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Abstract. Mathematical models provide a powerful tool for investigating the
dynamics and control of infectious diseases, but quantifying the underlying
epidemic structure can be challenging especially for new and under-studied
diseases. Variations of standard SIR, SIRS, and SEIR epidemiological models
are considered to determine the sensitivity of these models to various parame-
ter values that may not be fully known when the models are used to investigate
emerging diseases. Optimal control theory is applied to suggest the most ef-
fective mitigation strategy to minimize the number of individuals who become
infected in the course of an infection while efficiently balancing vaccination
and treatment applied to the models with various cost scenarios. The optimal
control simulations suggest that regardless of the particular epidemiological
structure and of the comparative cost of mitigation strategies, vaccination, if
available, would be a crucial piece of any intervention plan.

1. Introduction. Accidental and intentional introduction of infectious diseases to
previously näıve geographic regions has brought more focus and attention to the de-
velopment of response plans to such scenarios. All levels of government and public
health officials are searching for answers to identify the best strategies for inter-
vention prior to what may be an inevitable event. Given our global connectedness,
diseases that were previously isolated to various parts of the world have spread even
across oceans [4].

In developing response plans to disease outbreaks, decision makers are often faced
with trade-offs in choosing among various treatment options, quarantine, and/or
vaccines. For example, cholera, human papilloma virus, and influenza all have
approved medical treatment options as well as available vaccines. The challenge is
to find the optimal response balancing treatment and vaccination that will minimize
incidence and disease-related mortality while being mindful of the costs of each
mitigation strategy.

Mathematical models have been used to explore the dynamics of diseases since
Bernoulli used a simple model to estimate smallpox mortality and argue for the
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advantages of inoculation [3]. Most mathematical models for infectious diseases
use a similar underlying methodology based on the work formalized by Anderson
and May [1]. The first step is to represent the epidemiology of the disease being
studied by dividing the population into subpopulations, called compartments, that
represent the various stages of disease progression. For example, individuals are
identified as “susceptible” (S) to a disease if they don’t currently have the disease
nor any immunity to the disease, e.g., they have not been vaccinated. Individuals
are “exposed” (E) if they have been infected with the disease pathogen but are not
able to infect others, and they are “infectious” (I) if they are infected and infectious
with the disease pathogen. Finally, they are “removed” (R) if they have cleared the
infection and have immunity to recurrence for at least some period of time, have
been successfully vaccinated against the disease, or are otherwise isolated from the
population so that they cannot spread the disease. Using these compartments and
possibly additional ones as needed, the epidemiology of a disease is represented as
a series of subpopulations connected by the flow from one compartment to another
that is dictated by the disease dynamics. The rates of flow between compartments
are estimated from experiments and field data.

Hethcote provides several notable surveys of basic epidemiological models [13, 16],
and he and other authors have considered in detail the effects of variations on these
models. In addition, there have been several articles considering optimal control
applied to specific diseases, for example [18, 19, 22, 31]. Hethcote suggests that the
most needed contributions to the literature would contrast the effects of altering
the basic components of the various models [13].

Brauer considers several less traditional variations, including compartments for
asymptomatic, quarantined, and isolated individuals [5]. In considering the effect
of treatment in these models, he finds that asymptotically the models’ qualitative
behaviors agree with those of more simple models. However, he notes that it would
be of interest to consider the trade-off between vaccination and treatment and how
the more complicated structures might influence those results.

Behncke applies optimal control to a number of general epidemiological models
with general terms allowing many variations of those models [2]. The article deals
mostly with the costs and timely application of vaccination to various epidemiolog-
ical structures, and provides clear theoretical results in those cases.

Several key components of such models are those that consider mitigation strate-
gies such as treatment and vaccination. Optimal control theory provides a valuable
tool to begin to assess the trade-offs between vaccination and treatment strategies.
Optimal control is a mathematical technique derived from the calculus of variations.
There are a number of different methods for calculating the optimal control for a
specific mathematical model. For example, Pontryagin’s maximum principle allows
the calculation of the optimal control for an ordinary differential equation model
system with a given constraint. Variations of Pontryagin’s maximum principle have
been derived for other types of models including partial differential equations and
difference equations [20, 23]. These techniques are powerful when applied to disease
models and can provide great insights into the best pathway to reduce disease bur-
den. For example, with a given mathematical model for a disease, one can calculate
the best vaccination schedule balancing the cost of the vaccine and the cost of the
disease burden [15].

In using optimal control to suggest an intervention strategy for a specific disease,
one of the first steps is to identify the epidemic structure of a disease. During an
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emerging infectious disease, it is often unclear what the exact epidemic structure
should be, as can be seen from the variety of models created for the 2002-2003 SARS
epidemic [24, 29, 33]. Even for existing diseases, there is often a lack of agreement
on whether a given disease has, for example, a significant incubation period prior
to the individual being infectious as is the case for smallpox [8, 21]. These types
of questions are vital to the understanding of the disease dynamics in general. The
process of developing a mathematical model forces quantitative thinking that often
highlights gaps in data and current knowledge that need to be addressed.

The question we study in this paper is whether this underlying epidemic struc-
ture significantly impacts the predicted optimal control strategy for administering
vaccination and/or treatment. This is an important question given that often at the
beginning of a newly emerged or previously under-studied disease, the underlying
epidemic structure is unknown. If the optimal control strategy remains qualitatively
the same regardless of the underlying epidemic structure, then less time needs to
be spent investigating that structure before initial response policies can be made.
Additional research will be needed subsequently to understand the disease more
fully and assess and update the response policy as needed. We present results from
the exploration of SIR, SIRS, and SEIR models including vaccination and treat-
ment options under varying rates for incidence and disease related death. Below
we present the SIR model analysis in detail including the proof of uniqueness and
existence of the optimal control solutions followed by summaries for the results of
the similar analyses of the SIRS and SEIR models. Finally, we present the results
of numerical simulations for each model under various parameter values.

