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Abstract. In standard chemotherapy protocols, drugs are given at maximum
tolerated doses (MTD) with rest periods in between. In this paper, we briefly

discuss the rationale behind this therapy approach and, using as example multi-
drug cancer chemotherapy with a cytotoxic and cytostatic agent, show that

these types of protocols are optimal in the sense of minimizing a weighted

average of the number of tumor cells (taken both at the end of therapy and at
intermediate times) and the total dose given if it is assumed that the tumor

consists of a homogeneous population of chemotherapeutically sensitive cells.

A 2-compartment linear model is used to model the pharmacokinetic equations
for the drugs.

1. Introduction. In standard chemotherapy protocols, drugs are given at maxi-
mum tolerated doses (MTD) with rest periods in between. High dose chemotherapy
is designed to be as toxic as possible to the cancerous cells. Typically, anti-cancer
drugs interfere with one or more biochemical pathways important in cell duplica-
tion. Naturally, the more the targeted pathway is specific to cancer cells, the less
severe collateral damage is. But drugs are rarely selective to the tumor cells and
thus equally kill a large number of proliferating healthy cells at the same time.
Especially in the first stages of chemotherapy that aim at remission of the disease,
so-called induction chemotherapy, drugs target all or at a minimum large classes
of proliferating cells with potentially severe effects on a wide range of physiologi-
cally proliferating cells important for life, like the bone marrow. Therefore an MTD
approach to scheduling drugs clearly has its pitfalls. The underlying rationale for
this approach is that the patient was only diagnosed late, unfortunately an all too
common scenario for a disease that is widely symptomless in its early stages, and
that the disease has progressed into a form where immediate action is required.
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The paradigm thus simply is that cancer cells need to killed, and that it has to
be done right now and in large quantities. But because of the scarce selectivity
of chemotherapeutic agents, serious side effects are related to the use of cytotoxic
agents and if these side effects become too strong, chemotherapy fails.

In this paper, starting with a standard cell cycle nonspecific model of tumor
growth under chemotherapy and leading over to a cell cycle specific compartmen-
tal model for combination chemotherapy with a cytotoxic and cytostatic agent, we
explore the rationale for an MTD scheduling of chemotherapeutic agents. Math-
ematically, these regimes correspond to so-called bang-bang controls that switch
between the two extreme values u = umax corresponding to full dose chemotherapy
and u = 0 corresponding to rest periods. For many optimal control problems, there
still exists a natural third class of candidates, so-called singular controls, that give
drugs at time-varying lower dose rates. We show that an MTD strategy indeed is
optimal for the model considered here where a weighted average of the tumor cells
(taken both at the end of therapy and at intermediate times) and the total dose of
drugs given is minimized, even if the pharmacokinetics of a multi-drug treatment
is taken into account. As initial condition we use the normalized fractions of the
steady-state proportions of the numbers of cancer cells in the phases of the cell
cycle. It will be shown that this steady-state is well defined (i.e., the limits exist)
for a 3-compartment model with compartments G1/G0, S and G2/M . As a conse-
quence, by the time chemotherapy treatment starts, the system has settled down
to have specific fractions of cycling cells in the compartments independent of the
tumor size. This fact provides a simple explanation for the commonly medically
observed feature of a fractional cell-kill under chemotherapy.

An MTD related structure consistently arises as optimal for a great variety of cell
cycle specific and non-specific mathematical models (e.g., [8, 18, 21, 22, 24, 26]). On
the other hand, in these models it is assumed that the tumor consists of a homoge-
neous population of chemotherapeutically sensitive cells. Once tumor heterogeneity
(Norton-Simon hypothesis) and developing drug resistance are incorporated, models
become more complicated, possibly even involving infinite-dimensional structures
[20, 28, 29]. Simpler, finite-dimensional versions of models for drug resistance have
been proposed and analyzed in [10, 11], but the full answer to how heterogeneity of a
tumor effects the structure of optimal protocols is still unknown. In the other direc-
tion, incorporating elements of the tumor environment like the tumor vasculature
and the immune system into the model for tumor growth and treatment may change
the qualitative structure of optimal protocols. However, the answers still depend
on the formulation of the objective, the therapy horizon etc. (e.g., [7, 12, 25]).

2. The classical cell cycle non-specific model. We briefly review the classical
framework of cell cycle nonspecific cancer chemotherapy that underlies the MTD
dosing paradigm (e.g., see [4, 5, 23]). Mathematically, it can be explained with a
standard phenomenological tumor growth model of the form

ṗ = pF (p) (1)

where p denotes the tumor size (measured in terms of volume, number of cells,
density of cells, etc.) and F (·) models its net proliferation rate, i.e., the dif-
ference between the proliferation rate of the cells and their death rate governed
by apoptosis. Standard models used in this context include exponential growth,
FE(p) ≡ ξ = const, with ξ a tumor growth parameter, Gompertzian growth,
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FG(p) = −ξ ln
(
p
q

)
where q denotes a fixed carrying capacity, and logistic and gen-

eralized logistic growth, FL(p) = ξ
(

1−
(
p
q

)ν)
, with ν a positive parameter that

differentiates slow from fast growing tumors. Chemotherapy lowers the tumor pro-
liferation rate, either by slowing down the transition of cells through the cell cycle
(cytostatic agents) or by preventing cell duplication in mitosis (cytotoxic agents).
The latter, even if it does not induce cell death (apoptosis), generally is considered a
killing action in cancer treatments since it prevents the further formation of cohorts
of cancer cells.

