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Abstract: Glioblastoma multiforme (GBM) is an aggressive primary brain cancer with a grim prog-
nosis. Its morphology is heterogeneous, but prototypically consists of an inner, largely necrotic core
surrounded by an outer, contrast-enhancing rim, and often extensive tumor-associated edema beyond.
This structure is usually demonstrated by magnetic resonance imaging (MRI). To help relate the three
highly idealized components of GBMs (i.e., necrotic core, enhancing rim, and maximum edema ex-
tent) to the underlying growth “laws,” a mathematical model of GBM growth with explicit motility,
birth, and death processes is proposed. This model generates a traveling-wave solution that mimics
tumor progression. We develop several novel methods to approximate key characteristics of the wave
profile, which can be compared with MRI data. Several simplified forms of growth and death terms
and their parameter identifiability are studied. We use several test cases of MRI data of GBM patients
to yield personalized parameterizations of the model, and the biological and clinical implications are
discussed.
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1. Introduction

Glioblastoma multiforme (GBM) is a highly aggressive primary brain cancer, with median sur-
vival time from diagnosis on the order of 15 months; long-term survival is extremely rare [1]. Such
rapid progression is promoted by highly proliferative and diffusely invasive cancer cells, which makes
complete surgical removal impossible. Magnetic resonance imaging (MRI) is conventionally used to
identify the location and characteristics of the tumor pre-operatively, to guide surgery, and to monitor
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and track progression and treatment response. Perioperatively, MRI is used to guide the resection of
the tumor mass, to assess post-operatively the volume of tumor resected, and to target other adjunct
treatment such as radiation therapy.

GBMs morphologically typically appear (at least at initial diagnosis) as roughly spherical but highly
heterogeneous masses that often exhibit a (crudely speaking) three-layer structure. Within the tumor
there is usually extensive cell necrosis, often accompanied by tumor cells, and a cystic component
as well. An outer region, which typically appears as contrast-enhancing on T1-weighted gadolinium
contrast-enhanced MRI, is cytologically typified by proliferating cells that then infiltrate into surround-
ing brain tissue. The surrounding brain tissue is generally seen to be edematous on T2-weighted or T2-
FLAIR MRI and at surgery, due to vasogenic edema. Prior statistical analyses have found that edema
is a prognostic indicator of patient survival [2], but the relationship is complex and appears to be me-
diated by the expression of vascular endothelial growth factor and the activity of related angiogenic
genes [3] and various autocrine factors [4].

The standard of care for GBM patients was largely established by the 2005 clinical trial by Stupp
et al. [5]. It comprises maximal surgical resection of the primary tumor, followed by six weeks of
radiation to the gross tumor volume, plus a 2–3 cm margin, with concomitant oral temozolamide
(TMZ), and 6–12 months of maintenance TMZ chemotherapy [6]. Maximal surgical resection appears
to offer some survival benefit. Nevertheless, the absolute survival benefit of even the most effective
therapy is typically on the order of months. The highly infiltrative nature of GBMs makes recurrence
nearly inevitable, even with maximal resection and aggressive adjuvant therapy, although individual
tumors vary in their degree of invasiveness.

Given the grim situation, mathematical modeling has been proposed as a method to better under-
stand the biophysical rules underlying GBM growth, with the ultimate goal to provide more effective
therapy. Mathematical models have been widely applied to a variety of cancers and to cancer treatment
in general [7], and GBM is the focus of many such works (see [8] for a review). A popular class of
cancer models takes the form of a system of reaction-diffusion equations. In many cases [9, 10, 11],
such systems generate a traveling-wave solution, with the traveling-wave speed of great interest, as it
is an indicator of how fast the cancer progresses.

