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Abstract: We present a modeling framework based on a structured SIR model where different
vaccination strategies can be tested and compared. Vaccinations can be dosed at prescribed ages or
at prescribed times to prescribed portions of the susceptible population. Different choices of these
prescriptions lead to entirely different evolutions of the disease. Once suitable “costs” are introduced,
it is natural to seek, correspondingly, the “best” vaccination strategies. Rigorous results ensure the
Lipschitz continuous dependence of various reasonable costs on the control parameters, thus ensuring
the existence of optimal controls and suggesting their search, for instance, by means of the steepest
descent method.
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1. Introduction

Within the framework of a nonlocal SIR model, we introduce different vaccination policies and then
seek the most effective one. Vaccines are dosed at prescribed ages or at prescribed times to prescribed
portions of the susceptible population. The careful choice of the ages, times and individuals to be
treated may significantly influence the efficiency of a vaccination campaign. It is thus natural to tackle
the resulting optimal control problem, seeking what is in some sense the best vaccination policy.

We denote by S = S (t, a) the density of individuals at time t of age a susceptible to the disease. As
usual, I = I(t, a) is the density of infected individuals at time t and of age a. The density of individuals
that can not be infected by the disease is R = R(t, a), comprising individuals that recovered as well
as those that are, whatever the reason, immune. As a reference to the basic properties of SIR models,
originated in [1], see [2, Chapter 6], [3, Chapter 19] or [4, § 1.5.1].

A possible description of the evolution of S is provided by the renewal equation [4, Chapter 3] with
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nonlocal source term

∂tS + ∂aS = −

(
dS (t, a) +

∫ +∞

0
λ(a, a′) I(t, a′) da′

)
S (1.1)

where dS = dS (t, a) ≥ 0 is the susceptibles’ death rate and λ(a, a′) ≥ 0 quantifies the susceptible
individuals of age a that are infected by individuals of age a′. The nonlocal quantity on the right
hand side of (1.1), namely

∫ +∞

0
λ(a, a′) I(t, a′) da′ S (t, a), represents the total number of susceptible

individuals of age a that become infected at time t per unit time.
The evolution of the infected portion I of the population is governed by

∂tI + ∂aI = − (dI(t, a) + rI(t, a)) I +

∫ +∞

0
λ(a, a′) I(t, a′) da′ S , (1.2)

where dI = dI(t, a) ≥ 0 is the death rate of the I portion of the population and rI = rI(t, a) ≥ 0 represents
the fraction of infected individuals of age a that recovers at time t per unit time. Finally, the evolution
of the portion R of the population that recovers or is unaffected from the disease is

∂tR + ∂aR = rI(t, a) I − dR(t, a) R , (1.3)

where dR = dR(t, a) ≥ 0 is the death rate of the R population. We assume here that members of the R
population are not dosed with vaccine and that individuals may enter the R population at birth. In the
present setting, dealing with choices different from these latter ones only requires very minor changes
and keeps falling in the present general analytic framework.

In a first policy, vaccinations are dosed at any time t at a time dependent portion η j(t) of the S
population of the prescribed age ā j, with 0 < ā1 < · · · < āN . In this way, the fraction η j(t) of susceptible
population S (t, ā j) becomes immune. In other words, we use as control the fractions η j : I→ [0, 1] (for
j ∈ {1, · · · ,N} and I being the, possibly unbounded, time interval under consideration). We thus have
to supplement the evolution (1.1)–(1.2)–(1.3) with the vaccination conditions

S (t, ā j+) =
(
1 − η j(t)

)
S (t, ā j−) [∀t, S (t, ā j) decreases due to vaccination]

I(t, ā j+) = I(t, ā j−) [the infected population is unaltered]
R(t, ā j+) = R(t, ā j−) + η j(t) S (t, ā j−) [vaccinated individuals are immunized]

(1.4)

for a.e. t > 0 and for j ∈ {1, · · · ,N}. A reasonable constraint on the vaccination policy η in (1.4) is
that its total costN(η) on the considered time interval I does not exceed a prescribed maximal cost M.
Measuring the total cost by the number N of dosed individuals, we have