When a drug is delivered to a human or an animal host, in an ideal situation,
according to the law of mass action, the speed of the chemical reaction is propor-
tional to the product of the active masses (concentrations) of the reactants. It has
been postulated by Skipper et al. in the 1960s that cell death follows first order
kinetics with anticancer drugs (e.g., [19, 31]), i.e., the number of cancer cells killed
per unit time is proportional to the number of cancer cells with the rate depend-
ing on the concentration of the anti-cancer drug. Thus, if it is assumed that the
density profile of the chemotherapeutic agent at an absorption site is described by
a time-varying function c = c(t), then the cell loss caused by this concentration
is proportional to c(t)p(t). In other words, the pharmacodynamic model is linear
in both the concentration c and p. This hypothesis is called the linear log-kill hy-
pothesis and incorporating it into the growth law (1) results in the following simple
growth model under chemotherapy,

ṗ = pR(p)− ϕcp (2)

with ϕ a positive constant that describes the effectiveness of the agent.
We briefly discuss the effects of chemotherapy using the model for exponential

growth,
ṗ = ξp− ϕcp, p(0) = p0. (3)

Over a short time-period, this is a realistic formulation. Suppose drugs are given
in a single bolus dose, i.e., concentrated at some time instant with the time of
application normalized to t0 = 0. Drug clearance rates typically are fast—half-lives
tend to be in the order of minutes to hours—while cell-cycle times are in the order
of hours to days and even longer for some cell lines. Thus, over a short period,
for many drugs it is valid to neglect pharmacokinetic effects and for simplicity of
argument, let us assume that the concentration is constant, c(t) ≡ c̄, over a small
interval [0,∆t], so that the solution to (3) is

p(t) = p0 exp ((ξ − ϕc̄) ∆t) = p0e
ξ∆t · exp (−ϕc̄∆t) . (4)

Without treatment, the tumor grows to p0e
ξ∆t and thus the second factor deter-

mines the reduction due to treatment. The total dose D administered is the product
of the concentration and time, D = c̄∆t. A bolus administration of dose D corre-
sponds to an impulse and is the mathematical limit when this dose is given over
decreasingly smaller intervals with higher concentrations in the limit as ∆t → 0.
But the reduction term only depends on the constant total dose and therefore the
tumor reduction achieved by a bolus injection of dose D is given by

r = exp (−ϕD)

with ϕ a positive constant dependent on the drug and the specific type of tumor. In
particular, a given bolus dose of anti-cancer drugs eliminates a specific proportion
of cancer cells regardless of the size of the tumor, not a specific number of cancer
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Figure 1. Evolution of tumor volume under bolus injection at
times t = 1, 4, 7, 10, 13 weeks: (a, left) if cancer cells are sensitive
and (b, right) if cancer cells contain a high portion of resistant cells.
In case (a), therapy will be successful while it fails in case (b).

cells. Since this treatment does not only kill the cancer cells, but all other strongly
proliferating cells as well (especially in the bone marrow), it needs to be followed by
significant rest periods that allows the damaged healthy cells to recover. A typical
length T for the time between doses in the US is three weeks. During this time the
cancer will regrow and, still using the simple exponential growth model, the total
effect over a therapy interval of length T is thus given by

exp (−ϕD) · exp (ξT ) . (5)

Only if this quantity is less than 1, therapy can be successful - in principle. Figure
1 depicts some typical response curves to bolus type chemotherapy with restperiods
that result from this reasoning and are common in medical presentations and pub-
lications on this topic. We plot the number of cancer cells on a logarithmic scale
vertically and time in weeks horizontally. In Fig. 1(a) the initial condition corre-
sponds to 109 cells, probably the smallest size of tumor clinically detectable, and
just for sake of numerical illustration it is assumed that 99% of the cancer cells are
eliminated by the treatment with the remaining cells then regrowing slowly during
the restperiod. Clearly, overall this is a very favorable scenario and this is a model
for a successful chemotherapy. In reality, however, often only a much smaller ratio
of cells is sensitive to the therapy and, in the course of time, as these sensitive cells
are killed, the proportion of the resistant population of cancer cells increases. Un-
fortunately, healthy cells do not develop similar resistance properties and thus, over
time, chemotherapy becomes less and less effective and eventually fails. A simple
such scenario is depicted in Fig. 1(b).

