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Abstract: Depopulation is one of the important interventions for the outbreak of animal diseases.
Simulation models using actual case scenarios conclude that early depopulation is the most efficient
in preventing the spread of foot-and-mouth disease (FMD). However, the long delay in its initiation
was often seen in the actual cases and the theoretical analyses of FMD epidemiology with
depopulation needs further elaboration. Here, we investigated the qualitative features of epidemic
models when depopulation at a fixed capacity was delayed. We built a simple deterministic model for
FMD based on state-transition, the SEIIR model whose unit is a single farm. The model settings and
parameters were determined using the data from the 2010 epidemic in Miyazaki, Japan. By numerical
calculation, we showed the existence of the threshold phenomenon with respect to delays in the
initiation of depopulation and if the initiation of full-fledged depopulation surpasses the certain
critical timing, the final size of the epidemic rapidly increases leading to a “catastrophic situation”.
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We also revealed the mechanism of the threshold phenomenon from the relationship between the
depopulation capacity and the increasing rate of infection. Although it can be delayed with lower
transmission coefficients, the threshold phenomenon still exists. Thus, the existence of the critical
timing for depopulation appears to be a universal feature of FMD epidemiology when depopulation is
used as the main treatment for disease control.

Keywords: foot-and-mouth disease; depopulation; infectious disease modelling; threshold
phenomena; epidemiology of domestic animals

1. Introduction

One of the goals in analyzing theoretical infectious disease models is to obtain conditions that may
either spread or suppress infectious diseases. Such conditions are often reported as the critical value
of a parameter that would lead to a drastic qualitative change of a system—the threshold phenomenon.
A central concept of the threshold phenomena in the theory of infectious disease epidemiology is the
basic reproduction number (R0), which indicates the number of consequential secondary cases in a
completely susceptible population due to the introduction of a single primary case. If the R0 value is
larger than one under suitable assumptions, then the infectious disease invades a population, otherwise,
the spread of the infectious disease is suppressed [1, 2]. Furthermore, some other types of thresholds
of epidemic models have been obtained under various settings: Time-delayed epidemic models [3, 4],
a malaria model considering dilution effect of animal population [5], a cholera model with periodic
transmission rate [6], a time-delayed SEIRS model with pulse vaccination [7], a pertussis model with
seasonality [8], a stochastic avian-human influenza model with psychological effect [9], among others.

Depopulation is one of the important interventions for an outbreak of animal disease, which is
essentially different from that for human disease. Clearly, the faster the initiation of depopulation is,
the better the outcome is. However, studies on the possible qualitative change in the model due to the
delays in the depopulation are limited. Based on state-transition such as the SEIR
(susceptible-exposure-infectious-recovered) model, in the present study, we developed a simple
deterministic model of foot-and-mouth disease (FMD) and conduct a numerical investigation
concerning threshold phenomena.

FMD is a transboundary animal disease caused by a virus of the genus Aphthovirus in the family
Picornaviridae. FMD is so highly contagious that R0 value for intra-farm transmission has been
reported being as high as 38.4 [10]. A single confirmed case is almost equivalent to a farm-wide
infection. Modes of FMD transmission include contact with infected animals or inanimate objects and
exposure to the aerosolized virus [11–13]. The virus is known to exist in seven serotypes (i.e., O, A,
C, SAT 1, SAT 2, SAT 3 and Asia 1) with the O serotype being the most common worldwide. In
2010, this serotype was implicated in sporadic outbreaks in East Asia [14–16] including Japan. To
define the model settings and parameters, we deal with the FMD epidemic in Japan 2010 which was
mainly localized in Miyazaki Prefecture. The economic damage was massive involving 292 farms and
the culling of approximately 290,000 animals in a short span of two and a half months [17].

