishmania parasite
have also been considered [33–36]. In Siewe et al. [35], a model is formulated and used to simulate
different treatment regimens for visceral leishmaniasis. The model tracks the density of macrophages,
the density of dendritic cells, the density of certain T cells, the concentration of specific cytokines and
the density of Leishmania parasites. Results from their model show a linear correlation between the
ratio Leishmania /macrophages during the early stages of infection and that drugs which promote the
proliferation of T cells effectively hinder disease progression. In De Almeida et al. [36], a model for
cutaneous leishmaniasis is formulated, investigating the Th1/Th2 paradigm by tracking the densities
of T helper cells, Th1 (that generate responses against intracellular parasites) and Th2 (that respond
against extracellular parasites), and the density of Leishmania parasites. The model was used to predict
disease resolution or progression when either Th1 or Th2 is absent, and also when both T helper cells
co-exist. However, the existing models are limited to some aspects of the immune system response
to Leishmania parasites. In this report, we follow [28] and model the collective response of the entire
immune system to the Leishmania parasite. The model derived is used to study the effect that different
genes contribute to the eradication or establishment of leishmaniasis within the host by focusing on the
collective response of the immune system.

2. Mathematical model

Following Mayer et al. [28], we consider the relationship between the parasite and the immune
system as a feedback loop. We assume that the temporal change of the parasite population is described
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by the model equation

dP
dt

= rP(1 − P) − kPI = f (P, I), (2.1)

i.e., we assume a logistic growth model with the parasites normalized to the carrying capacity (so
the maximum possible value of P is 1) and reproduction constant r. The interaction between the
parasite and the immune system is assumed to be concentration linked, with interaction constant k.
The temporal change in the immune system response is modeled by

dI
dt

= ρ
Pw

mv + Pv + s
In

cn + In − dI = g(P, I), (2.2)

where w, v, n are positive integers, ρ, m, c, and d are positive constants. The first term describes the
parasite competition response to the immune system; the constants in the expression vary the shape
of the sigmoid response. The second term describes the autocatalytic or cooperative reinforcement of
the immune activation processes; again, the constants in the expression give different types of sigmoid
shapes. The last term represents the finite lifetime of the immune cells, with a positive death rate
constant d.

We will assume that w = v = n = 2 and m = c = 1 for the current model.

Remark 1. We note here that in Mayer et al. [28], the equation representing the target population
(parasite in our case) assumed an exponential growth term while in this work we have assumed a
logistic growth term. The utilization of a logistic growth together with the choice of the parameter
values w = v = n = 2 indeed depict the type of steady states (presented in subsequent sections) that
govern leishmaniasis infection.

3. Stability analysis

The basic elements of the qualitative behavior of the model given by the system of equations (2.1)–
(2.2) are the equilibrium solutions. In this section, we establish the existence of equilibrium solutions
and analyze them for linear stability. We start by delineating a positive solution space for the system
(2.1)–(2.2). The following result shows that a positive solution of the system that starts in the positively
defined closed region will continue to propagate in the closed region for all time t ≥ 0.

Lemma 2. The biologically relevant part of the phase space, the rectangular region 0 ≤ P ≤ 1,
0 ≤ I ≤ (ρ + s)/d is positively invariant.

Proof. The system of equations (2.1)–(2.2) shows that P = 0 is invariant, and dP/dt ≤ 0 when P ≥ 1;
also, dI/dt ≥ 0 for I = 0, P ≥ 0 and dI/dt ≤ 0 when I ≥ (ρ + s)/d. These show that the statement of
the lemma holds. �

In the next result, we identify the disease-free equilibria of the system.