2. Equations for a standard SIR model. We begin our explorations with a
standard SIR model for a population with underlying logistic growth as defined by
the following state equations:

dS
dt

= µN − β SI
N

− νS − µNS
K

, (1)
dI
dt

= β SI
N

− (γ + τ + δ)I − µNI
K

, (2)
dR
dt

= (γ + τ)I + νS − µNR
K

, (3)

subject to the boundary conditions

S(0) = S0, I(0) = I0, R(0) = R0. (4)

As described in the previous section, the variables S, I, and R represent the sus-
ceptible, infectious, and removed classes, respectively. We assume logistic growth of
the total population N = S + I + R with carrying capacity K, and we additionally
assume that all new births enter the susceptible class. Note that many models treat
the population size as constant, and in the short term the models provide essentially
the same results. However, when considering disease-related deaths [13] the logistic
model should provide more accurate predictions. It should be noted that the direct
applicability of a logistic growth model to a human population remains a subject of
debate [27], as human birth and death rates are far more complicated than simple
resource allocation. Nonetheless, the logistic model, which provides mathematical
stability, will produce reasonable results for our generic model population over a
time frame that is significantly shorter than a human lifespan as is used in this
optimal control study.
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The parameter β approximates the average number of contacts with infectious
individuals needed to make one person ill in each unit of time. Note that I

N
ap-

proximates the fraction of the population that is infectious. If we assume that each
person has one contact in each time period (measured in days for our analysis),
and thus the term SI

N
approximates the number of susceptible/infectious contacts

in each time period, and β SI
N

, the “standard incidence,” approximates the number
of susceptibles who become infectious in each time period [13]. Liu, Hethcote, and
others have published multiple studies examining the need for and effect of other
measures of incidence [12, 14, 17, 25, 26]. In particular, if I is raised to a power,
interesting dynamics can be observed. As these researchers write, it is difficult to
assess in a particular case which incidence model is most appropriate.

We assume that some proportion δ of the infectious population dies due to the
disease in each time period. The control function ν(t) measures the rate at which
susceptibles are vaccinated in each time period, and the control function τ(t) mea-
sures the rate at which infectious individuals are treated in each time period. Note
that in equations (1) – (3) the control ν moves individuals from the S class to
the R class, and the control τ moves individuals from the I class to the R class.
Since quarantine effectively removes infectious individuals from the population, the
control τ can provide a rudimentary model for quarantine effects in addition to
modeling medical treatments of the disease. This observation may be useful for de-
termining mitigation strategies for diseases for which no treatment is known. Note
that an alternative model for quarantine introduced by Hethcote et al. adjusts
the incidence term to account for a smaller mixing population, which can produce
periodic disease dynamics for some parameter sets [12]. In addition, as mentioned
earlier, Brauer’s recent model also distinguishes between quarantine and isolation,
and also adjusts other key parameters for these populations [5].

A summary of parameter meanings and values used in our numerical computa-
tions appears in Table 1. Note that for these simulations the total initial population
is at carrying capacity, and the models’ logistic population dynamics allow the the
population to recover its size as disease-related deaths are permitted. Also, note
that initial conditions have been chosen to allow our optimal control pairs to be
well-defined in equation (14) that will be derived in Section 4 following.

Given initial population sizes S0, I0, and R0, we seek the best mitigation strategy
for the outbreak modeled in equations (1) – (3) by optimally defining bounded,
Lebesque integrable control functions ν(t) and τ(t). Our goal is to minimize the
number of people who become infected, and thus also the number of people who
die due to the infection, while also minimizing the effort of vaccinating and treating
the population. Thus, we seek to minimize the objective functional

J(ν, τ) =∈ 0T

[

B1I(t) + B2

[

R(t)

K

]m

ν2(t) + B3τ
2(t)

]

dt, (5)

where m ≥ 1. The constants B1, B2, and B3 have a dual role. On one hand, they
are needed to balance the units in the integrand because the number of infected
individuals will be measured in the hundreds in this paper, while τ and ν are
treatment rates and will necessarily lie between 0 and 1. On the other hand, in
numerical runs we further vary the constants to place stronger importance on the
minimization of infected individuals or on treatment and/or vaccination efforts. The
terms B1I(t) and B3τ

2(t) are rather standard terms in objective functionals with
similar goals (see, for example, [18, 19], or, for a contrasting objective functional
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Table 1. Summary of parameter values used in figures

Name Description Value
S0 Initial susceptible population 4500 humans
E0 Initial exposed population 498 humans
I0 Initial infected population 499 humans (SEIR: 1 human)
R0 Initial removed population 1 human
K Carrying Capacity 5000
µ intrinsic growth rate 0.00004 / day
δ death rate due to disease 0 to 0.1 / day
β incidence rate 0.05 to 0.55 / day
γ infect time 0.1 / day
ω waning rate 0.001 / day
ǫ transition rate 0.1 / day
B1 weight for number infected 1
B2 weight for vaccination 1000 to 100,000
B3 weight for treatment 1000 to 10,000
νmax Max Vacc Rate 0.1 / day
τmax Max Treatment Rate 0.6 / day

[22, 30]). Treatment is viewed as a nonlinear function since implementation of
any public health intervention does not have a linear cost, but rather, there are
increasing costs with reaching higher fractions of the population. The quadratic is
the most simple nonlinear function and so is used for treatment.

The remaining term in our objective functional seeks to increase the expense of
vaccination when most of the population has either been vaccinated or has immu-
nity from a prior infection. When m is chosen to be an even integer such as 10, the
term B2[

R
K

]mν2(t) reflects the reality that the cost of vaccinating the first approx-
imately 80 percent of a population is relatively small as compared with the cost
of vaccinating the remaining 20 percent. For example, this could reflect the costs
of lab tests that could used to determine a person’s immune status prior to vacci-
nation. Indeed, numerical investigations suggested unrealistic vaccination schemes
when the vaccination term was allowed to have the more standard quadratic form
m = 2. An alternate way to address the cost differential caused by the density of
succeptibles in the population is suggested by Behncke, who introduces a cost func-
tion and otherwise maintains a linear functional resulting in a bang-bang control
for the vaccination strategy [2].

We assume there are practical limitations on the maximum rate at which individ-
uals who may be vaccinated or treated in a given time period and we define positive
constants νmax and τmax accordingly. We define the set of admissible controls to be

Ω = {(ν, τ) ∈ L1(0, T ) | (ν(t), τ(t)) ∈ [0, νmax] × [0, τmax] ∀t ∈ [0, T ]}. (6)

We seek an optimal control pair (ν∗, τ∗) such that

J(ν∗, τ∗) = min
Ω

J(ν, τ). (7)

As is listed in Table 1, we assume a maximum vaccination rate of 0.1 and a maximum
treatment rate of 0.6. The maximum vaccination rate is based on the 1947 smallpox
outbreak in New York City. At the height of this outbreak, a half million to a million
of the population of 6 million were vaccinated daily [32]. The maximum treatment
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rate was chosen more arbitrarily, but qualitative results were not sensitive to a
change of this parameter.

3. Existence of an optimal control pair. We begin by examining sufficient
conditions for the existence of a solution to the optimal control problem. A high
death rate from disease could theoretically cause the population to vanish, and the
existence theorem must assume that the external death rate δ is smaller than the
population intrinsic growth, or turnover, rate µ.