Variants of the Fisher-Kolmogorov equation [12], originally introduced in the 1930s, were first
suggested (to our knowledge) as models for GBM growth by J. D. Murray and coworkers. The Fisher-
Kolmogorov model is given by

∂c
∂t

= ∇ · (D∇c) + ρc
(
1 −

c
K

)
, (1.1)

where c(x, t) is the cancer cell density at location x and time t, D is a diffusion coefficient, ρ is the
intrinsic tumor cell growth rate, and K is the local carrying capacity. (Variants include a linear version
that replaces the logistic growth term with a simple exponential growth rate, ρc.) Murray and coworkers
have used them to explore the effect of chemotherapy [13], to quantify patients’ survival as a function
of the extent of surgical resection [14], and to estimate the time of tumor initiation [15].

Other authors have suggested that the net growth and diffusion parameters of model (1.1) may
be estimated by image differencing when two sequential, pre-treatment patient MR series are avail-
able [16, 17, 18]. Such a procedure is problematic, however, because changes in the tumor in im-
ages taken a few days or weeks apart tend to be small and are convolved with image co-registration
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errors [19]. Some patients may be treated with steroids following initial diagnosis to reduce tumor-
related edema and resulting neurological symptoms, which may alter the brain geometry and imaging
appearance of the tumor at subsequent times [20, 21].

Model (1.1) can yield a dense tumor core with an advancing front, but it cannot capture the het-
erogeneity between live and necrotic tumor cells, as it assumes that all cells are equally viable. While
several modeling efforts have taken into account various proliferating, migrating, and necrotic cell com-
ponents (e.g., [22, 23]), they are too complicated to be reliably parameterized by the limited number
of patient MRI series in typical clinical cases. The motivation for this work is to extend model (1.1) to
include necrotic cells in a simplified way, such that patient-specific model parameters can be estimated
from suitable measurements of MR images acquired at a single time point.

T1-weighted MRI sequences of GBM often show a partially necrotic core surrounded by a bright
enhancing rim that correlates with high blood vessel density and, presumably, with rapid cell prolifera-
tion. Neurosurgical and biopsy studies indicate that this core and rim are usually surrounded by a large
expanse of edema, which is best visualized on T2-weighted MRI and has been found to correspond
with a component of diffusely invasive GBM cells [24]. By approximating the tumor as a sphere, we
may be able to identify three idealized digital marks from imaging: necrotic radius, enhancing radius,
and what we shall call the “T2” or “maximum” radius. We hypothesize that a relatively simple math-
ematical model framework can capture all these three digital marks and yield insights into the relative
contributions of cellular proliferation, motility, and necrosis to the observed image features.

The next section describes our model and its assumptions. We demonstrate that the model has a
traveling-wave solution and present the approximate wave profile. We describe a simple procedure to
estimate patient-specific parameters by fitting the approximate wave profile to a tumor profile derived
from patient MRIs. The identifiability of the model parameters is also discussed. We apply this pa-
rameter estimation procedure to obtain the key model parameters (consisting of the rate of cancer cell
proliferation, death, and diffusion) for several patients.

2. Model and method

2.1. Model description

Our proposed model of the growth of GBM is a system of reaction-diffusion equations:

∂p
∂t

= ∇ ·

[(
Dp

p + q

)
∇(p + q)

]
+ g̃(w)p − δ̃(w)p, (2.1a)

∂q
∂t

= ∇ ·

[(
Dq

p + q

)
∇(p + q)

]
+ δ̃(w)p, (2.1b)

where
w = 1 − p − q, (2.2)

and p(x, t) and q(x, t) represent the proliferating and quiescent cell densities at time t and location x,
respectively; quiescent cells are functionally equivalent to necrotic cells in this framework. We assume
that the flux of total population due to migration is −D∇(p + q), where D is a constant diffusion
coefficient. It is further assumed that the proportion of the total flux contributed by each cell type
equals its proportion of the total population. This form of diffusion was used in [25] to account for
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the key property of contact inhibition in cancer cell movement, with the underlying assumption that
the two cell populations move together with equal motility, unaffected by necrotic cells. This type of
model has successfully captured the structure of a growing tumor.