In theory, since the terms in the basic relation (5) commute,

exp (−ϕD) · exp (ξT ) = exp

(
−ϕD

2

)
· exp

(
ξ
T

2

)
exp

(
−ϕD

2

)
· exp

(
ξ
T

2

)
,

the same dose can be given at lower dose rates spread over time with the same
effect. This has led to the concept of a metronomic scheduling of chemotherapy. In
this form of therapy, drugs are administered in an essentially continuous low-dose
way in the hope of avoiding limiting toxic side effects, possibly with small inter-
ruptions to increase the efficacy of the drugs. These represent the other extreme of
many options for treatment schedules that are used in chemotherapy. As is obvious
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from Eq. (4), if it is possible to give chemotherapy at lower doses over prolonged
time intervals (e.g., if toxic side effects are absent), then the overall effect may be
improved because of the greatly extended time horizon in the term exp (−ϕc̄∆t)
[30]. For example, using a similar reasoning as above for a 2-compartment model of
sensitive and partially resistant cells, Hahnfeldt, Folkman and Hlatky make a case
for a metronomic scheduling of chemotherapy [5]. The optimization of treatment
schedules to this day remains an active and important area of medical research.

3. Cell cycle specific compartmental models for combination cancer che-
motherapy. Although the reasoning outlined in Section 2 is oversimplified in many
aspects, it is the staple of much of the praxis of drug scheduling in chemotherapy.
As one simplification, this argument does not consider the dynamics of the cell
cycle. Chemotherapeutic agents act in the cycling compartments of the cell cycle
(synthesis and mitosis), but quiescent cells (in the dormant stage) are generally
resistant to treatment. Below we show that, in the absence of treatment, there
always exist well-defined proportions of cancer cells that are in certain phases of
the cell-cycle. This result accounts for the well-known fractional kill effect observed
in chemotherapy treatments. As a consequence, slowly growing tumors with a small
growth fraction of cycling cells will respond quite differently to an MTD treatment
protocol than fast growing tumors when this fraction is high. In the model (2),
these effects are simply subsumed in the coefficient ϕ that determines the cancer
cell kill fraction. For some types of tumors, especially in certain types of leukemia,
this fraction may represent only a small percentage, possibly less than 1%, of the
total number of cancer cells. Therefore, it generally is of importance to consider
cell cycle effects in the scheduling of chemotherapy.

In this section, we revisit a cell-cycle specific mathematical model for combination
chemotherapy when the interactions of a cytotoxic (killing) and cytostatic (block-
ing) agent are considered. The basis for the model formulated below is a class of
compartmental models introduced in the work of Swierniak and his coworkers (e.g.,
[6, 24, 27]), but different from the models considered in these publications, here
we include a linear 2-compartment model for the pharmacokinetics of the drugs.
We stress that these models assume that the tumor consists of a homogeneous
population of drug sensitive cells.

3.1. A cell-cycle specific compartmental model for combination cancer
chemotherapy. We briefly review a 3-compartment model for chemotherapy due
to Swierniak [24] that considers the combined actions of a cytostatic (blocking) and
cytotoxic (killing) agent. Cytostatic drugs slow down the growth of malignant cells
in the sense that they prevent cells from reaching the phase where cell division
occurs. Drugs of this type include, for example, anthracycline antibiotics like adri-
amycin [1] or antineoplastic agents like hydroxyurea (HU) [14] that inhibit DNA
and RNA synthesis and arrest cells in the first growth phase G1 of the cell cycle.
Cytotoxic agents (e.g., spindle poisons like paclitaxel or vincristine) predominantly
act during mitosis in the phase G2/M of the cell cycle where cell division occurs.
We use a 3-compartment model with the compartments given by the first growth
phase G1 (which is lumped with the dormant cells), synthesis S, and the second
growth phase and mitosis, G2/M . The state space thus is the first orthant in R3

and we denote the states by N1, N2 and N3.
The transitions of cells through the phases of the cell cycle are described by a

stochastic process with the individual cells determining the sample paths from cell
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birth to cell death in cell division and the transit times following some empirical
distribution. Various probabilistic models, in particular Weibull distributions, have
been used to describe these transit times. Here we follow the simplest example,
an exponential distribution with mean θ, i.e., the probability that a particular cell
remains in a specific compartment after time t is given by

P (T ≥ t) =

∫ ∞
t

1

θ
exp

(
−s
θ

)
ds = exp

(
− t
θ

)
.

Taking the average over all cells, the outflow from the compartment then is gov-
erned by the linear ordinary differential equation Ṁ = − 1

θM with the coefficient
the inverse average transit time. Applying this to the 3-compartment model, and
assuming that no external stimuli are present, the balance equations for the second
and third compartments then take the form

Ṅ2(t) = −a2N2(t) + a1N1(t), (6)

Ṅ3(t) = −a3N3(t) + a2N2(t), (7)

with ai the inverse mean transit time through the ith compartment. Here the
outflows of the first and second compartments equal the inflows into the second and
third compartment. But in the third compartment cell division needs to be taken
into account and thus, while the outflow is still given by a3N3(t), the inflow into
the first compartment doubles giving

Ṅ1(t) = −a1N1(t) + 2a3N3(t). (8)