Theorem 3.1. There exists an optimal control pair ν∗(t), τ∗(t), and corresponding
solution S∗, I∗, R∗ to the state initial value problem (1) – (4) that minimizes J(ν, τ)
over Ω.

Proof. We refer to the conditions in Theorem III.4.1 and its corresponding Corollary
in Fleming and Rishel [10]. The requirements there on the set of admissible controls
Ω and on the set of end conditions are clearly met here. The following nontrivial
requirements from Fleming and Rishel’s theorem are listed and later verified below:

A. The set of all solutions to system (1) – (4) with corresponding control functions
in Ω (as given in equation (6)) is nonempty.

B. The state system can be written as a linear function of the control variables
with coefficients dependent on time and the state variables.

C. The integrand L in equation (5) is convex on Ω and additionally satisfies
L(t, S, I, R, ν, τ) ≥ c1|(ν, τ)|β − c2, where c1 > 0 and β > 1.

In order to establish condition A, we refer to Theorem 3.1 by Picard-Lindelöf in
Coddington and Levinson [7]. If the solutions to the state equations are a priori
bounded and if the state equations are continuous and Lipschitz in the state vari-
ables, then there is a unique solution corresponding to every admissible control pair
in Ω.

Thus, we begin establishing bounds on N = S + I + R, and, by extension, S, I,
and R. Note that N satisfies the modified logistic equation

dN

dt
= µN

(

1 −
N

K

)

− δI. (8)

and assume that N(0) = N0. If N > K, then N is decreasing. Thus, N is
bounded above by max(N0, K). Note that the quantities S, I, and R decrease only
proportional to their present sizes, respectively, and thus none of S, I, and R can
be negative. Therefore, the upper bound for N is also an upper bound for S, I,
and R.

Note that equations (1) and (2) have division by N , and thus we need a strictly
positive lower bound for N . To produce this bound, we note that if the solution to
the differential equation

dÑ

dt
= µÑ

(

1 −
Ñ

K

)

− δÑ . (9)

is bounded below then surely the solution to (8) is bounded below by the same

bound. Since dÑ
dt

is proportional to Ñ we know that in finite time Ñ remains
strictly positive. Thus, for a given end-time T solutions to (8) will have a positive
lower bound.

With the bounds established above, it follows that the state system is continuous
and bounded. It is equally direct to show the boundedness of the partial derivatives
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with respect to the state variables in the state system, which establishes that the
system is Lipschitz with respect to the state variables (see [6], page 248). This
completes the proof that condition A holds.

Condition B is verified by observing the linear dependence of the state equations
on controls ν and τ . Finally, to verify condition C we note that since the integrand
L of the objective functional is quadratic in the controls, L is clearly convex in the
controls. To prove the bound on the L we note that by the definition of Ω we have
B2ν

2 ≤ B2, and so B2ν
2 − B2 ≤ 0. Thus,

L = B1I(t) + B2

[

R

K

]m

ν2(t) + B3τ
2(t) ≥ B3τ

2(t) ≥ B2ν
2 + B3τ

2 − B2

≥ min(B2, B3)(ν
2 + τ2) − B2.

4. Characterization of optimal controls. We apply Pontryagin’s Maximum
Principle [28] and convert the optimization problem described in the previous sec-
tion to the problem of finding the point-wise minimum relative to ν and τ of the
Hamiltonian.

Theorem 4.1. Given the optimal control pair (ν∗, τ∗) and corresponding solutions
to the state system (1) – (4) S∗, I∗, R∗ that minimize the objective functional (5)
there exist adjoint variables λ1, λ2, and λ3 satisfying

dλ1

dt
=

µ

K
[λ1(S + N − K) + λ2I + λ3R]

+β
I(N − S)

N2
(λ1 − λ2) + ν(λ1 − λ3), (10)

dλ2

dt
= −B1 +

µ

K
[λ1(S − K) + λ2(N + I) + λ3R]

+β
S(N − I)

N2
(λ1 − λ2) + δλ2 + (γ + τ)(λ2 − λ3), (11)

dλ3

dt
= nB2ν

2 Rm−1

Km
+

µ

K
[(S − K)λ1 + Iλ2 + (N + R)λ3]

+β
SI

N2
(λ2 − λ1)), (12)

with transversality conditions

λ1(T ) = λ2(T ) = λ3(T ) = 0. (13)

Furthermore, as long as the optimal removed class R∗ is nonzero, we may charac-
terize the optimal pair by the continuous functions

ν∗ = min

(

max

(

0,
S∗(λ1 − λ3)

2B2

[

R∗

K

]m

)

, νmax

)

,

τ∗ = min

(

max

(

0,
I∗(λ2 − λ3)

2B3

)

, τmax

)

. (14)

We note that the restriction on R∗ can easily be resolved by assuming a nonzero
initial value for R0 for mathematical convenience. Physically this requirement is
not significant.
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Proof. The result follows from a direct application of a version of Pontryagin’s Max-
imum Principle for bounded controls (see [20, 23, 28]). We form the Hamiltonian
H :

H = B1I + B2

[

R

K

]m

ν2 + B3τ
2 + λ1

[

µN − µ
N

K
S − β

SI

N
− νS

]

+

λ2

[

β
SI

N
− (δ + γ + τ)I − µ

NI

K

]

+ λ3

[

(γ + τ)I + νS − µ
NR

K

]

. (15)

As dictated by the Maximum Principle, the adjoint equations are given by the
equations dλ1

dt
= −∂H

∂S
, dλ2

dt
= −∂H

∂I
, dλ3

dt
= −∂H

∂R
, and must satisfy transversality

conditions λi(T ) = 0 for values i = 1, 2, 3. Finally, the optimality conditions dictate
that ∂H

∂ν
= ∂H

∂τ
= 0 for the optimal pair (ν∗, τ∗) on the interior of the control set,

and this condition is simplified in equations (14) with attention to the bounds on
the pair as given in the definition of Ω in equation (6). Note that as a result of the
transversality condition, the optimal vaccination and treatment will be zero at the
end time. Observe that by the characterization of the controls given in (14) and the
nonzero assumption for R, it follows that the controls are continuous in time.

The optimality system is defined as is the compilation of the state equations
(1) – (3), the initial conditions (4), the adjoint equations (10) – (12), and the
transversality conditions (13), with the optimality equations (14) substituted into
the state and adjoint equations. Uniqueness of the optimality system can be shown
for a small time interval.

Theorem 4.2. For T sufficiently small the optimality system is unique.

The proof of the the theorem is rather lengthy due to the complexity of the
optimality system. The approach is explained in [9, 18], and the proof itself is given
in the appendix.