Depopulation is the primary intervention of choice in Japan to eradicate FMD according to the
nation’s legislation [18, 19]. Measures like vaccination, traffic restriction, and quarantine are regarded
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as supplementary strategies only. This view is shared by 65 other countries belonging to the OIE list
of “FMD free countries where vaccination is not practiced” (a total of 66 countries including Japan).
When countries in the list conduct vaccination, they will be removed from the list and should
depopulate all the vaccinated animals to be listed again [20]. In contrast, only two nations are listed as
“FMD free countries where vaccination is practiced” [21]. Countries in the former list implemented
stringent import and cross-border animal movement control and surveillance to maintain such status,
which in turn grants trading privileges among them. Aside from historical accounts, compelling
evidence from research employing epidemiological simulations agrees that depopulation is the most
effective intervention to control and eradicate FMD, the importance of the combination of it and
supplementary measures was also stated though [22].

The timing of the implementation of depopulation has emerged as a critical element for a successful
outcome. The retrospective simulations conducted on the 2002 and 2010 FMD epidemic in Korea
and Japan, respectively reported that a prompt depopulation within 48 h or less following confirmed
detection would have reduced the number of infected farms to less than half of those reported [23,
24]. Although it is ideal, the countries that had experienced the pandemic of FMDs revealed that the
depopulation of all infected farms within this time frame is difficult to achieve in the case of outbreaks
in a highly dense area [25–27].

Hayama et al. [24] presented retrospective modelling scenarios for a 1-day, 2-day, or 3-day prompt
depopulation after detection of an index case; while Yoon et al. [23] simulated for 2 days or 5 days of
prompt depopulation, as well as for a 5-day pre-emptive depopulation. In contrast, a long delay
(median, 9 days) in the depopulation of infected farms was reported in the Miyazaki outbreak in 2010,
because of depopulation with a full of capacity due to difficulties in identifying and accessing
acceptable burial sites [28]. Similarly, both Great Britain and the Netherlands in 2001 also reported
delays in conducting a full-fledged depopulation due to an overwhelming of the country’s capacity
during the first outbreaks since the epidemic affected a farm-dense area [25–27]. The scenarios
presented in the previous retrospective modeling studies were not reflective of the actual delays in the
implementation of depopulation. Clearly, further analysis is needed to better characterize the
epidemiological repercussions of such delays. This information are important inputs for decision
makers in designing contingent measures to enhance national preparedness in the event of another
outbreak.

The previous retrospective studies were interested in the quantitative outcome of depopulation,
but the present study aims at the qualitative revelation of the threshold phenomena in the timing of
depopulation in relation to the final size of the epidemics and the timing of depopulation.

This paper is organized as follows. In section 2, we explain the methods of our study: Data, model,
and numerical calculation. In section 3, we present numerical results about a threshold phenomenon.
Discussion and conclusion are given in section 4 and section 5, respectively.

2. Materials and method

2.1. Data

Miyazaki Prefecture, one of Japan’s primary livestock-producing areas, was used as the area for
the present study. The densities of cattle and swine farms here are among the highest in the country
at 165 cattle and 9.8 pig farms per 100 km2 in 2010 [17]. Data obtained for the development of the
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model included farm location, species and number of animals for each farm. Information pertaining
to the 2010 FMD epidemic was also obtained which accounted for the dates when the infection was
reported to the prefectural office, dates for the start and completion of depopulation, and dates when
disinfection of farm facilities and equipment was completed [15, 29].