We now incorporate drug actions [3]. In accordance with the log-kill hypothesis,
the number of cells killed or blocked is proportional to both the tumor volume and
the drug’s concentration. Pharmacokinetic equations model the time evolution of
a drug’s concentration in the plasma. If a drug is given at a time-varying dose
rate u = u(t), let c = c(t) denote the concentration in the plasma that builds up
in response. The standard mathematical model is one of exponential growth and
decay,

ċ = −γc+ u, c(0) = 0, (9)

with γ the clearance rate of the drug, a constant. Once no more drugs are adminis-
tered, u ≡ 0, this concentration simply dissipates at an exponential rate determined
by the body’s abilities to clear the drug. In this simplest 1-compartment model for
PK, the drug dose rate u is related to the drug’s concentration and its elimination
in one part of the body, e.g., the blood plasma. More generally, in 2-compartmental
models for PK, the drug’s concentration and its elimination are considered at a
central (e.g., plasma) and a peripheral compartment (e.g., at an absorption site)
with their interactions. Here drug concentrations are modeled by a 2-dimensional
vector c(t) = (c1(t), c2(t))T with the components describing the concentrations in
the central and peripheral compartments. The model still is one of exponential
growth and decay described by a linear system ċ(t) = Fc(t) + bu(t) of the form

ċ(t) =

(
−γ − α β
α −β

)
c+

(
b1
b2

)
u(t)

where γ again denotes the clearance rate, α and β are nonnegative rates that de-
scribe the interactions between the central and peripheral compartments and the
coefficients bi (bi ≥ 0, b1 + b2 = 1) describe the influx of the drug into the compart-
ments. The eigenvalues of the matrix F are always negative reals and the general
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Figure 2. A 3-compartment model with cytostatic and cytotoxic
agent and pharmacokinetic models

solution takes the form

c1(t) = ae−λ1t + be−λ2t

with 0 < λ1 < λ2 the absolute values of the eigenvalues. This modeling with α = 0
is typical when one of the compartments describes the concentration in the plasma
and the other one the drug concentration at an absorption site. Here we add such
models for both the cytotoxic and cytostatic agents.

The control set for the cytotoxic agent u is a compact interval [0, umax] with umax

the maximum dose rate and u = 0 again denoting the case when no drugs are admin-
istered. We denote the vector describing the concentrations in the 2-compartment
model for PK by c = (c1, c2) with c1 the concentration at the absorption site and
the dynamics given by

ċ(t) =

(
−γu βu

0 −βu

)
c+

(
0
1

)
u(t) = Fc+ bu.

Similarly, the control set for the cytotoxic agent v is a compact interval [0, vmax]
with vmax the maximum dose rate and v = 0 again denoting the case when no
drugs are administered. Here we denote the vector describing the concentrations in
the 2-compartment model for PK by d = (d1, d2) with d1 the concentration at the
absorption site and the dynamics given by

ḋ(t) =

(
−γv βv

0 −βv

)
d+

(
0
1

)
v(t) = Gd+ bv.

The cytostatic agent is applied to slow down the transit times of cancer cells during
the synthesis phase S and, as a result, the flow of cancer cells from the second into
the third compartment is reduced by a factor of d1(t) percent from its original flow
a2N2(t) to (1 − d1(t))a2N2(t), 0 ≤ d1(t) ≤ d1,max < 1. We illustrate the general
structure of the model in Fig. 2.

Overall, the controlled dynamics is a 7-dimensional bilinear system of the form

Ṅ = (A+ ϕ1c1B1 + ϕ2d1B2)N, N(0) = N0, (10)

ċ = Fc+ bu, c(0) = 0, (11)

ḋ = Gd+ bv, d(0) = 0, (12)
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with the matrices A, B1 and B2 given by

A =

 −a1 0 2a3

a1 −a2 0
0 a2 −a3

 , B1 =

 0 0 −2a3

0 0 0
0 0 0

 , B2 =

 0 0 0
0 a2 0
0 −a2 0

 ,

the matrices F , G and b as specified above, and the constants ϕ1 and ϕ2 defining
the effectiveness of the drugs. It is clear that the concentrations are nonnegative
and, once drugs are given, become positive and remain so for all time. It follows
from the form of the matrices F and G that these values are bounded: cmax

1 ≤ umax

γu
and cmax

2 ≤ umax

βu
. Thus, since the flows cannot be negative, we must have that

ϕ1
umax

γu
≤ 1 and, similarly, ϕ2

vmax

γv
≤ 1. This implies that the matrix

A+ ϕ1c1B1 + ϕ2d1B2 =

 −a1 0 2(1− ϕ1c1)a3

a1 −(1− ϕ2d1)a2 0
0 (1− ϕ2d1) a2 −a3


has negative diagonal and nonnegative off-diagonal entries, i.e., is an M-matrix. It
therefore follows from standard arguments about linear differential equations that
the positive octant P = R3

+ = {N ∈ R3 : Ni > 0 for i = 1, 2, 3} is positively
invariant, i.e., we have the following result:

Proposition 1. [9] Given arbitrary Lebesgue measurable functions u : [0, T ] →
[0, umax] and v : [0, T ] → [0, vmax], the solution to the system (10)-(12) exists over
the full interval [0, T ] and the values of N are positive.