5. Variations of the SIR model. As Hethcote details in [13], there are hundreds
of variations of the SIR model described in Section 2. Two classic variations result
from adding an incubation period before a subject becomes infectious, the SEIR
model, or from including waning immunity, the SIRS model. In this section, we
provide the system and optimal control differential equations for several variations
of the SIR model. We omit the derivations and theory that are similar to the results
presented in the previous section for the SIR model. In the section on numerical
results we contrast the models and isolate the parameters and terms that cause the
most variation in optimal control mitigation strategies.

5.1. The SEIR model. Adding an incubation period to the disease creates the
“exposed” class E of subjects who have be exposed to the disease and will ultimately
become infectious after a waiting period of 1

ǫ
. An obvious consequence of the

addition of a waiting period is the increased window of time to vaccinate subjects
before the first big wave of infectious individuals is released into the population. We
will examine other qualitative model differences in Section 6. The state equations
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for this model are

dS

dt
= µN − β

SI

N
− νS − µ

NS

K
, (16)

dE

dt
= β

SI

N
− ǫE − µ

NE

K
, (17)

dI

dt
= ǫE − (γ + τ + δ)I − µ

NI

K
, (18)

dR

dt
= (γ + τ)I + νS − µ

NR

K
. (19)

For comparison purposes, we seek to minimize the same objective functional given
in equation (5), which we repeat here for convenience:

J = min ∈ 0T

[

B1I + B2

[

R

K

]m

ν2 + B3τ
2

]

dt.

Following Theorem 4.1, we consider the Hamiltonian equation given by

H = B1I + B2

[

R

K

]m

ν2 + B3τ
2 +

λ1

[

µ(S + E + I + R) − β
SI

(S + E + I + R)
− νS−

µ
(S + E + I + R)S

K

]

+

λ2

[

β
SI

(S + E + I + R)
− ǫE − µ

(S + E + I + R)E

K

]

+

λ3

[

ǫE − (δ + γ + τ)I − µ
(S + E + I + R)I

K

]

+

λ4

[

γI + νS + τI − µ
(S + E + I + R)R

K

]

.

and the optimal controls are found by solving equations (16) – (19) with initial
conditions S0, E0, I0, and R0 along with the adjoint equations

dλ1

dt
= −λ1µ + (λ1 − λ2)βI

N − S

N2
+ (λ1 − λ4)ν

+
µ

K
[(S + N)λ1 + Eλ2 + Iλ3 + Rλ4] (20)

dλ2

dt
= −λ1µ + (λ2 − λ1)β

SI

N2
+ (λ2 − λ3)ǫ

+
µ

K
[Sλ1 + (E + N)λ2 + Iλ3 + Rλ4] (21)

dλ3

dt
= −B1 − λ1µ + (λ1 − λ2)βS

N − I

N2
+ δλ3

+(λ3 − λ4)(γ + τ) +
µ

K
[Sλ1 + Eλ2 + (I + N)λ3 + Rλ4] (22)

dλ4

dt
= nB2ν

2 Rm−1

Km
− λ1µ + (λ2 − λ1)β

SI

N2
+

µ

K
[λ1S + λ2E + λ3I + λ4(R + N)] , (23)
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and transversality conditions as given in equation (13) of Theorem 4.1. The optimal
control pair satisfies

ν∗ = min

(

max

(

0,
S∗(λ1 − λ4)

2B2

[

R∗

K

]m

)

, νmax

)

, (24)

τ∗ = min

(

max

(

0,
I∗(λ3 − λ4)

2B3

)

, τmax

)

. (25)

(26)

5.2. The SIRS model. We now consider the consequences when the SIR model
is modified to account for waning immunity. We assume in this model that after a
time period 1

ω
, subjects in the removed class return to the susceptible class. Again,

one consequence of this variation is intuitively clear. The susceptible class will
likely have a long term positive equilibrium extending the need for vaccination. We
discuss this and other significant outcomes in the consideration of this model in
Section 6.

The state equations for the SIRS model are

dS

dt
= µN − β

SI

N
− νS − µ

NS

K
+ ωR, (27)

dI

dt
= β

SI

N
− (γ + τ + δ)I − µ

NI

K
, (28)

dR

dt
= (γ + τ)I + νS − µ

NR

K
− ωR. (29)

The objective functional is as in equation (5) of Section 2. The Hamiltonian is
formed as before, resulting in the adjoint equations

dλ1

dt
=

µ

K
[λ1(S + N − K) + λ2I + λ3R] +

β
I(N − S)

N2
(λ1 − λ2) + ν(λ1 − λ3) (30)

dλ2

dt
= −B1 +

µ

K
[λ1(S − K) + λ2(N + I) + λ3R]

+β
S(N − I)

N2
(λ1 − λ2) + δλ2 + (γ + τ)(λ2 − λ3) (31)

dλ3

dt
= nB2ν

2 Rm−1

Km
+

µ

K
[(S − K)λ1 + Iλ2 + (N + R)λ3]

+β
SI

N2
(λ2 − λ1)) − ω(λ1 − λ3). (32)

The transversality conditions are as in equation (13) of Section 2, and the optimal
control pair will satisfy the same condition given in equations (14) in Theorem 4.1.

6. Numerical results. The optimal control problem was solved using an iterative
scheme derived by Hackbush [11] and described briefly here. Using an initial guess
for the control variables, ν and τ , the state variables, S, E (if applicable), I, R, are
solved forward in time, and then the adjoint variables, λi, are solved backwards in
time. If the new values of the state and adjoint variables differ from the previous
values, the new values are used to update ν and τ and the process is repeated until
the system converges. For the SIR model, the state equations are given by equations
(1) – (3) with the initial conditions given by (4). The adjoint equations are given
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by equations (10) – (12) with the final time conditions given by (13). Finally, the
control variables are given by equations (14). Similarly, the SEIR model has state
equations (16) – (19), adjoint equations (20) – (23), and control variables (24) –
(25). Finally, the SIRS model has state equations (27) – (29), adjoint equations
(30) – (32), and control variables (13). For each run, the control variables are set
to an initial guess of 0.0 for all time. In the numerical runs presented here we use
the parameter assumptions listed in Table 1.

In sensitivity analyses, we found that the weights in the objective functional (5)
had very little qualitative impact on the suggested vaccination scheme, though as
we mentioned in Section 2 the inclusion of the term ( R

K
)10 in the functional was

essential to the outcome. Likewise, the carrying capacity K can be varied widely
provided that it is not extremely small with respect to the number of initially
infectious individuals. The incubation period ǫ specified in the SEIR model does
affect the number of infectious individuals in the population at any time – the
longer the incubation period the more infectives – but the dependence is smooth
and the qualitative behaviors the same. Likewise, varying the waning rate ω has
the expected impact in the SIRS model – the higher the waning rate, the higher
the number of newly susceptibles, and thus the higher the resulting maintenance
vaccination level. On the other hand, the models are sensitive to changes in the
incidence rate β and the death rate δ.