The per capita birth rate is g̃(w); proliferating cells become quiescent at the per capita rate δ̃(w),
where w (Eq. 2.2) represents the availability of space or some generic nutrient, which we will call
growth factor henceforth. We have scaled the maximum cell density to be 1. In our model, necrosis is
not explicitly included but can be regarded as being lumped into q. Insofar as quiescent cells cannot
become proliferative, δ̃(w) can be viewed as a functional death rate. Our motivation in keeping the
model framework relatively simple is to be able to estimate model parameters directly from clinical
MRI imaging that is sparse in time.

To make the model biologically reasonable, we impose the following constraints on g(w) and δ(w):

g̃′(w) ≥ 0, δ̃′(w) ≤ 0, g̃(1) ≥ δ̃(1) = 0, δ̃(0) > g̃(0) = 0. (2.3)

That is, birth (death) should increase (decrease) with the availability of the growth factor; there is more
birth than death at maximum values of the growth factor; and there is only death with no growth in the
absence of growth factor. It is also assumed that the death rate is negligible at maximum values of the
growth factor. With these assumptions, we observe numerically that with suitable initial conditions,
the solution of (2.1) stays positive and is bounded (p + q ≤ 1) for all t.

We can estimate only up to three parameters based on the necrotic, enhancing, and maximum radii
to be measured from MRI images. Therefore, we place a few more restrictions on g̃(w) and δ̃(w) to
simplify the estimation of model parameters and to ensure their identifiability. We assume that the
proliferation rate at maximum growth factor is ρ and that the death rate at zero growth factor is k and
incorporate these parameters into g̃ and δ̃, respectively; that is, g̃(w = 1; ρ) = ρ and δ̃(w = 0; k) = k.
For reasons that will become clear later, we pick a functional form that can be written as g̃(w; ρ) =

ρg(w) and δ̃(w; k) = kδ(w). Some examples include the cumulative distribution function of the beta
distribution family (cf. the left pane of Figure 4). These additional assumptions impose little impact on
the generality of our model. The benefit of including them will become clear in Section 2.3.

2.2. Approximate wave profile

In most biological applications of reaction-diffusion models, solutions take the form of traveling
waves. MRI images of GBM cancer growth suggest that we can approximate the evolution of the tumor
by a traveling-wave solution of its growth model. To uniquely identify and accurately approximate
GBM growth model parameters, it is highly desirable to obtain some analytic approximation of the
traveling wave, to enable computational matching of the image wave profile and the approximate model
wave profile. For this purpose, we consider one spatial dimension, which suffices insofar as the tumor
is approximately spherical, and, at the time of diagnosis, its radius is large enough so that radial effects
are negligible. With these assumptions, model (2.1) takes the form

∂p
∂t

=
∂

∂x

[(
Dp

p + q

)
∂

∂x
(p + q)

]
+ ρg(w)p − kδ(w)p (2.4a)

∂q
∂t

=
∂

∂x

[(
Dq

p + q

)
∂

∂x
(p + q)

]
+ kδ(w)p. (2.4b)
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We nondimensionlize the system using the characteristic length
√

D/k and the characteristic time 1/k
so that x =

√
D/k x̂ and t = t̂/k, which leads to

∂p
∂t̂

=
∂

∂x̂

[(
p

p + q

)
∂

∂x̂
(p + q)

]
+ ρ̂g(w)p − δ(w)p (2.5a)

∂q
∂t̂

=
∂

∂x̂

[(
q

p + q

)
∂

∂x̂
(p + q)

]
+ δ(w)p, (2.5b)

where ρ̂ = ρ/k. We seek a traveling wave solution of the form p(ξ) = p(x̂− ct̂), q(ξ) = q(x̂− ct̂), where
c is the wave speed. Substituting these into (2.5) gives

d
dξ

[(
p

p + q

)
d
dξ

(p + q)
]

+ c
dp
dξ

+ ρ̂g(w)p − δ(w)p = 0 (2.6a)

d
dξ

[(
q

p + q

)
d
dξ

(p + q)
]

+ c
dq
dξ

+ δ(w)p = 0. (2.6b)