N(η) ≤ M where N(η) =

N∑
i=1

∫
I

ηi(t) S (t, āi−) dt . (1.5)

Alternatively, we also consider vaccination campaigns immunizing an age dependent portion of the
whole population at given times t̄1, . . . , t̄N . This amounts to substitute (1.4) with

S (t̄k+, a) =
(
1 − νk(a)

)
S (t̄k−, a) [∀a, S (t̄k, a) decreases due to vaccination]

I(t̄k+, a) = I(t̄k−, a) [the infected population is unaltered]
R(t̄k+, a) = R(t̄k−, a) + νk(a) S (t̄k−, a) [vaccinated individuals are immunized]

(1.6)
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where νk(a) is the percentage of susceptible individuals of age a that are dosed with the vaccine at time
t̄k, for k = 1, . . . ,N. Now, a reasonable constraint due to the campaign cost is given by a bound on the
number N of dosed individuals

N(ν) ≤ M where N(ν) =

N∑
i=1

∫
R+

νi(a) S (t̄i−, a) da . (1.7)

For simplicity, in both cases above, we assume that η j, respectively νi, represents the percentages of
individuals that are successfully vaccinated.

In both cases, our aim is to seek the vaccination campaign that minimizes the total number of
infected individuals of all ages over the time interval I, that is

J =

∫
I

∫
R+

ϕ(a) I(t, a) da dt (1.8)

the function ϕ being a suitable positive age dependent weight. Here, J is a function of η in case (1.4)
and of ν in case (1.6). In general, in the two cases (1.4) and (1.6), reasonable costs are thus

J(η) +N(η) =

∫
I

∫
R+

ϕ(a) I(t, a) da dt +

N∑
j=1

∫
I

η j(t) S (t, ā j−) dt (1.9)

J(ν) +N(ν) =

∫
I

∫
R+

ϕ(a) I(t, a) da dt +

N∑
i=1

∫
R+

νi(a) S (t̄i−, a) da . (1.10)

Clearly, in general, suitable weights can be used to modify the relative relevance of the two costs N
and J in the sums above.

The current literature offers a variety of alternative approaches to similar modeling situations. In
the context of models based on ordinary differential equations, that is, without an age structure in the
population, this problem has been considered, for instance, already in [5–7]. In the recent [8], the
vaccination control enters an equation of the type (1.1) through a term −u S in the source on the right
hand side of (1.1), implicitly suggesting that vaccination takes place uniformly at all ages. For a recent
related investigation focused on cholera, see [9].

The next section summarizes the key analytic properties of the present SIR model, providing the
necessary basis to tackle optimal control problems. Section 3 shows the qualitative properties of
various vaccination strategies through numerical integrations. Section 4 presents numerical
optimizations through the descent method. The paper ends with Section 5.

2. Well posedness and stability properties of the models

Denote by I either the time interval [0,T ], for a positive T , or [0,+∞[. Fix throughout a positive
integer N representing the number of vaccination sessions.

Both models introduced above lead to the initial – boundary value problem
∂tS + ∂aS = −

(
dS (t, a) +

∫ +∞

0
λ(a, a′) I(t, a′) da′

)
S

∂tI + ∂aI = − (dI(t, a) + rI(t, a)) I +
∫ +∞

0
λ(a, a′) I(t, a′) da′ S

∂tR + ∂aR = rI(t, a)I − dR(t, a) R
(2.1)
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with initial datum and boundary inflow{
S (0, a) = S o(a), I(0, a) = Io(a), R(0, a) = Ro(a), a ∈R+;
S (t, 0) = S b(t), I(t, 0) = Ib(t), R(t, 0) = Rb(t), t ∈ I .

(2.2)

The usual case of the birth terms in the boundary data being assigned through suitable integrals of the
populations in reproductive age can be recovered by mainly technical adjustments.