3.2. Steady-state behavior of proportions in the compartments. An impor-
tant consequence of this model is that there exists a well-defined steady state for
the proportions of cells in the individual compartments for the uncontrolled model.
If no drugs are given, the concentrations are zero and the dynamics for N simply
becomes Ṅ = AN . Let C(t) = N1(t) + N2(t) + N3(t) denote the total number of
cancer cells and denote the proportions of cancer cells in the three compartments
by x, y and z, respectively,

x(t) =
N1(t)

C(t)
, y(t) =

N2(t)

C(t)
and z(t) =

N3(t)

C(t)
.

We then have that

ẋ = −a1x+ 2a3z − a3xz, (13)

ẏ = a1x− a2y − a3yz, (14)

ż = a2y − a3z − a3z
2. (15)

One of these equations is redundant because of the trivial relation x(t)+y(t)+z(t) ≡
1 and we use it to eliminate the variable y from the system. We thus are left with
the planar system,

ẋ = −a1x+ 2a3z − a3xz, (16)

ż = a2 (1− x− z)− a3z − a3z
2. (17)

Theorem 3.1. The unit simplex

Σ = {(x, y, z) : 0 ≤ x, 0 ≤ y, 0 ≤ z, x+ y + z = 1}
is positively invariant under the dynamical system given by Eqs. (13)-(15) and has a
unique, asymptotically stable equilibrium point (x∗, y∗, z∗) inside of Σ that contains
the entire simplex Σ in its region of attraction. Given an arbitrary initial condition
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(x0, y0, z0) ∈ Σ, the solution of Eqs. (13)-(15) exists for all times t ≥ 0, lies in Σ,
and converges to (x∗, y∗, z∗) as t→∞.

Proof. Because of the relation x(t) + y(t) + z(t) ≡ 1, we can identify Σ with

the planar simplex Σ̃ = {(x, z) : 0 ≤ x, 0 ≤ z, x+ z ≤ 1} and it suffices to show

that Σ̃ is positively invariant under the equations for ẋ and ż. This is guaranteed
if for every initial point (x0, z0) in the boundary of Σ̃, (x0, z0) ∈ ∂Σ̃, the local
solution (x(t;x0, z0), z(t;x0, z0)) to the corresponding initial value problem enters

the interior of Σ̃. For then, by the uniqueness of solutions to ordinary differential
equations, no trajectory of the system that starts in Σ̃ can ever leave Σ̃ and thus
this region is positively invariant. It is a standard argument from the theory of
ODEs, using the local existence of solutions, to show that solutions then must exist
over all of [0,∞).

We consider the three line segments in ∂Σ̃ separately starting with x = 0 and
0 ≤ z ≤ 1. On this interval, we have that ż = a2 (1− z) − a3z − a3z

2 and this
1-dimensional system has a unique equilibrium z̃ in (0, 1) that is asymptotically
stable. Thus ż is positive for points below z̃ and negative for points above it. Since
ẋ = 2a3z > 0 if x = 0, it follows that the vector field

F (x, z) =

(
−a1x+ 2a3z − a3xz

a2 (1− x− z)− a3z − a3z
2

)
points inside of Σ̃ at all boundary points of the form (0, z) with 0 < z < 1. But at
the vertices (0, 0) and (0, 1) the dynamics is tangent to the boundary of the unit

simplex Σ̃ and we need to determine the next derivative. As an illustration of the
argument, consider the origin. By the implicit function theorem, we can express
the solution curve starting at the origin as a function x = h(z) and the derivative
h′(z) is given by

h′(z) =
dx

dz
=

−a1x+ 2a3z − a3xz

a2 (1− x− z)− a3z − a3z2
.

Differentiating the relation ẋ = h′(z)ż once more with respect to t gives that ẍ =
h′′(z)ż2 +h′(z)z̈ and evaluating this expression at the origin, and using that h′(0) =
0, gives

h′′(0) =
ẍ

ż2
=

2a3a2

a2
2

= 2
a3

a2
> 0.

Thus the curve x = h(z) has a local minimum at z = 0 with order 1 contact

implying that it lies inside the region Σ̃ for small positive times. This shows that
solutions starting at points in the vertical boundary segment of Σ̃ enter the interior
of Σ̃ forward in time. Similar computations apply to each vertex and show that
trajectories enter the unit simplex. On the horizontal boundary segment 0 ≤ x ≤ 1
and z = 0, we have that ż = a2 (1− x) > 0 for x < 1 and thus again F (x, 0)

points inside Σ̃ at those points. Finally, along the line x + z = 1, we have that
d
dt (x+ z) = −a1x < 0 and thus also here all trajectories starting on this line enter

the interior of Σ. This verifies that the simplex Σ̃ is positive invariant for the system
(16) and (17).