Linearizing at the wave head, i.e., substituting the ansatz p = Ae−rξ and q = Be−rξ into (2.6), gives
(r2 − cr + ρ)A = 0. For a biologically realistic wave front, we expect A > 0, B > 0, and r > 0.
This requires that c2 > 4ρ, which implies that the minimum speed of the wave is cmin = 2

√
ρ̂. It is

numerically verified that the minimum speed is exactly the asymptotic speed, i.e., c = cmin.
To obtain an approximate wave profile, we adopt a method first used by Canosa [26]. We rescale

the wave coordinate as z = −ξ/c, which leads to

1
c2

d
dz

[(
p

p + q

)
d
dz

(p + q)
]
−

dp
dz

+ ρ̂g(w)p − δ(w)p = 0, (2.7a)

1
c2

d
dz

[(
q

p + q

)
d
dz

(p + q)
]
−

dq
dz

+ δ(w)p = 0. (2.7b)

Assuming that 1/c2 is small, we neglect each first term of (2.7). Writing the resulting system in terms
of p and w, we obtain the reduced system

dp
dz

= p
(
ρ̂g(w) − δ(w)

)
, (2.8a)

dw
dz

= −p ρ̂g(w), (2.8b)

which is amenable to phase-plane analysis. The approximate wave solution corresponds to a trajectory
that leaves (0, 1) and ends at (0,w∗), with w∗ ∈ [0, 1) (see Figure 1). (In the appendix, we show that
such a trajectory exists, given the assumptions (2.3).) Dividing (2.8a) by (2.8b) yields

dp
dw

=
δ(w)
ρ̂ g(w)

− 1. (2.9)

Upon integration, we obtain p as a function of w, which we will use in the next section.
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Figure 1. A typical trajectory that connects (0, 1) and (0,w∗) in the phase plane. Given
δ(w) and g(w), this trajectory can be found by integrating (2.9). It represents an approxi-
mate traveling-wave solution. See the appendix for a proof of its existence under general
assumptions.

2.3. Parameter estimation

From clinical MRI data, we may derive three idealized radii: R0, R1, and R2, representing respec-
tively the radius of the inner necrotic core, the radius to the edge of the contrast-enhancing rim, and
the radius to the outer edge of tumor-associated edema. Such data have been extracted from a series of
anonymized patient MRI data consisting of T1-contrast enhanced and T2-weighted MRIs at initial di-
agnosis. Using the publicly available MATLAB software package, Statistical Parametric Mapping 12
(SPM 12) [27], MRIs are initially registered to a standard brain space, and then, using Slicer 3D [28]
software, the total necrotic core volumes, enhancing rim volumes, and tumor-associated edema vol-
umes are determined from semi-manual tumor segmentation. Finally, these volumes are converted to
radii assuming a spherical tumor geometry. The width of the proliferating rim, denoted as L1, and the
width of the edematous rim, denoted as L2, can be calculated as L1 = R1 − R0 and L2 = R2 − R1, as
demonstrated visually in Figures 2 and 3.

We assume that contrast-enhancing regions of T1-weighted images correspond to high densities
of proliferating tumor cells and that edematous regions on T2-weighted imaging correspond to low
densities. We denote the respective detection thresholds for T1 and T2 imaging as a1 pmax and a2 pmax,
where 0 < a2 < a1 < 1 and pmax = maxz p(z), i.e., the maximum density of proliferating cells given by
the traveling-wave solution.

Often only a single MRI series is available before surgery, although in some cases, a diagnostic
MRI followed some days or weeks later by a pre-surgery MRI may be available. In the latter case, the
image-derived wave velocity V is the change in tumor radius divided by the length of the time interval.