We assume below that the following assumptions are satisfied:

(λ) λ ∈ C0(R+ × R+;R) is bounded, with total variation in the first argument uniformly bounded
with respect to the second (i.e., supa′∈R+ TV (λ(·, a′);R+) < +∞) and Lipschitz continuous in the
first argument uniformly with respect to the second (i.e., there exists a C > 0 such that for all
a, a1, a2 ∈ R

+, |λ(a1, a′) − λ(a2, a′)| ≤ C |a1 − a2|).

(d-r) The maps dS , dI , dR, rI : I × R+ → R are bounded Caratheodory functions, with L1 norm and
total variation in a uniformly bounded in t (i.e., for ϕ = dS , dI , dR, rI , supt∈I ‖ϕ(t)‖L1(R+;R) < +∞

and supt∈I TV (ϕ(t, ·);R+) < +∞) and Lipschitz continuous in a uniformly in t (i.e., there exists a
C > 0 such that for all t ∈ I and a1, a2 ∈ R

+, |ϕ(t, a2) − ϕ(t, a1)| ≤ C |a2 − a1|).

(IB) The initial datum and the boundary inflow in (2.2) satisfy S o, Io,Ro ∈ (L1 ∩ BV)(R+;R+) and
S b, Ib,Rb ∈ (L1 ∩ BV)(I;R+).

For the definition of Caratheodory function, of total variation and of the various functional spaces, we
refer for instance to [10]. For all other analytic details specific to the present construction, see [11].

First, we provide the basic well posedness and stability result for the model (2.1)–(2.2) in the case
of the vaccination policy (1.4), namely

S (t, ā j+) =
(
1 − η j(t)

)
S (t, ā j−)

I(t, ā j+) = I(t, ā j−)
R(t, ā j+) = R(t, ā j−) + η j(t) S (t, ā j−)

j = 1, . . . ,N . (2.3)

Theorem 2.1 ( [11]). Under hypotheses (λ) and (d-r), for any initial and boundary data satisfying (IB),
for any choice of the positive vaccination ages ā1, . . . , āN ∈ R

+ \ {0} and of the control function η ∈
BV(I; [0, 1]N) , problem (2.1)–(2.2)–(2.3) admits a unique solution defined on the whole interval I,
depending Lipschitz continuously on the initial datum, through the L1 norm, and on η, through the L∞
norm.

An entirely similar result holds for the vaccination policy (1.6), which we rewrite here as
S (t̄i+, a) =

(
1 − νi(a)

)
S (t̄i−, a)

I(t̄i+, a) = I(t̄i−, a)
R(t̄i+, a) = R(t̄i−, a) + νi(a) S (t̄i−, a) .

i = 1, . . . ,N . (2.4)

Theorem 2.2 ( [11]). Under hypotheses (λ) and (d-r), for any initial and boundary data satisfying (IB),
for any choice of the positive vaccination times t̄1, . . . , t̄N ∈ I \ {0} and of the control function ν ∈

BV(R+; [0, 1]N), problem (2.1)–(2.2)–(2.4) admits a unique solution defined on the whole interval I,
depending Lipschitz continuously on the initial datum, through the L1 norm, and on ν, through the L∞
norm.
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Below, we restrict the search of optimal controls η j in (1.4) and νi in (1.6) to functions of the form

η j(t) =
∑m
`=1 η

`
j χ[t`−1,t`[

(t) with t0 = 0, t` > t`−1, t` ∈ I;

νi(a) =
∑m
`=1 ν

`
i χ[a`−1,a`[

(a) with a0 = 0, a` > a`−1, a` ∈R+.

The stability results above ensure that the costs (1.5), (1.7) and (1.8) are Lipschitz continuous functions
of the various η`j and ν`i . Hence, a straightforward Weierstraß argument proves the existence of optimal
controls minimizing the costs (1.9) or (1.10).

We refer to [11] for the detailed proofs as well as for further stability estimates on the dependence
of the solutions on the various parameters.

3. Qualitative properties

We now compare different instances of both strategies (2.3) and (2.4) by means of numerical
integrations.