The system has a unique equilibrium point (x∗, z∗) in Σ̃: Solving the equation
ż = 0 for x gives

x∗ = 1−
(

1 +
a3

a2

)
z∗ −

a3

a2
z2
∗
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Figure 3. Positive invariance of the unit simplex Σ under the
flow for the proportions (diagram drawn for the values a1 = 0.197,
a2 = 0.395 and a3 = 0.107 [24]).

and substituting this relation into the equation ẋ = 0 leads to the following cubic
polynomial in z whose solutions define the equilibria (x∗, z∗):

a2
3z

3 + (a1 + a2 + a3) a3z
2 + ((a2 + a3) a1 + a2a3) z − a1a2 = 0.

Dividing by a2
3 and setting α1 = a1

a3
and α2 = a2

a3
, we get the simpler expression

Q(y) = z3 + (1 + α1 + α2) z2 + (α1 + α2 + α1α2) z − α1α2 = 0.

This cubic polynomial has exactly one change of sign in its coefficients and since
Q(0) = −α1α2 < 0, it follows from Descartes’ sign rule that it has exactly one
positive root. But Q(1) = 2 (1 + α1 + α2) > 0 and thus this root lies in the open
interval (0, 1). It then follows that

x∗ + z∗ = 1− 1

α2
z∗(1 + z∗) < 1

and from ẋ = 0 we obtain that

x∗ =
2z∗

α1 + z∗
> 0.

Hence the equilibrium (x∗, y∗) lies in the interior of Σ̃ and it is unique.
The rest of the argument is a direct application of Poincaré-Bendixson theory:

the divergence of the vector field F is negative on the first orthant,

div F =
∂F1

∂x
(x, z) +

∂F2

∂z
(x, z) = −a1 − a3z − a2 − a3 − 2a3z

and thus it follows from Bendixson’s theorem that there do not exist periodic orbits
for the system (16) and (17). On the other hand, since Σ̃ is positive invariant, the
ω-limit sets of all trajectories are nonempty and thus consist of a unique equilibrium
point. Since there is only one such point and since ω-limit sets are attractive, all
trajectories converge to (x∗, z∗) in the interior of Σ̃. �

Figure 3 illustrates the corresponding phase portrait in the (x, z)-plane.
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This result states that, by the time chemotherapy treatment starts, the system
has settled down to have specific fractions of cycling cells in the compartments in-
dependent of the tumor size. Theorem 3.1 provides a simple explanation for this
medically observed feature. Even after chemotherapy is stopped, if the restperiods
are long enough, cells will redistribute in the same fractions for the beginning of
the next session. Naturally, in the transient phase, proportions of cells in specific
compartments may be different. Mathematically, since the dynamics is linear, we
can scale the initial condition so that C(0) = 1 (e.g., times 109 cells) and thus the
limiting fractions define the initial condition for the computation of optimal proto-
cols. This is not only true at the beginning of therapy, but after every prolonged
rest period.

The limiting fractions are determined by the coefficients that define the cell cycle
kinetics and vice versa. It is possible to give explicit formulas for the equilibrium
point (x∗, y∗, z∗) in terms of the coefficients ai using Cardano’s formula for the roots
of a cubic polynomial, but these expressions are unwieldy and not very informative.
It is easy to compute these fractions numerically. More interestingly, the cell cycle
parameters ai, i = 1, 2, 3 can be determined from these steady-state proportions
and the tumor doubling time, data that can be determined experimentally. For the
total number of cancer cells (for the uncontrolled system) we have that

Ċ(t) = a3N3(t) = a3z(t)C(t) ≈ a3z∗C(t) (18)

where, in steady-state, we assume that z(t) is approximated by its steady-state
value z∗. Thus, if T denotes the tumor doubling time, then a3z∗ = ln 2

T and the
other kinetic parameters a1 and a2 directly follow from the equilibrium relations.

Corollary 1. If T denotes the tumor doubling time and x∗, y∗ and z∗ are the
steady-state proportions of cells in the cell cycle compartments G0/G1, S and G2/M ,
respectively, then we have that

a3 =
ln 2

T

1

z∗
, a2 =

ln 2

T

1 + z∗
y∗

and a1 =
ln 2

T

(
2

x∗
− 1

)
.

These arguments are generally valid and can easily be adapted to other compart-
mental models for cancer chemotherapy.

3.3. The structure of optimal protocols. We now consider the optimal con-
trol problem to minimize the cancer volume. For the optimization, we choose the
performance index or objective as

J = rN(T ) +

∫ T

0

qN(t) + s1u(t) + s2v(t)dt→ min (19)

where T is an a priori specified therapy horizon and r = (r1, r2, r3) and q =
(q1, q2, q3) are row vectors of positive weights. The penalty term rN(T ) = r1N1(T )+
r2N2(T ) + r3N3(T ) represents a weighted average of the total number of cancer
cells at the end of an assumed fixed therapy interval [0, T ] and the Lagrangian term
qN(t) = q1N1(t) + q2N2(t) + q3N3(t) is a running cost that measures the tumor
volume during treatment. Side effects of the treatment are only included indirectly
in the model through minimization of the total overall doses of the drugs given,∫ T

0
u(t)dt and

∫ T
0
v(t)dt, and the positive coefficients s1 and s2 at these integrals

provide relative weights for the severity of their side effects. These terms are moti-
vated by the fact that the number of cells that do not undergo cell division at time
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t is proportional to the concentrations of the cytotoxic drug. We thus consider the
following optimal control problem:

[CC]: for a fixed therapy horizon [0, T ], minimize the objective (19) over all
Lebesgue-measurable functions u : [0, T ]→ [0, umax] and v : [0, T ]→ [0, vmax]
subject to the dynamics (10)-(12) with initial condition N(0) = C0(x̄, ȳ, z̄)T

and C0 an estimate for the overall initial tumor size.