2.2. Model description and formulation

The established methodological approach for modelling FMD is by grouping the animals based on
the infection stage—susceptible, exposure, infectious, or recovered (SEIR) [30]. This model has wide
applications and had been used to model infectious diseases not only in animals [25] but in humans, as
well [31]. The SEIR model has been applied to FMD previously [25]. We made a distinction between
the asymptomatic (I1) and symptomatic (I2) infectious stages of the disease as a modification. This
modified model, hereafter referred to as the SEIIR model, was then used to run several scenarios to
simulate the epidemiological impact of delays in the implementation of depopulation and the likely
effect of other secondary control strategies. Because it is assumed that if animals of the symptomatic
stage do not exist, the farms are not depopulated even when infectious animals exist, we need to
separate an infectious stage to subclinical and clinical stages [30]. The second modification was the
setting of the study unit; considering that FMD virus spreads within a farm so rapidly [10] that a single
case is nearly equivalent to farm-wide infection. We used a single farm as the basic unit of study
instead of individual animals. Thus, we mainly considered direct or indirect transmission among farms
via contaminated environments [11, 12]. Thirdly, we did not consider natural recovery as the final
stage of infection because once a farm is infected, the contaminated water, soils, and other equipment
on the farm can cause new infections even when all the animals recovered. In our model, infected
farms were considered non-infectious only after depopulation and the disinfection of the facilities
and equipment. As such, the R stage of infection in our SEIIR model refers to “removed” instead
of “recovered”. Both cattle and swine herds were affected during the 2010 epidemic in Miyazaki,
so each farm was supposed to possess either cattle or swine only and represented by the subscripts
“c” and “s”, respectively. Based on these, farms were categorized using the following compartments
(Figure 1): S (susceptible farms; no animal in the farm is infected), E (exposed farms; more than one
animal is infected but none is infectious), I1 (subclinically infectious farms; more than one animal is
infectious but none is symptomatic), I2 (clinically infectious farms; more than one animal is infectious
and symptomatic), and R (removed farms; depopulated farms).

In the model, ordinary differential equations were used to describe the indirect transmission among
farms.

dS c

dt
(t) = −βccS c(t)(I1c(t) + I2c(t)) − βscS c(t)(I1s(t) + I2s(t)), (2.1)

dEc

dt
(t) = βccS c(t)(I1c(t) + I2c(t)) + βscS c(t)(I1s(t) + I2s(t)) − λcEc, (2.2)

dI1c

dt
(t) = λcEc(t) − γcI1c(t), (2.3)

dI2c

dt
(t) = γcI1c(t) −max(0,min(δ(t) − I2s(t), I2c(t))), (2.4)

dS s

dt
(t) = −βssS s(t)(I1s(t) + I2s(t)) − βcsS s(t)(I1c(t) + I2c(t)), (2.5)
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dEs

dt
(t) = βssS s(t)(I1s(t) + I2s(t)) + βcsS s(t)(I1c(t) + I2c(t)) − λsEs(t), (2.6)

dI1s

dt
(t) = λsEs(t) − γsI1s(t), (2.7)

dI2s

dt
(t) = γsI1s(t) −min(δ(t), I2s(t)). (2.8)

βcc, βcs, βss and βsc are transmission coefficients. λ, γ and δ are transition rates from E to I1, from I1

to I2, and from I2 to r respectively. δ(t) is the depopulation capacity, which is the maximum number
of farms to be depopulated each day. The probability of causing new infection, represented by the
transmission rate among farms (β), was constant regardless of the number of infected animals since
a single infected animal is all that is needed for inter-farm transmission. This assumption is further
supported by the high R0 value of FMD. Data on FMD transmission rate inter-farm which accounts for
the heterogeneity of cattle and swine herds are yet unavailable, but such data for intra-farm transmission
has been reported by Hayama et al. [24]. We assumed that inter- and intra-farm transmission rates were
proportional. Indirect transmission of the FMD virus between farms (inter-farm transmission) is caused
by the movement of the contaminated vehicle, soil, and other equipment from infected farms.