From our approximate wave profile, we can compute the corresponding quantities to match with
MR images (cf. Figure 3). The wave-solution based approximation of the width of the proliferating
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rim, denoted `1, and the width of the edematous rim, denoted `2, (in dimensional form) are computed
as

`1 =
2
√

Dρ
k

∫ w+
1

w−1

dz
dw

dw, (2.10a)

`2 =
2
√

Dρ
k

∫ w−1

w2

dz
dw

dw, (2.10b)

respectively, where w±1 and w2 satisfy, respectively, p(w±1 ) = a1 pmax and p(w2) = a2 pmax. Here p(w)
is obtained by integrating Eq. (2.9) (see appendix for details). Additionally, the model-derived wave
speed c = 2

√
ρD can be matched with the image-derived speed V . Thus we have three nonlinear

equations
`1 = L1, `2 = L2, c = V, (2.11)

from which we hope to find the parameters D, ρ, and k. Given our assumptions, we can simply take
the ratio of (2.10a) and (2.10b), which gives

f (ρ̂) ≡

∫ w+
1

w−1

dz
dw

dw∫ w−1

w2

dz
dw

dw

=
L1

L2
, (2.12)

insofar as the integrals are functions of ρ̂. Equation (2.12) can be solved for ρ̂ analytically in spe-
cial cases or numerically in general. The monotonicity of f (ρ̂) is important for the identifiability of
parameters. Once we find ρ̂, i.e., the ratio ρ/k, all parameters can be found by back substitution.

The above method requires two MR scans taken at two consecutive times prior to surgery to obtain
an image-derived estimate of wave speed. If no second MR series is available, then tumor age may be
estimated by the tumor radius divided by the wave speed. However, the estimate depends on which
radius (R1 or R2) is used, because the tumor grows exponentially at first and linearly later on [7]. This
initial exponential growth stage needs to be taken into account as a correction to the aforementioned
tumor age estimation. Suppose that for 0 ≤ t ≤ t∗, quiescence is negligible and the proliferating cancer
cells grow exponentially from a point source of density p0, and that for t > t∗, the tumor grows as a
traveling wave with speed 2

√
ρD. By equating the two age estimates, we obtain

R1 − R∗1
2
√
ρD

=
R2 − R∗2
2
√
ρD

, (2.13)

where

R∗i = t∗
√

4Dρ −
4D
t∗

ln
(
ai(4πDt∗)3/2

p0

)
, i = 1, 2, (2.14)

where R1 and R2 are respectively the T1 and T2 radii at t = t∗ (see details of R∗1 and R∗2 in the appendix).
Replacing the last equation in (2.11) with (2.13), we again have three equations. To solve them for

the unknown parameters, we first take (2.10a) over (2.10b) as before to obtain (2.12). It can then be
solved for the ratio ρ̂ = ρ/k. Substituting this expression back to either `1 = L1 or `2 = L2 gives the
raito ρ/D. Finally, expressing D and k in terms of ρ, (2.13) can be solved for ρ, and D and k follow.
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Figure 2. The top half of the figure shows an example patient MRI registered to the stan-
dard brain domain, with the three tumor segments, necrotic core, enhancing rim, and tumor-
associated edema highlighted on a single 2-D slice. The full 3-D segmentation, and the
equivalent tumor sphere with associated radii, R0, R1, and R2, is shown in the lower half.
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Figure 3. Left: normalized wave profile generated by the model in the z coordinate. Right:
tumor profile seen in MR image. Parameter estimation is done by matching model-derived
quantities, e.g., `1 and `2, to the corresponding image-derived ones.
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Figure 4. Left: Cumulative distribution functions of some beta distributions. These functions
satisfy Eq. (2.3) and serve as candidates to represent biological response to limitation of
growth factors. Right: monotonicity of f (ρ̂) given different choices of g(w) and δ(w) as
indicated in the legend. All choices lead to a monotonic function f (ρ̂) and hence identifiable
parameters.

3. Results

Monotonicity is crucial for parameter identifiability, so we first investigate the monotonicity of f for
some specific choices of g(w) and δ(w). Given the restrictions described in Section 2.1, the cumulative
density function (CDF) of the Beta distribution family suits our purposes. Therefore, we let g(w) =

B(w;αg, βg) and δ(w) = 1−B(w;αδ, βδ), where B(w;α, β) is the CDF of the beta distribution with shape
parameters α and β. By varying α and β, we can get linear, sigmoidal, and concave up/down curves
(see the left pane of Figure 4). Our framework is robust to those choices, that is, the monotonicity of
f (ρ̂), defined by Eq. (2.12), is preserved (right pane of Figure 4). Sigmoidal-shaped growth and death
functions (g and δ, respectively) may provide biologically realistic response functions to limited growth
factors (most enzymatic reaction rates have sigmoidal shapes with respect to reactant concentration).
Given this family of functions, we now consider the question of estimating patient-specific tumor
growth and death rates from MR imaging.