Lemma 3. If s < 2d, the only disease-free equilibrium of the system (2.1)–(2.2) is P = 0, I = 0; if
s > 2d, there are two additional parasite-free, immune response positive equilibria given by P = 0,
I1 = (s +

√
s2 − 4d2)/2d and P = 0, I2 = (s −

√
s2 − 4d2)/2d.
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Proof. From f (P, I) = 0 we obtain that P = 0 or P = 1 − kI/r. The disease-free equilibria then will
have to satisfy the equation sI2/(1 + I2) − dI = 0, which gives I = 0 (for all values of s and d); the
other solutions of this equation then satisfy dI2 − sI + d = 0, and are identical to the solutions given in
the statement of the lemma when s > 2d. �

The linearized stability results for these disease-free equilibria are summarized in the following
result.

Theorem 4. The disease-free, immune-response free equilibrium solution is unstable. When s > 2d,
one of the disease-free, non-trivial immune response equilibria, I1, is locally asymptotically stable if
r/k < (s +

√
s2 − 4d2)/2d, while the other one, I2, is unstable.

Proof. The Jacobian of the system is given by

J =

[
r − 2rP − kI −kP
ρ 2P

(1+P2)2 s 2I
(1+I2)2 − d

]
.

At the parasite-free, I = 0 equilibrium, J = diag(r,−d), thus the system has a saddle at (0, 0) and
this equilibrium is unstable as claimed. The stable manifold is given by P = 0, extending up until the
above (0, I2) = (0, (s −

√
s2 − 4d2)/2d) equilibrium point (if exists, i.e., when s > 2d), as equations

(2.1)–(2.2) show.
For s < 2d, there are no other equilibrium on P = 0; when s ≥ 2d, there exists the pair (0, I1), (0, I2)

of equilibrium points.
For i = 1, 2, the Jacobian at the equilibria (0, Ii) is

J = diag(r − kIi, s
2Ii

(1 + I2
i )2
− d).

After simplification and using that sIi = d(1 + I2
i ), we obtain that J = diag(r − kIi, d(1 − I2

i )/(1 + I2
i )).

Now the second eigenvalue of this diagonal matrix is clearly negative for I1 (I1 > 1, because s > 2d),
and it is positive for I2 because a simple computation shows that in this case I2

2 < 1. This means that
the stability of I1 will depend on whether r−kI1 is positive or negative; it will be locally asymptotically
stable if r/k < (s +

√
s2 − 4d2)/2d as claimed. �

Remark 5. Lemma 3 and Theorem 4 show that there are three disease-free equilibria, (0, 0), (0, I1) and
(0, I2) of the system (2.1)–(2.2). The first one which is the origin is always unstable. In the context under
consideration, it is understandable since there is no time when the entire immune system is absent or
non-responsive. Indeed, in the absence of parasites or pathogens, aspects of the immune system are
always active to a certain degree. One of the remaining two disease-free equilibria is stable while
the other is unstable. The stable equilibrium (0, I1) can be attributed to the baseline immune system
components that are always available to kickup (the external barrier of the skin being an example).
When the immune system is activated by a pathogen, the generated response is only on need basis. That
is, it is dependent on the quantity, severity and longevity of the infection. As a result, we can associate
the unstable equilibrium (0, I2) with the state achieved immediately after the infection is resolved. This
state then changes with time and is therefore unstable. The latter two disease-free equilibria can also
represent aspects of the innate and adaptive immune system response.
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The next result shows that the model contains an endemic equilibrium under appropriate conditions.

Lemma 6. If s < d(1 + r2/k2)/(r/k), then there exists at least one endemic equilibrium of the system
(1)-(2).

Proof. Assume that f (P, I) = 0; we obtain that any non-parasite free equilibrium has to satisfy P =

1 − kI/r. If P = 1 − kI/r, then the equation g(P, I) = 0 gives, after simplification, that

h(I) := ρ(1 −
kI
r

)2(1 + I2) + sI2(1 + (1 −
kI
r

)2) − dI(1 + I2)(1 + (1 −
kI
r

)2) = 0.