In all the integrations below, for the convective part we exploit the upwind method [12, § 4.8] with
mesh size ∆a = 2.5 · 10−3 along the age axis and ∆t = 1.25 · 10−3 along the time axis. The integrals
in the right hand side in (2.1) are computed via a rectangle rule and a fractional step method [12,
§ 17.1] allows to combine the convective evolution with the source term. The time axis a = 0 belongs
both to the physical boundary and to the numerical one, its treatment being straightforward since all
characteristics move inward the domain I × R+, so that the value of the boundary data can be assigned
to the solution. On the other side, along the numerical boundary a = 10, the usual free flow conditions
is consistent with all characteristic speeds being positive.

Our aim in the integrations below is to clearly show the qualitative properties of the model (2.1).
Indeed, we do not claim that the chosen numerical values are realistic. In particular, the most adequate
units for t and a might well be different.

With reference to the Cauchy problem (2.1)–(2.2) and to the costs (1.9)–(1.10), we use throughout
the following parameters and functions:

ds(t, a) = 1
4

a
1+a , dI(t, a) = 1

2
a

1+a , dR(t, a) = 1
4

a
1+a ,

rI(t, a) = 1
10 , λ(a, a′) = 2 e−|a−a′ |/2 , ϕ(a) = 1.

(3.1)

The mortality rates are increasing with age and higher for the infected population. The choice of λ
assumes that the infection propagates preferably among individuals of similar age.

We consider two different initial data, first the case without infection, i.e.,

S o(a) = 3
(
1 −

a
10

)
, Io(a) = 0 , Ro(a) =

(
1 −

a
10

)
, (3.2)

and then a case with a 20% of infected individuals, with respect to the S population, at time t = 0, that
is

S o(a) = 2.5
(
1 −

a
10

)
, Io(a) = 0.5

(
1 −

a
10

)
, Ro(a) =

(
1 −

a
10

)
. (3.3)

Both these initial data are linearly decreasing with age. Note that the total initial population is the same
in the two cases (3.2) and (3.3).
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Natality is chosen so that no jump appears between the initial values at a = 0+ in (3.2) and the
boundary data at t = 0+:

S b(t) = 3 , Ib(t) = 0 , Rb(t) = 1 , (3.4)

where we assume that no individuals are infected already at birth.

3.1. Reference situations

We first consider two extreme situations to be later used for comparisons, namely corresponding to
no illness (3.2), and to a spreading illness with no vaccination strategy whatsoever.

In other words, we integrate (2.1)–(2.2)–(3.1) first setting Io ≡ 0, so that for all times t, I(t) ≡ 0
and no illness ever appears, and then setting Io as in (3.3) but dose no vaccination, so that the epidemic
spreads uncontrolled. The results of these two integrations are displayed in Figure 1. The two solutions
are, clearly, entirely different. When I ≡ 0, a sort of dynamic equilibrium is reached, the resulting
contour plot being approximately invariant with respect to translation along the vertical t axis. The
presence of the I population in the initial datum leads to the spread of the disease and eventually to a
dramatic population decrease.

Figure 1. Integration of (2.1), with parameters (3.1), boundary data (3.4), initial data on
the left corresponding to (3.2) and, middle and right, to (3.3). The left and middle plots
display the sum S + R as a function of t and a, while the rightmost diagram displays the ratio
I/(S + I + R) as a function of t and a.

3.2. Vaccinating at specific ages – strategy (2.3)

We consider now a simple vaccination strategy consisting in a single campaign, dosing vaccination
at a single age ā for all times.

As it is to be expected, the earlier vaccinations are dosed, the better it is in terms of the cost (1.8).
In Figure 2 the ratio of the number of infected individuals vs. the total population corresponding to the
vaccinations ages ā = 0.1, 0.3, 0.5, 1.5 are portrayed. The leftmost contour plot shows the effects of
a very early vaccination, clearly far more effective than later doses.
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Figure 2. Ratio of the infected population over the whole population in the integration
of (2.1), with parameters (3.1), boundary data (3.4) and initial data as in (3.3). The
different integrations result from different choices of the age ā at which all S individuals
are vaccinated: from left to right: ā = 0.1, 0.3, 0.5, 1.5.