The infection of S farms was assumed to be caused by indirect transmission from either I1 or I2

farms. The consequent decline in the number of S farms due to this is represented by (2.1) and (2.5).
In the subsequent E compartment, the increase, due to recategorization of the infected S farms, and
decrease, due to the progression of the infection to the subclinical stage (I1), are given by (2.2) and
(2.6), respectively. The increase in the number of farms in the I1 compartment and its decrease when
farms start manifesting the symptoms of infection (transition to I2) is represented by (2.3) and (2.7).
The Eqs (2.4) and (2.8) give the resulting increase in the number of farms in the I2 compartment and
the decrease by depopulation explained below.

dRc

dt
(t) = max(0,min(δ(t) − I2s(t), I2c(t))), (2.9)

dRs

dt
(t) = min(δ(t), I2s(t)). (2.10)

Depopulation is implemented on a farm by farm basis following the stipulations of the Japanese
national legislation [18, 19]. Since I1 farms were asymptomatic of the infection, only the I2 farms
manifesting the symptoms were subsequently depopulated. The decrease in the number of I2 due
to this depopulation is represented by (2.4) and (2.8). While, (2.9) and (2.10) reflect the increase
in the number of removed farms (R) by depopulation. The depopulation capacity was set as a step
function of time that was used to determine the maximum number of farms that can be depopulated
each day. When the number of I2 farms exceeds the depopulation capacity, swine farms should be
depopulated preferentially because FMD in this species was shown to be highly infectious compared
to cattle [29,32]. The depopulation factor in (2.4), (2.8), (2.9) and (2.10) were not linear functions seen
in natural phenomena, but rather represent the artificial control.

2.3. Model parameters and settings

In the task of defining the parameters and settings, it is important that our model closely simulates
the actual depopulation pattern during the 2010 FMD outbreak in Miyazaki which was characterized
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Figure 1. Compartmental model for the spread of FMD virus. Infection caused by I1 and
I2 farms transfers S farms to E compartment, where βcc, βcs, βss and βsc are transmission
coefficients. E and I1 farms transfer to I1 and I2 with transition rates of λ and γ respectively.
I2 farms transfer to R compartment by depopulation.

as having two phases (Figure 2) [29]. In fact, the number of depopulated farms per day increased
only after about 5 days since the number of farms reported to have been infected increased at day 15.
The first phase was the 20-day period after detection of the index case. The average depopulation
at this phase, which we refer to as the “initial” depopulation phase, was 1.27 farms/day; while the
second phase, referred to as the “full-fledged” depopulation phase, was the period characterized by an
increased depopulation capacity of 6.89 farms/day.

Information pertinent to the 2010 epidemic in Miyazaki obtained from the prefectural office showed
that the first reported case of suspect FMD infection was on March 31 in a farm of swine and buffaloes.
The first confirmed case, however, was reported 20 days later on April 20 [15]. Based on this, we set in
our model the first confirmation of FMD symptom, t = 0 (days), as the April 20 report. It is known that
clinical symptoms only appear around 2 days after infection [30]. This means that the first reported
FMD infection on March 31 was exposed to the virus at least 22 days prior to the first confirmation
of FMD symptom. Based on this, we started our simulation 22 days before the first confirmation
of FMD symptom at t = −22. For the simulation, we set the number of cattle and swine farms at
11,030 and 655, based on the reported density of cattle and swine farms in Miyazaki prefecture in
2010 [17]. The initial conditions of the model were: S c(t0) = 11030, S s(t0) = 654, I1s(t0) = 1, and
Ec(t0) = I1c(t0) = I2c(t0) = Es(t0) = I2s(t0) = 0 where t0 = −22. The depopulation capacity during the
initial phase was set at 1 farm/day, and during the full-fledged depopulation phase at 7 farms/day as
shown in Figure 3.

We parametrize the time gap between the detection of the first confirmation of FMD symptom and
the initiation of a full-fledged depopulation as d. We defined the depopulation factor δ(t) as

δ(t) =


0 (t < 0)
1 (0 ≤ t < d)
7 (t ≥ d)

. (2.11)
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Figure 2. Epidemic and depopulation curve in Miyazaki outbreak in 2010. The number of
farms reported to have infected animals at each day is shown in dashed line and that of farms
where depopulation was completed is shown in solid line.
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Figure 3. The setting of depopulation capacity in our model. The duration between the
first confirmation and the initiation of full-fledged depopulation was parameterized as d. The
depopulation capacity in our model is drawn by dashed line, whose value is 0 (undiscovered;
day < 0), 1 (initial depopulation; 0 ≤ day < d) and 7 (full-fledged depopulation; day ≥ d).
The solid line means the number of completion of depopulation.
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We set the depopulation capacity at 1 farm/day after first confirmation of FMD symptom and time
before d, and at 7 farms/day any time after d. Consistently, we initially set the d value at 21 days in the
model to reflect the actual scenario during the 2010 FMD epidemic in Miyazaki.