This is a quintic equation with a negative leading coefficient, which satisfies h(0) = ρ > 0, thus it is
guaranteed that at least one nonnegative root exists. Because the corresponding P value is given by
P = 1 − kI/r, in order to get a non-parasite-free equilibrium, we need that at least one root of h(I)
has to satisfy I < r/k. A sufficient assumption for this to happen is h(r/k) < 0, which is the same as
−dr3/k3 + sr2/k2 − dr/k < 0 or, after simplification, s < d(1 + r2/k2)/(r/k) as claimed. �

The next result provides sufficient conditions for the local asymptotic stability of any endemic
equilibrium solution whose existence is guaranteed by the preceding lemma.

Theorem 7. If s < d(1 + r2/k2)/(r/k) and s < 8d/(3
√

3), then any endemic equilibrium (P∗, I∗)
corresponding to a positive root I∗ < r/k of h(I) is locally asymptotically stable.

Proof. By Lemma 4, at least one positive I∗ < r/k exists. The Jacobian in this case becomes

J =

[
kI∗ − r −k(1 − kI∗/r)

ρ 2(1−kI∗/r)
(1+(kI∗/r)2)2 s 2I∗

(1+I∗2)2 − d

]
.

The function 2x/(1 + x2)2 has a maximum of 3
√

3/8 at x = 1/
√

3, thus the element in the second
row and second column of the Jacobian is guaranteed to be negative in case s < 8d/(3

√
3). This then

implies that the trace of J is negative, while the determinant is positive, so the equilibrium is locally
asymptotically stable as claimed. �

Remark 8. Lemma 6 and Theorem 7 establish the existence of a biologically relevant positive endemic
equilibrium (P∗, I∗) that results in the resolution or persistence of an infection. It is important to
note here that in the case of leishmaniasis, infection resolution does not necessarily imply complete
eradication of the parasites as there is always a residual amount left. Rather, resolution implies that
the immune system has generated a sufficient response that reduces the infection to the point where it
is not harmful to the host.

4. Numerical results and discussion

The model presented in this work does not have a closed form solution using elementary functions.
In order to consider the time evolution of the model, we numerically investigate it for a chosen set
of parameter values. We begin by carrying out a phase plane analysis and investigate the system for
bifurcations, and afterward compare the model with experimental data for leishmaniasis.
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4.1. Bifurcation analysis

In the analysis below, we will assume that our bifurcation parameter is the autocatalytic response
size parameter s; we will fix the other parameters and investigate how the phase plane is changing if
we vary the value of s.

Supposition 9. Assume that r = 1/2, k = 1, ρ = 1 and d = 2. By Lemma 3, the parasite-free non-trivial
equilibria exist when s > 2d = 4. The sufficient condition of Lemma 6 for I∗ < r/k = 1/2 is given
by s < (5/2)d = 5. Local asymptotic stability of the endemic equilibrium for (P∗, I∗) is guaranteed by
Theorem 7 for s < 16/(3

√
3).

For these fixed values, the roots I∗ satisfying I∗ < 1/2, the corresponding P∗ values, and the eigen-
values of the Jacobian at (P∗, I∗) are as follows:

for s = 3.0: I∗ ≈ 0.19098, P∗ ≈ 0.61803, λ1,2 ≈ −0.6212 ± 0.6959i;
for s = 3.6: I∗ ≈ 0.20161, P∗ ≈ 0.59677, λ1,2 ≈ −0.4789 ± 0.7031i; and
for s = 4.2: I∗ ≈ 0.21548, P∗ ≈ 0.56904, λ1,2 ≈ −0.3157 ± 0.6779i.

These are all locally asymptotically stable with illustrations given in Figure 1, Figure 2 and Figure 3
for values of s = 3.0, s = 3.6 and s = 4.2, respectively. The only noticeable change in the system
as the value of s increases from 3.0 to 3.6 (see Figure 1 and Figure 2) is an increase in the magnitude
of the endemic equilibrium. However, as the value of s transitions between 3.6 and 4.2, a significant
change occurs. For the last value of s, we have another locally asymptotically stable solution and a
nonzero disease-free equilibrium solution (0, I1) ≈ (0, 1.37016) that is also locally asymptotically (see
Figure 3). The basins of the two equilibria in Figure 3 are separated from each other by the unstable
manifold of (0, I2).
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Figure 1. Numerical simulations of the model showing trajectories in the phase plane (left)
and a solution in the time domain (right) for fixed parameter values r = 1/2, k = 1, ρ = 1,
d = 2 and s = 3.0.