First order necessary conditions for optimality are given by the Pontryagin max-
imum principle (e.g., see [16, 2, 17]). For this model, all extremals are normal and
we already define the Hamiltonian function in the form

H = qN+s1u+s2v+λ (A+ ϕ1c1B1 + ϕ2d1B2)N+µ (Fc+ bu)+η (Gd+ bv) (20)

with λ, µ and η the multipliers corresponding to the dynamics and pharmacokinetic
models, respectively. If (u∗, v∗) are optimal controls, then it follows that there
exist absolutely continuous functions λ, µ and η which we write as row-vectors,
λ : [0, T ] → (R3)∗, µ : [0, T ] → (R2)∗, and η : [0, T ] → (R2)∗, that satisfy the
adjoint equations

λ̇ = −∂H
∂N

= −λ (A+ ϕ1c
∗
1B1 + ϕ2d

∗
1B2)− q, λ(T ) = r, (21)

µ̇1 = −∂H
∂c1

= −ϕ1λB1N + γuµ1, µ1(T ) = 0, (22)

µ̇2 = −∂H
∂c2

= βu (µ2 − µ1) , µ2(T ) = 0, (23)

η̇1 = −∂H
∂d1

= −ϕ2λB2N + γvη1, η1(T ) = 0, (24)

η̇2 = −∂H
∂d2

= βv (η2 − η1) , η2(T ) = 0, (25)

such that along (λ(t), µ(t), η(t), N∗(t), c∗(t), d∗(t)) the optimal controls minimize
the Hamiltonian H pointwise over the control set U = [0, umax]× [0, vmax] and the
minimum value is constant over the interval [0, T ],

H(λ(t), µ(t), η(t), N∗(t), c∗(t), d∗(t), u∗(t), v∗(t)) = const.

Since the Hamiltonian H is linear in the controls and since the control set is a
product of intervals, this minimization problem splits into separate 1-dimensional
problems of minimizing a linear function over an interval. If the coefficient mul-
tiplying the control is nonzero, the minimum is attained at the boundary points
(bang controls), but intermediate values (singular controls) can be optimal if this
function vanishes over some interval. This leads to the following definition of the
switching functions for the controls u and v,

Φ1(t) = s1 + µ(t)b and Φ2(t) = s2 + η(t)b (26)

and optimal controls satisfy

u∗(t) =

{
0 if Φ1(t) > 0,

umax if Φ1(t) < 0,
and v∗(t) =

{
0 if Φ2(t) > 0,

vmax if Φ2(t) < 0,
(27)

with singular controls possible if the corresponding switching function vanishes over
an open interval.

In the language of control systems, the 2-compartment linear pharmacokinetic
models simply represent a chain of ‘integrators’ through which the control acts on
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the actual system, the dynamics for the state N . Such a structure does not alter
the optimality of singular controls (e.g., see [13]).

Theorem 3.2. The generalized Legendre-Clebsch condition for optimality of sin-
gular controls for problems [CC] is equivalent to the one for the optimal control
problem without pharmacokinetic model, i.e., when the dynamics is simply given by
Ṅ = (A+B1u+B2v)N and drug dose rates and concentrations are identified.

Proof. For the 2-compartment models employed in this paper, this is a somewhat
lengthy, but more or less straightforward computation and we only indicate the
main steps at the example of the control u. If u is singular on an open interval
I, then the switching function and all its derivatives vanish on I. In particular
Φ̇(t) = µ̇(t)b = µ̇2(t) ≡ 0 and thus µ2 is constant; in fact, it follows from Φ = 0
that µ2 = −s1. Formally differentiating µ2 according to the dynamics imposes
additional restrictions on the other variables and multipliers. For example,

0 = µ̈2(t) = βu (µ̇2(t)− µ̇1(t)) = −βuµ̇1(t)

and thus µ1 is constant as well. But then

0 = µ̇1(t) = −ϕ1λ(t)B1N(t) + γuµ1

and hence the function λ(t)B1N(t) is constant over the singular interval I. This,
however, is exactly the quantity that would arise in the switching function Ψ(t) =
s1 + λ(t)B1N(t) for the system without pharmacokinetic models. It is a matter
of verification that the generalized Legendre-Clebsch condition for optimality of
a singular control for this reduced model is the determining term for the model
[CC] as well. The only difference is that the order of the singular control (e.g.,
see [17]) increases by 2 because of the augmentation with a 2-compartment model
for PK. In the case when only a 1-compartment model is considered, this order
increases by 1. Thus, for the example considered here, one needs to compute the
sixth derivative of the switching to get to the relevant expressions and these reduce
to the same terms that arise for the order 1 singular control of the simplified model.
These computations simplify since the multiplier µ is constant, but are left to the
interested reader to verify. �

In earlier work, we already have analyzed the optimality of singular controls for
the reduced model and have seen that singular controls are not optimal for both u
and v [9]. Thus we have the following corollary.