The parameters used in our model are shown in Table 1. The durations of infection stages of the
FMD virus serotype O for each species were reported by Mardones et al. [30]. From this, the
transition parameters were determined (e.g. λc = 1/(latent period of cattle),
γs = 1/(subclinical period of swine)). The parameter β = βcc is the transmission rate for indirect
transmission among cattle. Although this was unknown, we obtained this value for the present study
using maximum likelihood estimation.

Table 1. Parameters of the model of O serotype of FMD virus spread. λc, λs, γc and γc are
according to [30]. βcc is estimated by maximum likelihood estimation. βcs, βsc and βss are
calculated by βcc and [24].

Parameters Definition Value
λc Transition rate from Ec to I1c 0.279 [30]
λs Transition rate from Es to I1s 0.326 [30]
γc Transition rate from I1c to I2c 0.490 [30]
γs Transition rate from I1s to I2s 0.441 [30]
βcc Transmission coefficient from cattle to cattle β = 1.057085 × 10−5

βcs Transmission coefficient from cattle to swine β × 0.77
βsc Transmission coefficient from swine to cattle β × 2.45
βss Transmission coefficient from swine to swine β × 3.01

To estimate β, we used the data of epicurve from t = 0 to t = 59 in Figure 2 and the relative ratio of
transmission coefficient among cattle and swine [24]. We assumed that the number of newly infected
farms followed the Poisson distribution and we defined the following likelihood function.

l(β) =

59∏
t=0

λkte− jt

kt!
, (2.12)

where kt is the actual number of newly infected farms at day t and jt is the number from our model at
day t. In the above-mentioned parameters and settings, we considered cumulative numbers of infected
farms, which are represented by Jc and Js, and jt is calculated by solving the ordinary differential
equations of Jc and Js.

dJc

dt
= γcI1c, (2.13)

dJs

dt
= γcI1s, (2.14)

Jc(0) = Js(0) = 0, (2.15)
jt = I1c(t + 1) − I1c(t) + I1s(t + 1) − I1s(t). (2.16)

In the result of maximum likelihood estimation using the likelihood function (2.12), we obtain
β = 1.057085 × 10−5 and data fitting shown in Figure 4. Because the relative ratio of transmission
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Figure 4. Data fitting of maximum likelihood estimation whose likelihood is defined by
(2.12). The solid line is the number of reported infectious farms calculated by our model for
the estimate β = 1.057085, which corresponds to (2.16). The dashed line is number of actual
reported infectious farms.

coefficient among cattle and swine are known [24], we could obtain the other transmission coefficients
βcs, βsc and βss by multiplying the relative ratio by β(= βcc). We set the transmission force of clinical
and subclinical animals equal for simplicity.

2.4. Numerical calculation

We calculated the time evolution of the ordinary differential equations and final sizes for various
settings numerically. Evolution of our model is calculated by the fourth-order Runge-Kutta method
with time step 0.01. The final size was calculated by evolving our model from t = t0 with the above
mentioned initial conditions. We stopped the time evolution if the number of newly depopulated farms
became less than 10−6. The time when the evolution stopped was referred to as T . We regarded the
final size as Rs(T ) + Rc(T ).

Simulated delays in the initiation of a full-fledged depopulation (d) ranging from 0–60 days were
evaluated using our model. Results from these simulations were summarized as a plot of the estimated
the final size of the epidemic (reported as the number of farms) against the change in time d (reported
in terms of days). Then, we analyzed the increasing rate of infected farms per day in relation to the
maximum depopulation capacity (7 farms/day) to indicate the stage at which this capacity would be
exceeded.