Remark 10. The phase plane results in Figure 1 and Figure 2 show that irrespective of the strength
(or size) of the initial infection and the state of the immune response, the system will always converge
to the endemic equilibrium solution. This paradigm is no longer maintained as the value of s increases
from 3.6 to 4.2. As indicated in Figure 3 a bifurcation occurs leading to two basins of attraction
delineated by a separatrix. The separatrix divides the phase plane into two sections, a bottom part
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containing the endemic equilibrium and a top section containing the nonzero disease free equilibrium.
An initial infection originating within the lower basin converges to the endemic equilibrium while an
infection that begins in the top section converges to the nonzero disease free equilibrium. All infections
originating in the basin of the nonzero disease free equilibrium are eradicated. We note here that
an infection that originates in the basin of the endemic equilibrium can only be eradicated if it is
coupled with treatment that pushes it across the separatrix into the basin of the nonzero disease-free
equilibrium.
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Figure 2. Numerical simulations of the model showing trajectories in the phase plane (left)
and a solution in the time domain (right) for fixed parameter values r = 1/2, k = 1, ρ = 1,
d = 2 and s = 3.6.
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Figure 3. Numerical simulations of the model showing trajectories in the phase plane (left),
a solution in the time domain within the basin of the endemic equilibrium (middle), and a
solution in time domain within the basin of the nonzero disease-free equilibrium (right) for
fixed parameter values r = 1/2, k = 1, ρ = 1, d = 2 and s = 4.2.

Another bifurcation that we did observe is that raising the value of s from 4.2 to 5.0, we obtain
more possible endemic equilibria as the second positive root I∗∗ of the quintic becomes less than r/k.
Also, the new pair of nonzero parasite-free equilibria is created by a saddle-node bifurcation, and the
endemic equilibria lose stability. This shows that in case of larger s values (the autocatalytic reaction
is strong), one of the nonzero parasite-free equilibria becomes locally asymptotically stable, and the
long term behavior indicates the decline of the parasite P.
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The parameter values were chosen in Supposition 9 so that the ratio r/k < 1. In the next supposition,
we choose the parameter values such that the ratio r/k > 1. Notice that all parameters values have been
maintained except the value of k.
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Figure 4. Numerical simulations of the model showing trajectories in the phase plane (left)
and a solution in the time domain (right) for fixed parameter values r = 1/2, k = 1/3, ρ = 1,
d = 2 and s = 3.0.

Supposition 11. Assume that r = 1/2, k = 1/3, ρ = 1 and d = 2. By Lemma 3, the parasite-free
non-trivial equilibria exist when s > 2d = 4. The sufficient condition of Lemma 6 for I∗ < r/k = 3/2
is given by s < (13/6)d = 13/3. Local asymptotic stability of the endemic equilibrium for (P∗, I∗) is
guaranteed by Theorem 7 for s < 16/(3

√
3).

In a similar way, for these fixed values, the roots I∗ satisfying I∗ < 1/2, the corresponding P∗ values,
and the eigenvalues of the Jacobian at (P∗, I∗) are as follows:

for s = 3.0: I∗ ≈ 0.34675, P∗ ≈ 0.76884, λ1,2 ≈ −0.3633 ± 0.5995i;
for s = 3.6: I∗ ≈ 0.73034, P∗ ≈ 0.51311, λ1,2 ≈ −0.0101 ± 0.2323i; and
for s = 4.2: I∗ ≈ 1.38038, P∗ ≈ 0.07975, λ1,2 ≈ −0.6243,−0.0420004.