The striking effect of this early age vaccination is confirmed in Figure 3, where we display the sum
S +R as a function of t and a in the same cases of the vaccinations ages ā = 0.1, 0.3, 0.5, 1.5. Clearly,
due to the form of the vaccination condition (2.3) and to the present smooth data (3.3)–(3.4), the sum
S + R is continuous across ā. In the leftmost diagram, the healthy population apparently recovers from
the spread of the disease. When vaccinations are dosed at a later age, i.e., in the three diagrams on the
right, the relatively large portion of individuals initially vaccinated survive the disease, but juveniles get
infected resulting in the solitary waves, consisting essentially of the R population, shown in Figure 3.

Figure 3. Healthy, i.e., S + R, population resulting from the integration of (2.1), with
parameters (3.1), boundary data (3.4) and initial data as in (3.3). The different integrations
result from different choices of the age ā, at which all S individuals are vaccinated, where,
from left to right: ā = 0.1, 0.3, 0.5, 1.5.

The counterpart of these solitary waves is the propagating “hole” in Figure 2.
In other words, the vaccination campaign at the age ā = 0.5 looks as (un)successful as the campaign

at ā = 1.5. On the contrary, dosing at ā = 0.1 is by far more effective.
Indeed, this strategy keeps the density of the susceptible population in (2.1) very low due to (2.3).

Hence, also the nonlocal source term, which is proportional to S , is relatively small and infection
hardly spreads. When vaccination is dosed at higher ages, the nonlocal source term is able to bring
infection at low ages, thus making the vaccination policy far less effective.

Table 1 confirms that, in particular for what concerns the total number of infected individuals, by
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far, the best strategy is the one dosing vaccines at the earliest considered age ā = 0.1. This choice
also results in the highest number of vaccinated individuals, so that also N corresponds to the most
expensive policy.

Table 1. Value of the functionals in (1.5), (1.8), and (1.9) corresponding to the numerical
integration of (2.1) with parameters (3.1), initial datum (3.3) and boundary datum (3.4). The
rightmost column refers to the case where no vaccination is dosed.

ā in (2.3) 0.1 0.2 0.3 0.5 1.0 1.5 none
J in (1.8) 33.48 41.03 44.73 46.85 47.39 47.51 48.30
N in (1.5) 10.53 5.05 2.30 0.76 0.41 0.36 0.00
J +N in (1.9) 44.01 46.08 47.03 47.61 47.80 47.87 48.30

3.3. Vaccinating at specific times – strategy (2.4)

We now simulate another single vaccination campaign, consisting in dosing all individuals of all
ages at a given time t̄, see Figure 4.

Figure 4. Ratio of the infected population over the whole population in the integration
of (2.1), with parameters (3.1), boundary data (3.4) and initial data as in (3.3). The
different integrations result from different choices of the time t̄, at which all S individuals
are vaccinated where from left to right, t̄ = 0.1, 0.3, 0.5, 1.5.

Similarly to the integration detailed in § 3.2, campaigns at earlier times results in being more
effective. The choices t̄ = 0.5 and t̄ = 1.5 are quite similar to each other and, in the lower right part of
the (a, t)–plane, to the situation with no vaccination campaign whatsoever, as it stems from a
comparison between the two rightmost diagram in Figure 4 and the rightmost one in Figure 1, see also
Table 2.

Note that the present strategy is far less effective: vaccinations are dosed only at the given time t̄,
after which the disease spreads completely out of control, see Figure 5.