In our numerical runs, we compare optimal mitigation strategies as we vary
incidence rates, death rates, and weights for the relative costs of vaccination and
treatment. With a death rate of 0 we varied the incidence rates from 0.05 to 0.55,
and for an incidence rate of 0.3 we varied the death rate from 0 to 0.1. Recalling that
a factor of 1000 is needed to balance units for treatment and vaccination with the
number of infected individuals in the objective functional, we shifted a total weight
of 2000 between treatment and vaccination costs. To investigate the required effort
for the predicted optimal control, we multiplied the controls by the corresponding
states. For treatment, we multiplied the treatment rate by the number of infected
individuals in the population at that time to give us an estimate for how much
effort this represented. For vaccination, we multiplied the vaccination rate by the
number of susceptible individuals in the population for a similar estimate of effort.
Our graphs show by color the number of individuals who are infected, treated, or
vaccinated in any time step for the various scenarios.

The advice suggested by the various runs is consistent, as is detailed below and
illustrated in Figures 1 through 4. Regardless of the relative costs of vaccination and
treatment and also regardless of the disease structure, it is essential for the effective
control of an epidemic to vaccinate at the highest possible rate as early as possible
to minimize the number of individuals who become infectious and to minimize the
effort of controlling the epidemic. However, if the relative costs of treatment and
vaccination allow treatment to coincide with vaccination, we see that the presence
of treatment reduces the size of the infected population correspondingly. While it is
not evident in the time scale pictured for this article, we further observe in the SIRS
case the need for continued vaccination for small portions of the large susceptible
population, as one would expect to see where there is waning immunity.

In Figures 1 and 2 we see the baseline recommendations for vaccination and
treatment and the resulting numbers of infected when vaccination and treatment
are equally weighted and incident rates and disease death rates vary. Note that the
true maximum numbers who are vaccinated or treated at any one time are about
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Figure 1. For this figure, vaccination and treatment are weighted
equally, the incidence rate is β = 0.3, and the death rate δ varies.
All plots show the solution of the model systems using the predicted
optimal control solutions for each given value of δ. The graphs in
the first column are the results of the SIR model, the second column
the SIRS model, and the third column the SEIR model. The first
row shows the size of the infected class versus time for each disease-
related death rate for each model, the second row shows the number
vaccinated, and the third shows the number treated. It is important
to note that the color scale for the infected class is 0-600, while the
scale for the vaccinated and treated is only 0-200. For example, we
see that when δ = 0, which is the top-most bar in each plot, there is
little variation between the SIR and SIRS model for the size of the
infected class. However, as the disease-related death rate increases
to 0.1, there is a noted increase in the size of the infected class for
SIRS and SEIR models that is not reflected in the SIR model. The
optimal number of vaccinations does not vary widely from model
to model for varying δ. The timing of treatment does vary from
model to model and across values for δ.

550 and 400, respectively, and our smaller scale in the graph is to visually aid with
comparisons as time progresses. One can observe in these initial baseline cases that
treatment is sometimes foregone to support the necessary immunization; however,
there is a corresponding price in the number of individuals that become infected.
One can also observe the continuing vaccination in the SIRS cases until the disease
is eradicated.
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Figure 2. For this figure, vaccination and treatment are weighted
equally, the incidence rate β varies, and the death rate δ is zero. All
plots show the solution of the model systems using the predicted
optimal control solutions for each given value of β. The graphs
in the first column are the results of the SIR model, the second
column the SIRS model, and the third column the SEIR model.
The first row shows the size of the infected class versus time for each
disease-related death rate for each model, the second row shows
the number vaccinated, and the third shows the number treated.
It is important to note that the color scale for the infected class
is 0-600, while the scale for the vaccinated and treated is only 0-
200. Similar to the results of Figure 1, the optimal solution shows
maximum vaccination across all models and parameter values for
at least the first half of the run. Treatment levels, however, vary
by model and the incidence values, β.

Figure 3 considers the case in which vaccination carries a weight of 200 and
treatment carries a weight of 1800, so that treatment is 9 times as expensive as
vaccination. This figure should be compared to Figure 2 in which treatment and
vaccination are equally weighted. We see that the SIRS population benefits from
the less expensive vaccination (observe the missing “bumps” in the second column
of Figure 3) because some of the resources saved in the inexpensive vaccination
effort can be applied to the necessary treatment. In contrast, the SEIR population
suffers because there are not enough resources to treat at the higher rate used in the
baseline case for higher incidence rates. The graph shown is for varying incidence,
but the results are similar as the death rate varies. The results are also qualitatively
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Figure 3. For this figure, treatment was nine times more expen-
sive than vaccination (vaccination weight = 200, treatment weight
= 1800), the incidence rate β varies, and the death rate δ is zero.
All plots show the solution of the model systems using the predicted
optimal control solutions for each given value of β. The graphs in
the first column are the results of the SIR model, the second col-
umn the SIRS model, and the third column the SEIR model. The
first row shows the size of the infected class versus time for each
disease-related death rate for each model, the second row shows
the number vaccinated, and the third shows the number treated.
It is important to note that the color scale for the infected class is
0-600, while the scale for the vaccinated and treated is only 0-200.
Note the increased size of the infected class for the SEIR model as
compared with that in Figure 2 as a function of increased cost for
treatment.

the same when treatment is only 3 times as expensive or as much as 200 times more
expensive.

Finally, Figure 4 shows the results as we vary incidence when vaccination is 9
times as expensive as treatment. Again, this figure should be compared to Figure
2 in which treatment and vaccination have equal cost. Ironically, even though
treatment is relatively cheap we have a big hole in the numbers treated for the
SIRS case, reflecting the urgency of vaccination, and yet the lack of treatment
produces a surge of infected individuals. As we would expect from the previous
example, the SEIR audience fairs better because the less expensive treatment has a
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Figure 4. For this figure, vaccination was nine times more expen-
sive than treatment (vaccination weight = 200, treatment weight =
1800), the incidence rate β varies, and the death rate δ is zero. All
plots show the solution of the model systems using the predicted
optimal control solutions for each given value of β. The graphs in
the first column are the results of the SIR model, the second col-
umn the SIRS model, and the third column the SEIR model. The
first row shows the size of the infected class versus time for each
disease-related death rate for each model, the second row shows
the number vaccinated, and the third shows the number treated.
It is important to note that the color scale for the infected class is
0-600, while the scale for the vaccinated and treated is only 0-200.
Again, the SEIR infected class shows the most dramatic impact of
the cost of treatment in comparison to Figure 2.

strong effect on the number who become infected when there is an exposed period
for the disease.