Notice also that, these are all locally asymptotically stable. The numerical simulations are given in
Figure 4, Figure 5 and Figure 6 for values of s = 3.0, s = 3.6 and s = 4.2, respectively. Observe that
the changes associate with this case on raising the value of s show up early compared to the case when
r/k < 1. The first bifurcation turns the locally asymptotically stable equilibrium point from a focus into
a node as s transitions from s = 3.0 to s = 3.6 (see Figure 4 and Figure 5). As the value of s increases
from s = 3.6 to s = 4.2, another bifurcation takes place yielding an endemic equilibrium solution that
is locally asymptotically stable and a nonzero disease-free equilibrium solution (0, I1) ≈ (0, 1.37016)
that is unstable within the same basin of attraction (see Figure 6).

Remark 12. The phase plane analysis in Figure 4, Figure 5 and Figure 6 clearly show that all initial
infections will always converge to the endemic equilibrium state that is locally asymptotically stable.
The analysis also show that the autocatalytic reaction is weak for small s values and strong for large
s values. A more careful observation of the time domain solutions in Figure 4, Figure 5 and Figure 6
show that the locally asymptotically stable endemic equilibrium correspond to parasite persistence for
small s values and parasite resolution for large s values. This case renders the model applicable to
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Leishmania infection because a residue of the parasite is always retained when an infection is classified
as resolved.
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Figure 5. Numerical simulations of the model showing trajectories in the phase plane (left)
and a solution in the time domain (right) for fixed parameter values r = 1/2, k = 1/3, ρ = 1,
d = 2 and s = 3.6.
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Figure 6. Numerical simulations of the model showing trajectories in the phase plane (left)
and a solution in the time domain (right) for fixed parameter values r = 1/2, k = 1/3, ρ = 1,
d = 2 and s = 4.2.

4.2. Application to leishmaniasis

We will now apply the model to cutaneous leishmaniasis infection. In particular, we focus on
Leishmania mexicana (L. mexicana) and compare the model prediction with experimental data. Before
proceeding, we comment here that the model presented is not limited to Leishmania mexicana. With
appropriate choices of the parameter values, it can be used to study other species of Leishmania and
also other infectious diseases. Also, as mentioned earlier, the motivation to apply the model to Leish-
mania infection is due to the nature of the endemic equilibria involved. One of the endemic equilibria
leads to disease persistence while the other leads to infection resolution. An infection is considered
resolved if a growing lesion reverses course and in the process gets eliminated. Alternatively, an infec-
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tion is considered resolved when the parasite load falls below the initial amount. In practice, there is
always a residue of parasites left after an infection is deemed as resolved.
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Figure 7. Model simulation and experimental observations for wild-type B6 and β2m KO
mice infected with L. mexicana. The autocatalytic parameter in the simulations was set at
s = 3.0 and s = 6.0 for wild-type B6 and β2m KO, respectively. Lesion sizes were in mm
and all other parameters were fixed at r = 1/2, ρ = 1, k = 1/3 and d = 2.

The data used below were obtained from different murine studies [24, 25, 27] where C57BL/6(B6)
mice lacking specific genes (also known as knocked out (KO)) and normal B6 mice were infected with
L. mexicana. In each experiment, the mice were inoculated with 5 million parasites in the hind footpad
and lesions were monitored for several weeks. Experimental data was reported using the size of the
lesion with the first measurement taken 2 weeks after the inoculation.