The values of the costs (1.7), (1.8) and (1.10) presented in Table 2 show that vaccinating the whole
S population at t̄ = 0.5 or later, makes relatively small difference, the most convenient choice being at
the earliest time t̄ = 0.1. Similarly to what happens in § 3.2, vaccinating all susceptible individuals at
t̄ = 0.1 makes the susceptible portion of the population very small wherever a > t − t̄, thus essentially
canceling the nonlocal source term which represents the spreading of the disease.
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We note however an evident key difference between the best vaccination age choice (i.e., ā = 0.1) in
§ 3.2 and the present best vaccination time choice (i.e., t̄ = 0.1). The latter one yields lower values of
the chosen costs. However, as time grows, the former strategy is prone to by far preferable evolutions.
Indeed, the leftmost diagram in Figure 2 (corresponding to ā = 0.1) clearly shows a decreasing I
population, while it is increasing in the latter strategy, see Figure 4, left (corresponding to t̄ = 0.1).

Table 2. Value of the functionals in (1.7), (1.8) and (1.10) corresponding to the numerical
integration of (2.1) with parameters (3.1), initial datum (3.3) and boundary datum (3.4). The
rightmost column refers to the case where no vaccination is dosed.

t̄ in (2.4) 0.1 0.2 0.3 0.5 1.0 1.5 none
J in (1.8) 31.71 38.80 43.65 46.79 47.40 47.42 48.30
N in (1.7) 9.37 5.46 2.74 0.86 0.40 0.39 0.00
J +N in (1.10) 41.08 44.26 46.39 47.66 47.80 47.80 48.30

Figure 5. Healthy, i.e., S + R, population resulting from the integration of (2.1), with
parameters (3.1), boundary data (3.4) and initial data as in (3.3). The different integrations
result from different choices of the time t̄, at which all S individuals are vaccinated where
from left to right, t̄ = 0.1, 0.3, 0.5, 1.5.

4. Optimizing a vaccination strategy

We now consider in more detail the search for an optimal vaccination strategy in a slightly different
setting. First, we assume that infection among individuals of different ages is somewhat more difficult,
slightly modifying (3.1) to

ds(t, a) = 1
4

a
1+a , dI(t, a) = 1

2
a

1+a , dR(t, a) = 1
4

a
1+a ,

rI(t, a) = 1
10 , λ(a, a′) = e−2|a−a′ | , ϕ(t) = 1 ,

(4.1)

and choose the initial datum

S o(a) =

 3.0
(
1 − a

10

)
a ∈ [0, 3] ∪ [5, 10]

1.5
(
1 − a

10

)
a ∈ ]3, 5[

Io(a) =

 0 a ∈ [0, 3] ∪ [5, 10]
1.5

(
1 − a

10

)
a ∈ ]3, 5[

Ro(a) =
(
1 − a

10

)
.

(4.2)
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corresponding to an initial infected population that amounts to 50% of the susceptible population in
the age interval ]3, 5[. As boundary data, we keep the choice (3.4), corresponding to a constant natality
rate for the S and R populations, and to no one being infected at birth.

As a first reference situation, we consider the case of no vaccination being dosed to anyone. The
resulting integration is displayed in Figure 6.

Figure 6. Integration of (2.1)–(2.2) with parameters (4.1), initial datum (4.2) and boundary
inflow (3.4). From left to right: the S , I and R plots. Note the rise in the I population in the
region t ≥ 3 and a ∈ [1, 3], a clear effect of the nonlocal source terms in (2.1) modeling the
spread of the infection.

In this reference case, the total number of infected individuals is 22.77.
We only remark that Figure 6 shows a typical effect of the nonlocality of the source terms in (2.1).

There is an increase in the I population for, approximately, t ≥ 3 and a ∈ [1, 3] due to the transmission
and growth of the infection, a feature which becomes relevant in regions close to (relatively) high
values of the susceptible population S .

Below we restrict the values of the percentages η j and νi in (2.3) and (2.4) to the interval [0, 0.8].
Indeed, it is reasonable to assume that not every individual can be vaccinated and that, in some cases,
vaccination may fail to immunize a small percentage of susceptible individuals. For the sake of
simplicity, we introduce only three vaccination ages ā1, ā2 and ā3 or times t̄1, t̄2 and t̄3.