Corollary 2. If (N∗, c∗, d∗;u∗, v∗) is an optimal controlled trajectory for problem
[CC], then there does not exist an interval on which either of the controls u∗ or v∗
is singular.

Thus bang-bang controls become the natural candidates for optimality. Figure
4 shows a typical example of optimal controls u and v. The local optimality of
these controls has been verified using the algorithmic procedure developed in [18]
that allows us to determine the optimality of bang-bang controls. The cell cycle
parameters were taken from [24] as a1 = 0.197, a2 = 0.395 and a3 = 0.107 and the
corresponding steady-state proportions are given by x∗ = 0.3866, y∗ = 0.1722 and
z∗ = 0.4412. Thus, on average only about 61% of the cancer cells are cycling in this
case. The limits on the controls are umax = 1 and vmax = 1, i.e., we consider the
ideal situation that the cytotoxic agent is able to kill all of the cycling cells and the
cytostatic agent can achieve a complete reduction in the flow from S into G2/M .
The weights for the cancer cells in the objective at the terminal time were taken to
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Figure 4. Examples of locally optimal controls u (cytotoxic
agent) (top,left), v (cytostatic agent) (top,right) with correspond-
ing switching functions and concentrations (bottom)

be equal, r = (1, 1, 1) and smaller during therapy with a slightly higher weight for
the cells in synthesis (just for numerical illustration) q = (0.1, 0.2, 0.1). The weight
for the killing agent is chosen considerably higher than the weight for the blocking
agent, s1 = 100 and s2 = 0.2. For the therapy horizon we chose T = 50 [days]. The
optimal control u∗ follows an MTD scheme and administers all cytotoxic agents
upfront at maximum dose rates with the switching at time t1 = 25.09 [days] and
and then a rest period of about the same time. Clearly, it would make no sense for
the blocking agent to be active during this time and indeed the cytostatic agent is
only administered over an interval from t2 = 43.28 to t3 = 49.89 [days] just prior
to the end of the therapy interval. Naturally, the timing of these events depends on
the parameters in the pharmacokinetic model and in this numerical illustration all
these coefficients were set to 1. Figure 5 shows the corresponding optimal controlled
trajectory with the initial condition normalized so that C(0) = 1000. If one views
the whole therapy interval as one coherent unit and only looks at the total number
of cancer cells, C(t) = N1(t) +N2(t) +N3(t), then C decreases by slightly less that
60%.

This is just one of many representative examples of this structure: the cytotoxic
agent is administered upfront in one maximum dose session consistent with an MTD
approach to chemotherapy scheduling. When the toxicities are measured by the
weighted integrals of the dose rates of the agents and a penalty term on the cancer
during treatment is included in the objective (qN), then as much of the killing
agent as possible is given upfront, i.e., in a single maximum dose therapy session
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starting at t = 0. This is the consistent picture that emerges from various numerical
computations. Compared with the results for the reduced model that identifies dose
rates with concentrations, linear pharmacokinetic models (be it 1- or 2-compartment
models) effect the quantitative values of the switching times, but the variations are
minor if the parameters are correctly calibrated between the reduced and augmented
model.

Naturally, a linear pharmacokinetic model does not capture all drug effects. For
example, blocking agents may at the same time have cytotoxic affects in the sense
that once the cells are released, some of them may fail to divide and may enter
apoptosis. Also, some agents (such as cyclophosphamide) that are cytotoxic at high
doses, are known to be cytostatic at low doses. Aftereffects due to the accumulation
of drugs can result in great individual differences in the effectiveness of treatments
(e.g., [15]). Such features are not captured with a simple linear pharmacokinetic
model. But within the range of validity of this model, our theoretical results are
independent of specific parameter values. The numerical illustrations that were
given are only meant to illustrate general principles.

4. Conclusion. The scheduling of cancer chemotherapy still is an active area of
research, both from the medical and mathematical modeling perspective. The re-
sults given in this paper are in agreement with the conventional MTD approach to
chemotherapy, even for a cell-cycle specific model that takes into account that only
a (possibly small) fraction of cycling cells is chemotherapeutically sensitive. Other
modeling aspects, like tumor heterogeneity or the tumor’s microenvironment, may
result in optimal protocols that deviate from an MTD structure and for these cases
the question of optimal drug scheduling still is largely unresolved. This is an im-
portant medically relevant question since, as experiments and clinical trials show,
the same total amounts of drugs applied according to different protocols may lead
to very different outcomes.
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