We present two sets of results below related to the parasite load. The first set of results given in
Figures 7−10, represent cases in which the lesion size is used as a proxy for parasite load. The second
set of results is given in Figures 11−12 where the actual parasite load is considered. We do not present
corresponding results for the immune response because no experimental data is available that we can
use for comparison. In all simulations reported below, parameter values were chosen to explore the
behavior of the model, guided by values reported in the published literature [35]. In Siewe et al. [35],
the parasite growth rate in pro-inflammatory macrophages is given as 3.09 per day and the parasite
growth rate in anti-inflammatory macrophages is given as 3.82 per day. Taking the average of these
values, we set the parasite growth rate at r = 1/2 per week. Also in [35], the parasite death rate in
pro-inflammatory macrophages attributed to Nitric Oxide and IFN-γ (which are aspects of the immune
response) is given as 1.85 per day, and the parasite death rate in anti-inflammatory macrophages is
given as 2.22 per day. Guided by the average of these values, we set the parasite clearance rate by the
entire immune response at k = 1/3 per week. Further, in Siewe et al. [35], the immune system strength
factor is given by the range (0 − 150). Because we are considering the entire response of the immune
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system which is determine by the parameters ρ, s and d, we choose them within the range (0 − 150).
The choices we made present numerical solutions that are in close agreement with experimental data.
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Figure 8. Model simulation and experimental observations for wild-type B6 and IL-10 KO
infected with L. mexicana. The autocatalytic parameter in the simulations was set at s = 3.0
and s = 4.5 for wild-type B6 and IL-10 KO, respectively. Lesion sizes were in mm and all
other parameters were fixed at r = 1/2, ρ = 1, k = 1/3 and d = 2.

In the first set of results, unless otherwise stated, we fixed the parameter values at r = 1/2, ρ = 1,
k = 1/3, and d = 2. We also fixed the autocatalytic response parameter at s = 3.0 in simulating normal
B6 mice in all cases, while prescribing a different s value for each KO case. In all simulations reported
below, we assumed that the initial condition of the immune response is I(0) = 0. Initial conditions for
the parasite loads for both wild-type and KO mice are also assigned for each case reported. We ran
several simulations with the initial conditions for the parasites loads perturbed and the results were
similar to the ones presented in this work.

Using the experimentally observed lesion sizes as proxy for parasite loads, we simulate the murine
studies in [24, 25, 27]. Before we continue, it is necessary to pause and remark here that the nature of
the relationship between lesion size and parasite load is indeed not well established. This is because
apart from parasites, lesions are composed of immune cells like T cells, infected macrophages, and
some other material/debris. Indeed, some infections do lead to parasite clearance but not to lesion
resolution. However, the cases reported in this paper do have chronic disease in wild-type B6 mice
with plateauing lesions and parasite loads vs knock-out mice that heal lesions and clear parasites.
Therefore, it is important to emphasize that the simulations are meant to predict the overall general
behavior of the parasite load, not to recreate the exact lesion size. The main point is that the change
in the value of the autocatalytic response parameter changes the behavior of the solution of the system
the exact same way the lesion size is changing in the different cases. Thus, the model includes the
possibility of different behavior in the different cases.
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Figure 9. Model simulation and experimental observations for wild-type B6 and FcγRIII
KO mice infected with L. mexicana. The autocatalytic parameter in the simulations was set
at s = 3.0 and s = 4.1 for wild-type B6 and FcγRIII KO, respectively. Lesion sizes were in
mm and all other parameters were fixed at r = 1/2, ρ = 1, k = 1/3 and d = 2.

As our starting point, we compare the model simulations to the experimental results of Buxbaum
et al. [24]. It was observed in [24] that B6 mice deficient in IL-10, FcγR and β2m were able to
resolve L. mexicana infection while normal B6 mice containing these genes did not. Below, we only
present model simulations for IL-10 and β2m. To apply the model in the case of β2m KO and normal
B6 mice, we set the autocatalytic response parameter at s = 6.0 for the β2m KO mice. The initial
conditions for the wild-type mice and the KO mice were set at P(0) = 0.1 and P(0) = 0.02, respectively.
A comparison of our numerical simulations in time domain and experimental data for β2m KO and
normal B6 mice is given in Figure 7. We see a strong agreement between the model results and
experimental data. The parasite load in the wild-type mice approaches the stable endemic equilibrium
with P∗ = 0.769 indicating infection persistence while the parasite load in KO mice approaches the
stable non-endemic equilibrium with P∗ = 0, signifying infection resolution.