We present both sample values of the costs (1.9)–(1.10) and the results of optimization procedures.
The former correspond to dosing vaccines to 60% or 80% of the S population at each prescribed age
for all times, or at each prescribed time at all ages. The latter are achieved through the usual descent
method, see [13, § 7.2.2], with suitable projections that restrict to values of η1, η2, η3 and ν1, ν2, ν3 in
[0, 0.8]. A formal justification of the use of this method is in the Lipschitz continuous dependence of
the cost (1.9) or (1.10) on the various parameters, see [11].

In the integrations below, we keep ∆a = 2.5 · 10−3 and ∆t = 1.25 · 10−3. However, due to computing
time limitations, when applying the steepest descent method we passed to coarse meshes, where ∆a =

5 · 10−2 and ∆t = 2.5 · 10−2. Correspondingly, in case of the controls (2.3), optimal controls are sought
in the class of locally constant functions of the type η j(t) =

∑20
`=1 η

`
j χ[(`−1)/4, `/4[

(t). An entirely similar

procedure is followed in the case of the age dependent controls (2.4). For completeness, we recall that
in the present merely Lipschitz continuous setting, the steepest descent (or gradient) method needs not
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converge and, even if it does, its limit may well be different from a point of minimum. Therefore, in
our application of this method, we keep checking that the values of the cost (do indeed) decrease, but
we can not ensure that the values obtained are indeed points of minimum.

4.1. Dosing vaccinations at prescribed ages

Now, in the model (2.1)–(2.2) with parameters (4.1), initial datum (4.2) and boundary datum (3.4)
we prescribe 3 vaccination ages and, correspondingly, 3 constant values of the percentage of vaccinated
individuals, so that, with reference to the notation (2.3),

ā1 = 2.0 , ā2 = 4.0 , ā3 = 6.0 and η j ∈ {0.6 , 0.8} for j = 1, 2, 3 . (4.3)

First, we perform the resulting 8 numerical integrations and record the resulting costs (1.5), (1.8)
and (1.9). Then, these costs are compared among each other and with the costs resulting from the
steepest descent method. The numerical values obtained are in Table 3.

Table 3. Costs resulting from the integrations of model (2.1)–(2.2) with parameters (4.1),
initial datum (4.2), boundary datum (3.4) and control (2.3) with parameters (4.3).

η1 η2 η3 J as in (1.8) N as in (1.5) J +N as in (1.9)
0.6 0.6 0.6 14.54 7.56 22.11
0.6 0.6 0.8 14.38 7.87 22.25
0.6 0.8 0.6 14.18 8.02 22.20
0.6 0.8 0.8 14.02 8.31 22.83
0.8 0.6 0.6 13.12 9.22 22.34
0.8 0.6 0.8 12.96 9.52 22.48
0.8 0.8 0.6 12.80 9.60 22.40
0.8 0.8 0.8 12.64 9.88 22.53
see Figure 8 16.01 4.67 20.69

Figure 7. Contour plots of the solution to model (2.1)–(2.2) with parameters (4.1), initial
datum (4.2), boundary datum (3.4) and control (2.3) with ā1 = 2.0, ā2 = 4.0, ā3 = 6.0 and
η1 = η2 = η3 = 0.8.
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As is to be expected, the lowest amount of infected individuals results from the highest (and most
expensive) vaccination dosing, detailed in Figure 7. There, the discontinuities in S across the ages ā j

resulting from the conditions (2.3) are clearly visible. Choosing ā1 = 2.0 as the lowest vaccination
age allows, for about t ≥ 4, that individuals younger that this age are infected and, at later times, the
disease may well spread among juveniles.

Figure 8. Optimal time dependent controls found by means of the descent method applied
to minimize the cost (1.9), corresponding to the integration in Figure 9.

The steepest descent procedure yields a value of the cost J +N in (1.9) lower than any of the ones
obtained with constant η j as in (4.3), see Table 3. The optimal controls found by means of the steepest
descent method are shown in Figure 8 and the corresponding solutions are in Figure 9.

Figure 9. Contour plots of the solutions to to model (2.1)–(2.2) with parameters (4.1), initial
datum (4.2), boundary datum (3.4), optimized with respect to the controls η1, η2, η3 in (2.3).