We varied the transmission rate (β) by a factor ranging from 0.7 to 1.3 to evaluate the effect of
different FMD-control strategies (i.e. vaccination, traffic restriction, and quarantine) on the the final
size of the epidemic.

Mathematical Biosciences and Engineering Volume 16, Issue 5, 5931–5946.



5940

0

4000

8000

12000

0 10 20 30 40
Initiation of depopulation
(d, days after index case)

F
in

al
 s

iz
e

Figure 5. The influence of d (the duration between the initiation of full-fledged depopulation
and the first confirmation of FMD infection) on the cumulative number of infected farms.
The final size is 238 farms when the full-fledged depopulation commenced at d = 21 days.
The final sizes for d ≥ 22 are 11,685 farms. The threshold phenomenon occurs between
d = 21 and d = 22.

3. Results

3.1. Final size estimation

When we varied the commencement of the full-fledged depopulation (d = 0 to 60 days), the number
of infected farms remained low when full-fledged depopulation was done any time until 21 days after
detection of the first confirmation of FMD symptom (Figure 5). Full-fledged depopulation commenced
at d = 21 days would have resulted in the infection of 238 farms. However, at d ≥ 22, the number of
infected farms abruptly increased to 11,685 farms—the total number of farms in Miyazaki at the time of
the epidemic in 2010. Our model revealed a threshold between 21 and 22 days for the commencement
of full-fledged depopulation. After which, the epidemic will reach a catastrophic situation wherein all
farms would have been infected.

3.2. Mathematical explanation of threshold phenomenon

To explain the threshold phenomenon shown in Figure 5, we evolved our model without full-fledged
depopulation, that is, in the case, the depopulation capacity is 1 farm/day for t > 0. Then, we compared
depopulation capacity and increasing rate of infected farms per day. We defined the increasing rate of
infected farms r(t) (farms/day) as

r(t) = (βccS c(t) + βcsS s(t))(I1c(t) + I2c(t)) + (βssS c(t) + βscS s(t))(I1s(t) + I2s(t)), (3.1)

which is equal to the derivative of the cumulative number of farms of subclinically infectious stage
I1c + I1s.
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Figure 6. Relationship between the increasing rate of infected farms (r(t)) and depopulation
capacities (δ(t)). The increasing rate of infected farms is shown in solid line. The
depopulation capacity of initial and full-fledged depopulation for the analyses are shown
in dashed line. The simulation of this analysis is calculated in the case that the full-fledged
depopulation is not implemented, i.e., d = ∞.

Figure 6 shows the time variation of r(t). The value of r(t) exceeded 1, that is the capacity of the
initial depopulation, between t = −8 (14 days after the index case) and t = −7, which is before the
initial depopulation starts at t = 0. After the beginning of the initial depopulation, r(t) exceeded 7
between t = 21 and t = 22. The timing when r(t) exceeded 7 equal to the threshold value of d. This
indicates that the excess of the increasing rate of infected farms over depopulation capacity causes the
infection of all farms.

3.3. Sensitivity analysis of β

We have also varied the transmission rate; Figure 7 shows the result of final size estimation under
different β values by a factor of 0.7 to 1.3 of its initial value. The dotted lines show resulting numbers
of infected farms with different beta values relative to the delay in the initiation of a full-fledged
depopulation (d), and the threshold phenomena were evidently illustrated (Figure 7). Increasing the β
value makes the threshold value for d earlier. When β reached a level 1.3 times higher than the initial
value, the threshold for d occurred 6 days after the first confirmation of FMD symptom. But, at a
lower β value of 0.7 times the initial estimate, there was no abrupt increase in the number of infected
farms, in which case the increasing rate, r(t), had never exceeded the initial depopulation capacity
(Figure 8).