Finally, Figure 4 shows the results as we vary incidence when vaccination is 9
times as expensive as treatment. Again, this figure should be compared to Figure
2 in which treatment and vaccination have equal cost. Ironically, even though
treatment is relatively cheap we have a big hole in the numbers treated for the
SIRS case, reflecting the urgency of vaccination, and yet the lack of treatment
produces a surge of infected individuals. As we would expect from the previous
example, the SEIR audience fairs better because the less expensive treatment has a
strong effect on the number who become infected when there is an exposed period
for the disease.
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Another view of the mitigation strategies suggested by the optimal control simu-
lations can be seen in Figure 5. In this figure, we observe the number of individuals
vaccinated and treated on top, and the rates of vaccination and treatment on the
bottom. We see that it can be misleading to only record only the recommended
rates because at the end of the time period the numbers of infected are so low
that a high treatment rate corresponds to a small number of infected individuals
being treated. We note that the strategy requires vaccinating at the maximum rate
allowed, and when that translates to fewer succeptible individuals remaining and
being vaccinated, then additional healthcare dollars can be devoted to treatment
while maintaining the recommended vaccination rate. This time-series view of a
given scenario helps to illustrate the optimal control recommendation of maximum
vaccination as a primary strategy.
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Figure 5. For this figure, we have selected the SEIR model run
from the scenario shown in Figure 3 where the vaccination weight =
200, treatment weight = 1800, incidence rate =0.35 and the death
rate as zero. The top time series shows the predicted numbers of
individuals vaccinated (solid line) and treated (dotted line) in the
first 25 time steps. In contrast the lower time series shows the pre-
dicted optimal control rates for vaccination (solid) and treatment
(dotted). These plots show that a prediction of a constant vaccina-
tion or treatment rate does not imply a constant level of effort, but
rather the number of individuals affected provides a better view of
the true costs.

7. Conclusion. While underlying epidemic structure is crucial to answering many
questions, it appears that for the range of models we studied there is only subtle
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variation in the optimal strategies. Our conclusion from our simulations is that
vaccination, if available, is an essential tool in fighting an epidemic. However,
if resources allow for the provision of treatment as well, this additional tool is a
valuable resource in decreasing the number of individuals who are affected by an
epidemic, particularly if a disease has an exposed period and/or a high incidence
rate.
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Appendix. We include the proof of Theorem 4.2.

Proof. In order to consider the uniqueness of the optimal control as characterized
above, we must first consider bounds on the adjoint system. Note that bounds for
the state system were established in Theorem 3.1. To see that the adjoint system
is bounded, we rearrange equations (10) – (12):

dλ1

dt
= λ1

[

µ

K
(S + N − K) + β

I(N − S)

N2
+ ν

]

+λ2

[

µ

K
I − β

I(N − S)

N2

]

+ λ3

[ µ

K
R − ν

]

dλ2

dt
= −B1 + λ1

[

µ

K
(S − K) + β

S(N − I)

N2

]

+λ2

[

µ

K
(N + I) − β

S(N − I)

N2
+ δ + γ + τ

]

+λ3

[ µ

K
R − γ − τ

]

http://www.ams.org/mathscinet-getitem?mr=MR2316829&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0908379&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0829132&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0166036&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2070274&return=pdf
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dλ3

dt
= mB2ν

2 Rm−1

Km
+ λ1

[

µ

K
(S − K) − β

SI

N2

]

+λ2

[

µ

K
I + β

SI

N2

]

+ λ3

[ µ

K
(N + R)

]

.

We recall that N = S + I + R, that S, I, and R are nonnegative, and that N > 0.

Thus, 0 ≤ I(N−S)
N2 , IS

N2 ,
S(N−I)

N2 ≤ 1. We recall additionally the bounds 0 ≤ ν ≤ νmax

and 0 ≤ τ ≤ τmax, and with this substitution we see that the adjoint system is
bounded by linear systems with bounded coefficients. Thus, the sub- and super-
solutions are uniformly bounded, establishing bounds for the adjoint system in finite
time.

Now, suppose that there are two solutions to the optimality system:

(S(t), I(t), R(t), λ1(t), λ2(t), λ3(t)) and ( ¯S(t), ¯I(t), ¯R(t), λ̄1(t), λ̄2(t), λ̄3(t)).

To show that the two solutions are equivalent, it is convenient to make a change of
variables. We define s, i, r, φ1, φ2, φ3, s̄, ī, r̄, φ̄1, φ̄2, and φ̄3 so that

S(t) = eαts(t), I(t) = eαti(t), R(t) = eαtr(t),

λ1(t) = e−αtφ1(t), λ2(t) = e−αtφ2(t), λ3(t) = e−αtφ3(t),

where α is a constant to be chosen later. The barred variables are transformed
similarly. Note that the bounds for the state and adjoint variables can be extended
to bounds for the new variables. With the new variables the optimality conditions
become

ν = min



max



0,
e2αts(t)(φ1(t) − φ3(t))

2B2

[

eαtr(t)
K

]m



 , νmax



 , (33)

τ = min

(

max

(

0,
e2αti(t)(φ2(t) − φ3(t))

2B3

)

, τmax

)

, (34)

and likewise the optimality conditions for the barred equations could be defined.
For convenience we define n(t) = s(t)+ i(t)+ r(t) and we note that N(t) = eαtn(t).

We make the change of variables for each of the six differential equations in our
optimality system. For ease of notaiton, we generally omit the dependence on time
in the following except in the case taht a specific time is intended. We consider
the difference of the resulting equations for s and s̄, i and ī, and so on, and we
then simplify the resulting equations by integration with the use of appropriate
integrating factors.