We parameterize our model with patient data in which there is only one MRI scan before surgery.
In Table 1, we summarize the image-derived tumor radii and the corresponding parameters estimated
by the method introduced in the previous section. The parameters a1 = 0.9 and a2 = 0.1 are adapted
from values found in the literature [16], while p0 = 0.02 and t∗ = 60 days are hypothetical values. The
parameters vary considerably among individual patients.

We compare our approximate quantities to those obtained from the numerical solution of the model.
As shown in Figure 5, the approximated results match well with the numerical results except for some
discrepancy for L2 when ρ̂ is small. This result is not a surprise, because the approximation assumes
that c = 2

√
ρ̂ is large. Moreover, the numerical approximation of L2 is prone to errors due to the fixed

grid size and large rate of change around the threshold of L2. Overall, we believe that our approximation
is accurate for the parameter ranges estimated from the image data.
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Table 1. Radii of equivalent tumor sphere derived from T1 and T2 images and the corre-
sponding vital parameters estimated by our protocol. We have preset a1 = 0.9, a2 = 0.1,
p0 = 0.02 mm and t∗ = 60 days.

Patient R0 (mm) R1 (mm) R2 (mm) D (mm2day−1) ρ (day−1) k (day−1)
1 14.87 20.73 27.77 0.2852 0.2102 0.0602
2 20.48 26.34 38.24 1.2791 0.2624 0.3537
3 6.61 10.91 15.24 0.0825 0.1736 0.0327
4 22.87 26.96 37.03 0.9825 0.2590 0.7819
5 8.17 14.20 25.10 0.9769 0.2520 0.2260
6 8.29 15.83 20.35 0.0687 0.1652 0.0106
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Figure 5. Scatter plots of approximate wave profile characteristics (on horizontal axis) verses
the ones obtained by numerical simulation (on vertical axis) for a range of ρ̂ from 0.5 to 5 by
increments of 0.5. The size of the dot corresponds to the value of ρ̂. The dots scatter closely
to the diagonal line with slope 1, indicating agreement between the numerical solution and
our approximation.
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4. Discussion

In this work, we have extended the Fisher-Kolmogorov reaction-diffusion model of GBM growth,
Eq. (1.1), to explicitly separate the cancer cell birth and death (or quiescence) processes, which are
described in terms of generic functions that depend upon an implicit nutrient or growth factor. We
specify the birth and death processes, g(w) and δ(w), respectively, by the cumulative distribution func-
tion of a beta distribution, each uniquely specified by a single parameter, ρ and k. Thus, along with
the diffusion coefficient, D, our model describes cancer growth via three parameters, D, ρ, and k, and
yields a tumor morphology (in one dimension) consisting of a necrotic core, a high-density rim, and
an outer low density rim, which we may correlate to three radii, R0, R1, and R2, that can be estimated
from a single patient MR image.

We have demonstrated that our reaction-diffusion system has a traveling-wave solution, which is
common in such systems. Studies on this topic date back to the Fisher’s work in the 1930s on the
spread of advantageous genes [12]. Rigorous proof of the existence of a traveling-wave solution in a
reaction-diffusion system often leads to phase-space analysis such as the one on the diffusive Lotka-
Volterra equations [29]. Although in general a rigorous proof of a traveling-wave solution is a daunting
task, our reduced system is amenable to phase-plane analysis, and the orbit that represents the traveling-
wave solution can be identified (see appendix).