4.2. Dosing vaccinations at prescribed times

We now follow a procedure, in a sense, analogous to that detailed in the preceding Paragraph 4.1.
Choose the times and controls

t̄1 = 0.5 , t̄2 = 1.0 , t̄3 = 1.5 and νi ∈ {0.6 , 0.8} for i = 1, 2, 3 . (4.4)

The costs of the integrations resulting from these choices and from the optimization are collected in
Table 4. Again, the lowest number of infected individuals is obtained with the highest number of
vaccinations and the corresponding solutions are plotted in Figure 10.
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Figure 10. Contour plots of the solution to model (2.1)–(2.2) with parameters (4.1), initial
datum (4.2), boundary datum (3.4) and control (2.4) with t̄1 = 0.5, t̄2 = 1.0, t̄3 = 1.5 and
ν1 = ν2 = ν3 = 0.8.

Given that infected individuals can not turn back susceptible, it is clear that the first vaccination of
80% of all susceptible individuals greatly hinders the spreading of the disease. The later vaccinations,
dosed also to the newly born individuals, block further infections, see Figure 10.

Table 4. Costs resulting from the integrations of model (2.1)–(2.2) with parameters (4.1),
initial datum (4.2), boundary datum (3.4) and control (2.4) with parameters (4.4).

ν1 ν2 ν3 J as in (1.8) N as in (1.7) J +N as in (1.10)
0.6 0.6 0.6 6.41 13.05 19.47
0.6 0.6 0.8 6.23 13.75 19.98
0.6 0.8 0.6 6.17 13.60 19.77
0.6 0.8 0.8 6.06 14.10 20.16
0.8 0.6 0.6 5.78 13.89 19.66
0.8 0.6 0.8 5.67 14.44 20.12
0.8 0.8 0.6 5.66 14.22 19.88
0.8 0.8 0.8 5.59 14.65 20.24
see Figure 11 7.80 8.18 15.98

The strategy found through the steepest descent method, shown in Figure 11, clearly takes advantage
of the particular shape of the initial datum (4.2). Indeed, the two “humps” in ν2 and ν3 roughly
correspond to the wave of infected individuals propagating from t = 0 onward.

As a consequence, note that the optimal control ν3 vanishes for small ages. This is due to the
fact that newborn are healthy and that the preceding vaccination campaigns succeeded in avoiding the
transmission of the infection to the youngest part of the population, see Figure 12.

With the data chosen in (4.1) and the parameters (4.2), the best vaccination strategies turn out to be
the ones of the type (2.4), i.e., those where a percentage νi(a) of all susceptible individuals of age a are
dosed at time t̄i, as it stems out comparing Table 3 with Table 4. Clearly, this outcome is a consequence
of the particular choices in (4.1) and (4.2), but the framework based on (2.1) and (2.3) or (2.4), and its
amenability to optimization procedure, is independent of these choices.
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Figure 11. Plots of the optimal age dependent controls ν1, ν2, ν3 found by means of the
descent method applied to minimize the cost (1.10).

Figure 12. Contour plots of the solutions to model (2.1)–(2.2) with parameters (4.1), initial
datum (4.2), boundary datum (3.4), optimized with respect to the controls ν1, ν2, ν3 in (2.4).

5. Conclusions

We addressed the issue of optimizing vaccination strategies. Sample numerical integrations show
various features of the solutions to the integro–differential model (2.1)–(2.2) and the effects of different
choice of the controls η j in (2.3) or νi in (2.4). Standard numerical optimization procedures, such as
the steepest descent method, can be applied to single out optimal choices of the controls.

The present framework is amenable to a variety of different applications and extensions, only a
minor part of which were explicitly considered above. For instance, natality, which is represented
by the boundary datum, can be assigned as a function of the present, or past, population densities,
also allowing for newborn to be infected also at birth. The present age structured formulation allows
to take into account the possibility that the disease is transmitted differently in different age groups.
Introducing in the S , I or R populations sexual distinctions only amounts to consider more equations,
the basic analytic framework in [11] remaining essentially unaltered.
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