Next, we apply the model to experimental data for IL-10 KO and normal B6 mice. We maintain all
parameter values as earlier defined and set the autocatalytic response parameter at s = 4.5 for IL-10 KO
mice. The initial conditions for the wild-type mice and the KO mice were set at P(0) = 0.2 and P(0) =

0.02, respectively. The numerical results in time domain are given in Figure 8. We also see a very good
correlation between model simulations and experimental data in this case. Similar to the preceding
case, here, the parasite load in the wild-type mice also approaches the stable endemic equilibrium with
P∗ = 0.769 indicating infection persistence while the parasite load in KO mice approaches the stable
non-endemic equilibrium with P∗ = 0, leading to infection resolution.
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Figure 10. Model simulation and experimental observations for wild-type B6 and IgG1 KO
mice infected with L. mexicana. The autocatalytic parameter in the simulations was set at
s = 3.0 and s = 4.2 for wild-type B6 and IgG1 KO, respectively. Lesion sizes were in mm
and all other parameters were fixed at r = 1/2, ρ = 2, k = 1/3 and d = 2.

Although not considered in this work, experimental observations in [24] showed that B6 mice defi-
cient in FcγR protein were also able to resolve infection with L. mexicana. This led to further studies
by Thomas et al. [25] where FcγRIII, a subclass of FcγR was investigated. It was also established
in [25] that mice deficient in FcγRIII did resolve infection with L. mexicana while normal B6 mice
did not. To apply the model to this case, retaining all other parameter values, we set the autocatalytic
response parameter at s = 4.1 for FcγRIII KO mice. The initial conditions for the wild-type mice and
the KO mice were set at P(0) = 0.2 and P(0) = 0.1, respectively. The results of our computation in
time domain and experimental data is presented in Figure 9. We see here as in previous cases that the
time evolution of the infection closely matches with experimental observations. The parasite load
in the wild-type mice still approaches the stable endemic equilibrium with P∗ = 0.769 because the
parameter values remain the same as in previous cases while the parasite load in KO mice approaches
the stable endemic equilibrium with P∗ = 0.145. Note that because P∗ < P(0) we conclude that the
infection is resolved as the parasite load approaches the stable endemic equilibruim P∗ = 0.145.

Finally, we apply the model to experimental data for IgG1 reported in Chu et al. [27]. Considering
the fact that IgG1 binds mostly to FcγRIII and because the presence of FcγRIII had been implicated in
infection progression, Chu et al. [27] investigate the role of IgG1 protein. They came to the conclusion
that IgG1 KO mice were able to resolve infection with L. mexicana while the normal B6 mice did not.
In order to apply the model to this case, we again maintain all parameter values as earlier defined with
the exception of the autocatalytic response parameter set at s = 4.2 for IgG1 KO mice and the value
of ρ = 2. The initial conditions for the wild-type mice and the KO mice were set atP(0) = 0.2 and
P(0) = 0.15, respectively. The results in time domain for this case are given in Figure 10. Clearly,
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the model simulations do mimic experimental observations depicting infection resolution in IgG1 KO
mice and infection persistence in normal B6 mice. By observing the differences in the experimental
results for wild-type mice from the three studies ( all carried out in a similar way), we altered the value
of ρ from 1 to 2 in this case. With this change, the parasite load in the wild-type mice now approaches
the stable endemic equilibrium with P∗ = 0.513 while the parasite load in KO mice approaches the
stable endemic equilibrium with P∗ = 0.075. We also say here that, beacuse P∗ < P(0) the infection is
resolved as the parasite load approaches the stable endemic equilibruim P∗ = 0.075.
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Figure 11. Model simulation and experimental observations of parasite load for FcγRIII KO
mice infected with L. mexicana. The parameter values were set at r = 1/2, k = 1/3, d = 2,
ρ = 9 and s = 20 .