4. Discussion

The present study is aimed at revealing the qualitative features of outbreaks controlled by
depopulation. Here, the simple deterministic model, the SEIIR model, was built to make a distinction
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In this case, because the increasing rate of infected farms is low and does not exceed the
capacity of the initial depopulation, the threshold phenomenon does not occur.
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between the asymptomatic and symptomatic stages of FMD infection. We simulated the two-phased
depopulation pattern (i.e., initial and full-fledged depopulation phases) observed in the 2010 FMD
epidemic in Miyazaki, Japan. Our numerical investigation clearly connected delays in the initiation of
depopulation to the epidemic final size, and revealed the novel threshold phenomena, that is, the
existence of a critical timing for the initiation of full-fledged depopulation.

The threshold phenomena, represented as the drastic increase of the final size, observed at 22 days
occurred when the increasing rate of infected farms per day defined by (3.1) exceeded the
depopulation capacity. This relationship between the depopulation capacity and the increasing rate of
infection plays the most important role in the threshold phenomena and it determines the critical
timing. Our numerical investigation indicates that decreasing the depopulation capacity would shift
the critical timing earlier, while increasing the capacity would postpone it.

Decreasing the transmission coefficient of the disease may be achieved in practice by the
implementation of other control strategies. We conducted simulations by varying the values for the
disease transmission coefficient (β) at ±30% the baseline value (1.06 × 10−5). It was shown that
decreasing and increasing the transmission coefficient of the disease extended and shortened the
critical period, respectively. Further, we found that by reducing the inter-farm transmission coefficient
(β) by 30%, infected farms would have been eliminated at the initial depopulation phase. Besides, if
the initiation day of depopulation was fixed at 22 days after the first confirmed case and the range of β
was set between 7.40 × 10−6 and 8.46 × 10−6, the epidemic final size would have been drastically
reduced, which can be regarded as another threshold phenomenon.

The SEIIR model we have developed in this study has limitations. We did not factor in the model
the stochasticity of infection, the geographic distribution or network structure of farms, the
fluctuations of depopulation capacity, detailed estimation of transmission rate, nor any change in the
FMD control strategy other than depopulation, even though the indirect transmission rate must have
been reduced by several restrictions after the confirmation of FMD epidemic and other events could
have likely influenced the model. Although it is known that clinical animals are more infectious [33],
we assume that I1 and I2 have same transmission coefficients (β) for simplicity and due to the
difficulty of the parameter estimation. These limitations result in the imperfect prediction of the final
size of an epidemic which was predicted as 237 farms but actually 292 farms. In fact, our model
predicted the critical timing of the initiation of the full-fledged depopulation as 22 days after the index
case, a discrepancy of 1 day from the actual (i.e., 21 days), which may implausible. Further, we only
used the epidemic data from Miyazaki and the two-phase depopulation pattern unique to Miyazaki
case. This information was sufficient for detecting the existence of a threshold in FMD treatment but
not for predicting the critical timing in the actual FMD epidemic. Further development of this FMD
model should incorporate factors like spatial features, to accurately predict the critical timing during
the actual FMD epidemic.

Our formulation can be useful for models of other animal diseases concerning depopulation,
although our model may have insufficient points as FMD modelling. Because the model is simple and
the mechanism of the threshold phenomena is described by the relationship between the depopulation
capacity and the increasing rate of infection, the same mechanism is expected to hold even if we
consider models whose compartments are different, for example, SIR and SEIR.
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5. Conclusion

Using the SEIIR model we have developed, we hereby report the existence of the critical timing
to initiate depopulation for FMD control—the threshold phenomenon. Surpassing the timing could
lead to a catastrophic disease incursion in all farms in the area and even a possible spread outwards.
Eventually, the epidemic would become an endemic. The existence of the critical timing appears to
be a universal feature, at least in and SEIR-based model, and the timing can be influenced by the
transmission rate and depopulation capacity. Further work has to be done on this phenomenon for a
precise prediction of the critical timing for effective FMD control.
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