Via traveling-wave analysis, we have developed a method to estimate D, ρ, and k from as few as
a single magnetic resonance image, based on certain growth assumptions. We have estimated these
parameters for six patient test cases, as shown in Table 1. Because of the sparsity of imaging data for
a typical patient, parameter identifiability in this case is provided by the monotonicity of the function
f (ρ̂) (as seen in left pane of Figure 4); our approach differs from more common statistical practices [30]
that are appropriate when more data are available.

Disaggregating the net cell proliferation into birth and death processes not only aids in relating
(simplified) tumor appearance on MRI to the model parameters, but it may provide useful valuable
information for personalized treatment design, insofar as chemotherapy and radiotherapy target prolif-
erating cells. Moreover, the structural information is also potentially useful, as drug dosages might be
selected to ensure penetration through the width of the proliferating rim. Research along this general
line has been conducted using model (1.1) [31].

Our analysis uses a more complex description of motility than simple diffusion. The diffusion
term in Eq. (2.4) belongs to a more general category called cross diffusion [32]. It represents the
phenomenon in which the gradient in the concentration of one species causes a flux of another species.
The type of cross diffusion considered in this paper has been studied in a more general and theoretical
context [33]. In a modeling study of avascular tumour growth [25], the authors justified the adoption of
a proportion-based cross diffusion in a tumor-growth model by recognizing that tumor cell migration is
“contact inhibited”: the presence of one type of cell halts the movement of the other. This type of cross
diffusion can cause the solution to become negative [32], but we have not encounted this difficulty so
far in our numerical simulations. We conjecture that, for suitable initial conditions, solutions remain
positive, which will be a topic for future study. Other types of density-dependent diffusion have been
considered in modeling GBM migration [34].

Despite the existence of many possible diffusion terms, the exact form of diffusion does not matter
in the one-dimensional analysis, because the second derivatives are dropped in model (2.7). However,
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The diffusion coefficient does play an important role in the linearized wave head, where it affects the
wave speed, and in the characteristic length where its square root scales the space. The scale-invariant
part of the wave profile is mostly determined by the exact forms of the birth and death functions.

The major contribution of this paper is two novel methods to make patient-specific estimates of a
three-parameter model of GBM grwoth from the limited MRI data that is typically available in clinical
settings. It is possible to estimate the model parameters from a single pre-surgery image. Improved
estimates may be possible when images are acquired at multiple time points.

As cancers progress, the underlying parameters describing their growth are unlikely to be static.
Data assimilation refers to basic method of updating parameters as more data is acquired, and there
has been research on applying full-fledged data assimilation to cancer modeling [35, 36]. The methods
described in this paper can be incorporated as part of a future data assimilation system.
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Appendix

Traveling-wave solutions

In the following, we rigorously establish the existence of traveling-wave solutions in system (2.8).
We first show that the solutions of system (2.8) with positive initial values are non-negative and
bounded.
Lemma 1. Assume that g(w) = wG(w), where G(w) is a bounded function. Then the solutions of
system (2.8) with positive initial values are positive and bounded.
Proof: If x′ = x f (t, x) and f is a bounded function, then x(t) = x(t0) exp

(∫ t

t0
f (s, x(s)) ds

)
, which is

positive whenever x(t0) > 0. Since
d(p + w)

dz
= −δ(w), (4.1)

we see that (p + w) is bounded, which implies that both p and w are also bounded. �
For any w∗ ∈ [0, 1], the point (0,w∗) is an equilibrium of (2.8).

Theorem 1. System (2.8) admits positive traveling-wave solutions that correspond to heteroclinic
orbits connecting the steady state (0, 1) to another steady state, (0,w∗).

Proof: We have performed a detailed phase-plane analysis of (2.8) to show the existence of a
trajectory that starts from (1, 0) and ends at (w∗, 0), where w∗ ∈ [0, 1). (See Figure 1.) First we
notice that

dp
dw

=
δ(w)
ρ̂g(w)

− 1, (4.2)

d2 p
dw2 =

δ′(w)g(w) − δ(w)g′(w)
ρ̂g(w)2 , (4.3)

Since g(w) and δ(w) are both positive functions and g′(w) > 0 and δ′(w) < 0 on w ∈ [0, 1], it follows
that d2 p/dw2 < 0 for all w ∈ [0, 1].