In the second set of results, we use the model to simulate the actual parasite load for the murine
studies in Thomas et al. [25]. We note here that although the studies ran for about 24 weeks, parasite
loads were only obtained for weeks 4, 8, 12 and 23. The process involved grinding a severed infected
footpad of a sacrificed mice and analyzing collected samples. The parasite load was then calculated
based on the sample amount. As with the first set of results, we also choose parameter values so as
to get the best possible outcome. Although each animal was inoculated with 5 million parasites at the
onset, we assume that the majority of these were destroyed by the immune system before they were
able to successfully obtain shelter within macrophages or other phagocytes and replicate. We assume
that about 40, 000 and 50, 000 parasites were able to get into macrophages in the FcγRIII KO mice and
wild-type B6 mice, respectively. We also set the carrying capacities at 10 million and 25 million for
the FcγRIII KO mice and wild-type B6 mice, respectively. The parameter values associated with the
parasite equation were maintained at r = 1/2, k = 1/3, d = 2, while those for the immune response
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Figure 12. Model simulation and experimental observations of parasite load for wild-type
B6 mice infected with L. mexicana. The parameter values were set at r = 1/2, k = 1/3,
d = 2, ρ = 1 and s = 1.5

equation, ρ and s, were altered in each case. The values of ρ and s needed by the model to adequately
simulate the actual parasite load were significantly higher for the knock-out mice than those for the
wild-type mice.

The results in Figure 11 illustrate the time evolution of the actual parasite load for FcγRIII KO mice
vs measured data. With the exception of the fourth week, the simulation was within the standard errors
associated with the experimental data. Similarly, the results in Figure 12 show the time progression
of the parasite load in wild-type B6 mice vs measured data. The simulation was also mostly within
bounds of observed data.

5. Conclusion

In this paper we developed a model of the immune response to threats from parasitic organisms. The
model constitutes a coupled system of differential equations in which one of the equations represents
the parasite density and the other equation is a simplified representation of the immune response.
The parasitic equation follows logistic growth while the immune response equation is determined by
parasitic activation and cooperative reinforcement.

The model possesses a zero equilibrium solution which is also a disease-free equilibrium that is
unstable. In addition to the zero solution, the model also contains two other disease-free equilibria,
one stable and the other unstable. Further, the model possesses a positive endemic equilibrium that is

Mathematical Biosciences and Engineering Volume 17, Issue 2, 1253–1271.



1269

stable. A numerical bifurcation analysis for chosen parameter values show that the endemic equilib-
rium transitions between disease resolution and transition as the autocatalytic response of the immune
system changes. The behavior of the endemic equilibrium makes the model particularly suitable for
application to leishmaniasis.

Leishmaniasis, of which are many species remains endemic in many regions of the world. While it
can be successfully treated, there is yet to be an effective vaccine for controlling the disease. Clinical
observations aimed at understanding the parasite’s pathway of establishing infection have been under-
taken in recent decades. The majority of these observations are murine based and have demonstrated
the elusiveness of the parasite through manipulation of the immune response to its advantage. As an
example, studies of L. mexicana have implicated aspects of the immune response such as the cytokine
IL-10, antileishmanial antibody IgG1, Fcγ receptor, and the subclass receptor FcγRIII in disease per-
sistence.

The model was used to study different cases of L. mexicana infections in which wild type (normal)
B6 mice where compared to IL-10 KO or β2m KO or IgG1 KO or FcγRIII KO mice. In experimental
studies [24, 25, 27], the infection was observed to persist in the normal B6 mice while it was resolved
in mice with KO genes. The numerical simulations of the model formulated in this work are in strong
agreement with experimental observations. Furthermore, the bifurcations associated with the endemic
equilibrium as the autocatalytic response changes correspond to disease resolution in the KO mice and
disease persistence in the normal B6 mice for each infection case.

In conclusion, we remark that the accurate predictions of the model are mostly obtained by vary-
ing the value of the parameter that determines the strength of the autocatalytic response. This makes
the model more appealing for investigating L. mexicana. We postulate that apart from the KO genes
reported in this work, other genes with implication in disease persistence can be predicted using for-
mulated model.
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