We consider the first state equation with both solution sets and the change of
variables:

αeαts + eαtṡ = µeαtn − β
e2αtsi

eαtn
− νeαts − µ

e2αtns

K

αs + ṡ = µn − β
si

n
− νs − µ

eαtns

K

We subtract from the above the corresponding barred equation and find:

α(s − s̄) + (ṡ − ˙̄s) = µ(n − n̄) − β

[

si

n
−

s̄̄i

n̄

]

−ν(s − s̄) − µeαt
[ns

K
−

n̄s̄

K

]

.
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We multiply by (s − s̄) and integrate from 0 (at which the state equation variables
are equivalent) to T yielding

1

2
(s(T ) − s̄(T ))2 + α

∫ T

0

(s − s̄)2 dt

= µ

∫ T

0

(n − n̄)(s − s̄) dt − β

∫ T

0

(s − s̄)

[

si

n
−

s̄̄i

n̄

]

dt

−

∫ T

0

(νs − ν̄s̄)(s − s̄) dt −
µ

K

∫ T

0

eαt(s − s̄) [ns − n̄s̄] dt. (35)

The remaining equations are manipulated similarly, with derivations and depen-
dence on time omitted in the interest of space. The specific characterization of the
controls as given in equations (33) and (34) is represented simply by ν, ν̄, τ , and τ̄

in the six manipulated equations:

1

2
(i(T ) − ī(T ))2 + α

∫ T

0

(i − ī)2 dt = β

∫ T

0

(i − ī)

[

si

n
−

s̄̄i

n̄

]

dt

−(γ + δ)

∫ T

0

(i − ī)2 dt −

∫ T

0

(τi − τ̄ ī)(i − ī) dt

−
µ

K

∫ T

0

eαt [ni − n̄ī] (i − ī) dt, (36)

1

2
(r(T ) − r̄(T ))2 + α

∫ T

0

(r − r̄2 dt = γ

∫ T

0

(i − ī)(r − r̄) dt

−
µ

K

∫ T

0

eαt +

∫ T

0

(τi − τ̄ ī)(r − r̄) dt +

∫ T

0

(νs − ν̄s̄)(r − r̄ dt

−
µ

K

∫ T

0

eαt [nr − n̄r̄] (r − r̄) dt, (37)

−α

∫ T

0

(φ1 − φ̄1)
2 dt −

1

2
(φ1(0) − φ̄1(0))2 = −µ

∫ T

0

(φ1 − φ̄2
1) dt

+
µ

K

∫ T

0

eαt(φ1 − φ̄1) {[φ1(s + n) + φ2i + φ3r]

−
[

φ̄1(s̄ + n̄) + φ̄2ī + φ̄3r̄
]}

dt

+β

∫ T

0

eαt(φ1 − φ̄1)

[

i(n − s)

n2
(φ1 − φ2) −

ī(n̄ − s̄)

n̄2
(φ̄1 − φ̄2

]

dt

+

∫ T

0

(φ1 − φ̄1)
(

ν(φ1 − φ3) − ν̄(φ̄1 − φ̄3

)

dt, (38)
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−α

∫ T

0

(φ2 − φ̄2)
2 dt −

1

2
(φ2(0) − φ̄2(0))2

=
µ

K

∫ T

0

eαt(φ1s − φ̄2s̄)(φ2 − φ̄2) dt

−µ

∫ T

0

(φ1 − φ̄1)(φ2 − φ̄2) dt

+
µ

K

∫ T

0

eαt
[(

φ2(n + i) − φ̄2(n̄ + ī)
)

+
(

φ3r − φ̄3r̄
)]

(φ2 − φ̄2) dt

+β

∫ T

0

[

s(n − i)

n2
(φ1 − φ2) −

s̄(n̄ − ī)

n̄2
(φ̄1 − φ̄2)

]

(φ2 − φ̄2) dt

+δ

∫ T

0

(φ2 − φ̄2)
2 dt

+γ

∫ T

0

[

(φ2 − φ3) − (φ̄2 − φ̄3)
]

(φ2 − φ̄2) dt

+

∫ T

0

[

τ(φ2 − φ3) − τ̄ (φ̄2 − φ̄3

]

(φ2 − φ̄2) dt, (39)

−α

∫ T

0

(φ3 − φ̄3)
2 dt −

1

2
(φ3(0) − φ̄3(0))2

=
mB2

Km

∫ T

0

eαmt
[

ν2rn−1 − ν̄2r̄n−1
]

(φ3 − φ̄3) dt

+
µ

K

∫ T

0

eαt(sφ1) − s̄φ̄1)(φ3 − φ̄3) dt

−µ

∫ T

0

(φ1 − φ̄1)(φ3 − φ̄3) dt

+
µ

K

∫ T

0

eαt {[iφ2 + (n + r)φ3]

−
[

īφ̄2 + (n̄ + r̄)φ̄3

]}

(φ3 − φ̄3) dt

+β

∫ T

0

[

si

n2
(φ2 − φ1) −

s̄̄i

n̄2
(φ̄2 − φ̄1)

]

(φ3 − φ̄3) dt. (40)

For convenience we define

Ψ(t) = (s(t) − ¯s(t))2 + (i(t) − ¯i(t))2 + (r(t) − ¯r(t))2

and

Φ(t) = (φ1(t) − ¯φ1(t))
2 + (φ2(t) − ¯φ2(t))

2 + (φ3(t) − ¯φ3(t))
2.

Observe that Ψ(t) ≥ 0 and Φ(t) ≥ 0 for all t.
We multiply equations (38) – (40) by −1 and then add the resulting equations

to equations (35) – (37). The left-hand side of the resulting equation becomes

1

2
Ψ(t) +

1

2
Φ(t) + +α

∫ T

0

[Ψ(t) + Φ(t)] dt,

and we work now to bound the right-hand side.
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An elementary inequality

(x − y)2 ≥ 0 ⇒ x2 + y2 ≥
1

2
(x2 + y2) ≥ xy

can be used repeatedly to simplify right-hand expressions. The first instance is in
the common form

(x − x̄)(y − ȳ) ≤ (x − x̄)2 + (y − ȳ)2. (41)

Another common expression and needed inequality:

(xy − x̄ȳ)(w − w̄) = (xy − x̄y + x̄y − x̄ȳ)(w − w̄)

= y(x − x̄)(w − w̄) + x̄(y − ȳ)(w − w̄)

≤ y2(x − x̄)2 + x̄2(y − ȳ)2 + 2(w − w̄)2

≤ C
[

(x − x̄)2 + (y − ȳ)2 + (w − w̄)2
]

(42)

where C depends on bounds for x̄ and y.
Several bounds require in turn a bound on (n − n̄)2 which follows directly from

the definition of n:

(n − n̄)2 ≤ (s − s̄)2 + (i − ī)2 + (r − r̄)2. (43)

A bound is needed for the expressions with division by n2 in equations (38) –
(40). We focus on the particular expression in equation (40), and others would be
similar. Note first that

si

n2
−

s̄̄i

n̄2
=

1

n2n̄2

[

(i − ī)sn̄2 + īn̄2(s − s̄) + īs̄(n̄ − n)(n̄ + n)
]

In the following, for simplicity we write Q = si
n2 with a similar definition for Q̄, and

we rely on bounds for the state variables established in Theorem 3.1.
[

si

n2
(φ2 − φ1) −

s̄̄i

n̄2
(φ̄2 − φ̄1)

]

(φ3 − φ̄3)

=

{

φ2
1

n2n̄2

[

(i − ī)sn̄2 + īn̄2(s − s̄) + īs̄(n̄ − n)(n̄ + n)
]

−Q̄(φ2 − φ̄2) + Q̄(φ̄1 − φ1)

−φ1
1

n2n̄2

[

(i − ī)sn̄2 + īn̄2(s − s̄) + īs̄(n̄ − n)(n̄ + n)
]

}

(φ3 − φ̄3)

≤ C(Ψ + Φ), (44)

where C depends on the bounds for n, and by extension s, i, and r, and the bounds
for φ1 and φ2.