We show first that the trajectory starting from (1, 0) will never cross the line p = 1 − w. Because
g(1) = 1, we have δ(1) = 0, and therefore, dp/dw

∣∣∣
w=1

= −1. Since d2 p/dw2 < 0, the slope of a
trajectory with w < 1 will be greater than −1, which means it will not cross the line p = 1 − w. Also,
because the solution components stay positive, the trajectory starting from (1, 0) will never cross the
p-axis from right to left.

Because the functions g and δ are monotone, there is a unique value w† ∈ (0, 1) such that
dp/dw

∣∣∣
w=w†

= 0. Moreover, dp/dw
∣∣∣
1>w>w†

> 0 while dp/dw
∣∣∣
0<w<w†

< 0.
Insofar as w is strictly decreasing and bounded from below by 0, there exists some w∗ ∈ (0, 1) such

that limz→∞ w(z) = w∗. We claim that w∗ < w†. Otherwise, p is a non-decreasing function, which
implies that the trajectory approaches a positive steady state E∗ = (p∗,w∗). However, the system (2.8)
does not admit any positive steady states.
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Let a ∈ (w∗,w†) and b = ρ̂g(a) − δ(a) < 0. Since limz→∞ w(z) = w∗, there is a z∗ > 0 such that for
z ≥ z∗ and w < a. Therefore, for z ≥ z∗, dp/dz < bp, which implies that limz→∞ p(z) = 0. Hence,
system (2.8) admits positive traveling-wave solutions that correspond to heteroclinic orbits connecting
the steady state (0, 1) to another steady state, (0,w∗). �

Rim width

The trajectory in Figure 1 corresponds to a traveling-wave profile in the z coordinate as shown on
the left pane of Figure 3. Because of our choice of nondimensionlization, x = −

(
2
√

Dρ /k
)

z, by
definition we have the rim width in the dimensional form

`1 =
2
√

Dρ
k

(z+
1 − z−1 ) =

2
√

Dρ
k

∫ z+
1

z−1

dz (4.4)

where p(z±1 ) = a1 pmax. We have taken p as a function of z (cf. the left pane of Figure 3). We can also
take w as a function of z to make a change of variable to the above integral, which gives Eq. (2.10a). A
similar argument applies to (2.10b).

Derivation of R∗1 and R∗2

0 X

pmax

P
Travel Direction

R1*

R2*

R2

R1
a1 pmax
*

a2 pmax
*

Figure 6. The transition of wave profile based on the two-stage tumor growth model. The
dotted (purple) curve represents a stable wave profile generated by system (2.8). The solid
curves are generated by Eq. (4.5) and represent the tumor’s exponential growth phase. The
stable wave profile is formed after the exponential growth curve reaches pmax (red solid
curve).
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Tumor growth can be separated into two stages. First, the tumor cells grow exponentially until
the cell density is high enough (pmax) to form a stable wave profile. Afterward, the growth of tumor
cells is described by (2.8). The radii R1 and R2 are observed from clinical MRI data and correspond
respectively to the distance from the center of the tumor to the edge of the enhancing rim and to the
edge of the edematous region on T2 imaging; they correspond to tumor dynamics before the stable
wave profile has formed (cf. Figure 6).

During the exponential growth phase, say from 0 < t < t∗, quiescence is negligible and the govern-
ing equation of tumor cell density is

∂p
∂t

= D
1
r2

∂

∂r

(
r2∂p
∂r

)
+ ρp, (4.5)

where spherical symmetry is used, as we assume that the tumor is spherical when its radius is small.
This linear equation has the Green’s function

p(r, t) =
1

(4πDt)3/2 exp
(
ρt −

r2

4Dt

)
(4.6)

(see, e.g., [37] Page 314 and [38] Page 285). Suppose that the tumor starts at t = 0 as a point source
with density p0. It follows that at t = t∗, the position of the tumor front at density p = ai is given by
Eq. (2.14).
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