Equations (35) and (36) have terms containing si
n

and can be bounded similarly.
Using the equality

si

n
−

s̄̄i

n̄
=

s

n
(i − ī) +

s̄i

nn̄
(n̄ − n) + (s − s̄) ·

ī

n̄

the following bound can be shown

[(i − ī) − (s − s̄)]

[

si

n
−

s̄̄i

n̄

]

dt ≤ C
(

(i − ī)2 + (n − n̄)2 + (s − s̄)2
)

, (45)

with C dependent on bounds for s, i, and r.
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A bound for (ν − ν̄)2 requires

[

sr̄m(φ1 − φ3) − s̄rm(φ̄1 − φ̄3)
]2

=
[

sr̄m(φ1 − φ̄1) + (sr̄m − s̄r̄m + s̄r̄m − s̄rm)φ̄1 + sr̄m(−φ3 + φ̄3)+

≤ 11
[

s2r̄2m(φ1 − φ̄1)
2 + s2r̄2m(φ̄3 − φ3)

2 + r̄2m(s − s̄)2(φ̄2
1 + φ̄2

3)

+ s̄2(r̄ − r)2(φ̄2
1 + φ̄2

3)(m max(r, r̄)m−1)2
]

.

The expresson (ν − ν̄2) can be approximated following [9, 18] obtaining

(ν − ν̄)2 =

(

e2αts(φ1 − φ3)
2B2

Km emαtrm
−

e2αts̄(φ̄1 − φ̄3)
2B2

Km emαtr̄m

)2

≤ 11

[

Kme(2−m)αtemαt

2B2Rm

]2

·

[

s2(φ1 − φ̄1)
2 + s2(φ̄3 − φ3)

2 + (s − s̄)2(φ̄2
1 + φ̄2

3)
]

+11m2

[

Kme(2−m)αtemαteαt

2B2 min(R, R̄)m max(R, R̄)

]2

·

[

s̄2(r̄ − r)2(φ̄2
1 + φ̄2

3)
]

≤ 11

[

Kme2αt

2B2

]2

·

[

max(s)2[(φ1 − φ̄1)
2 + (φ̄3 − φ3)

2] + (s − s̄)24 max(φ1, φ3)
2
]

+11m2

[

Kme3αt

2B2

]2

·

[

max(s)24 max(φ1, φ3)
2(r̄ − r)2

]

≤ Ce6αt
[

(φ1 − φ̄1)
2 + (φ̄3 − φ3)

2 + (s − s̄)2 + (r̄ − r)2
]

(46)

with C dependent on bounds for s, φ1 and φ3 and that R > 1 which was assumed
previously in the derivation of necessary conditions.

A bound on the second control depends on bounds for φ3 and i:

(τ − τ̄)2 =

(

e2αt

2B3

[

i(φ2 − φ3) − ī(φ̄2 − φ̄3)
]

)2

≤ Ce4αt
[

(i − ī)2 + (φ2 − φ̄2)
2 + (φ3 − φ̄3)

2 + (i − ī)2
]

(47)

The only form that remains to be considered is from equation (40):

−
mB2

Km

∫ T

0

eαnt
[

ν2rm−1 − ν̄2r̄m−1
]

(φ3 − φ̄3) dt

≤
mB2

Km
emαT

∫ T

0

[

ν̄2(r̄ − r)max(r̄, r)m−2

≤
mB2

Km
emαT

∫ T

0

+(ν̄2 − ν2)rm−1

]

(φ3 − φ̄3) dt (48)
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≤ C̃e2αT

∫ T

0

[

ν̄2(r̄ − r)max(R̄, R)m−2

+(ν̄2 − ν2)Rm−1
]

(φ3 − φ̄3) dt

≤ Ce2αT

∫ T

0

[

(r̄ − r)2 + (ν̄2 − ν2)2 + (φ3 − φ̄3)
2
]

dt

where C depends on bounds for ν, R and the parameters m, B2, K.
The bounds (41) – (48) are applied to the sum of the equations (35) – (40), with

the latter three modified as described previously, deriving an inequality of the form:

1

2
[Ψ(T ) + Φ(0)] + α

∫ T

0

[Ψ(t) + Φ(t)] dt

≤ C̃

∫ T

0

[Ψ(t) + Φ(t)] dt + Ĉe6αT

∫ T

0

[Ψ(t) + Φ(t)] dt

with the constants dependent on the parameter values and the established bounds
for the state and adjoint variables. Rearranging this becomes

1

2
[Ψ(T ) + Φ(0)] + (α − C̃ − Ĉe6αT )

∫ T

0

[Ψ(t) + Φ(t)] dt ≤ 0. (49)

We now choose α so that
α > C̃ + Ĉ

and note that α−C̃

Ĉ
> 1. Subsequently choose T so that

T <
1

6α
ln

(

α − C̃

Ĉ

)

.

Then:

6αT < ln

(

α − C̃

Ĉ

)

⇒ exp(6αT ) <
α − C̃

Ĉ
.

It follows that α − C̃ − Ĉ exp(6αT ) > 0, so inequality (49) can hold if and only if
for all t ∈ [0, T ]

s(t) = s̄(t), i(t) = ī(t), r(t) = r̄(t),

φ1(t) = φ̄1(t), φ2(t) = φ̄2(t), φ3(t) = φ̄3(t);

or,

S(t) = S̄(t), I(t) = Ī(t), R(t) = R̄(t),

λ1(t) = λ̄1(t), λ2(t) = λ̄2(t), λ3(t) = λ̄3(t);

establishing the uniqueness of the optimal control.

Received February 12, 2008; Accepted March 25, 2009.

E-mail address: hgaff@odu.edu

E-mail address: elsa.schaefer@marymount.edu


	1. Introduction
	2. Equations for a standard SIR model
	3. Existence of an optimal control pair
	4. Characterization of optimal controls
	5. Variations of the SIR model
	5.1. The SEIR model
	5.2. The SIRS model

	6. Numerical results
	7. Conclusion
	Acknowledgments
	REFERENCES
	Appendix


