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Abstract: Transglutaminases are a family of Ca2+-dependent enzymes which catalyze 
post-translational modifications of proteins. The main activity of these enzymes is the cross-linking 
of glutaminyl residues of a protein/peptide substrate to lysyl residues of a protein/peptide 
co-substrate. In addition to lysyl residues, other second nucleophilic co-substrates may include 
monoamines or polyamines (to form mono- or bi-substituted/crosslinked adducts) or −OH groups (to 
form ester linkages). In absence of co-substrates, the nucleophile may be water, resulting in the net 
deamidation of the glutaminyl residue. Transglutaminase activity has been suggested to be involved 
in molecular mechanisms responsible for both physiological or pathological processes. In particular, 
transglutaminase activity has been shown to be responsible for human autoimmune diseases, and 
Celiac Disease is just one of them. Interestingly, neurodegenerative diseases, such as Alzheimer’s 
Disease, Parkinson’s Disease, supranuclear palsy, Huntington’s Disease and other polyglutamine 
diseases, are characterized in part by aberrant cerebral transglutaminase activity and by increased 
cross-linked proteins in affected brains. Here we describe the possible molecular mechanisms by 
which these enzymes could be responsible for such diseases and the possible use of transglutaminase 
inhibitors for patients with diseases characterized by aberrant transglutaminase activity. 

Keywords: transglutaminases; post-translational modifications of proteins; neurodegeneration;  
NF-kB; neuroinflammation 
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1. Biochemistry of the Transglutaminases  

Transglutaminases (TGs, E.C. 2.3.2.13) are Ca2+-dependent enzymes which catalyze 
post-translational modifications of proteins. Examples of TG-catalyzed reactions include: (I) acyl 
transfer between the -carboxamide group of a protein/polypeptide glutaminyl residue and the -amino 
group of a protein/polypeptide lysyl residue; (II) attachment of a polyamine to the -carboxamide of a 
glutaminyl residue; (III) deamidation of the -carboxamide group of a protein/polypeptide glutaminyl 
residue (Figure 1) [1,2]. The reactions catalyzed by TGs occur by a two-step mechanism (ping-pong 
type) (Figure 2). The transamidating activity of TGs is activated by the binding of Ca2+, which exposes 
an active-site cysteine residue. This cysteine residue reacts with the -carboxamide group of an 
incoming glutaminyl residue of a protein/peptide substrate to yield a thioacyl-enzyme intermediate and 
ammonia (Figure 2, Step 1). The thioacyl-enzyme intermediate then reacts with a nucleophilic primary 
amine substrate, resulting in the covalent attachment of the amine-containing donor to the substrate 
glutaminyl acceptor and regeneration of the cysteinyl residue at the active site (Figure 2, Step 2). If the 
primary amine is donated by the -amino group of a lysyl residue in a protein/polypeptide, a 
N-(-L-glutamyl)-L-lysine (GGEL) isopeptide bond is formed (Figure 1, example I). On the other 
hand, if a polyamine or another primary amine (e.g. histamine, serotonin and others) acts as the amine 
donor, a -glutamylpolyamine (or -glutamylamine) residue is formed (Figure 1, example II). It is also 
possible for a polyamine to act as an N,N-bis-(-L-glutamyl)polyamine bridge between two glutaminyl 
acceptor residues either on the same protein/polypeptide or between two proteins/polypeptides [3]. If 
there is no primary amine present, water may act as the attacking nucleophile, resulting in the 
deamidation of glutaminyl residues to glutamyl residues (Figure 1, example III). Regarding the 
physiological roles played by the transglutaminase activity, recently transglutaminase-catalyzed 
polyamination of tubulin has been shown to stabilize axonal microtubules, suggesting an important role 
for these reactions also during some physiological processes, such as neurite outgrowth and axon 
maturation [4]. The reactions catalyzed by TGs occur with little change in free energy and hence 
should theoretically be reversible. However, under physiological conditions the cross-linking reactions 
catalyzed by TGs are usually irreversible. This irreversibility partly results from the metabolic removal 
of ammonia from the system and from thermodynamic considerations resulting from altered protein 
conformation. Some scientific reports suggest that TGs may be able to catalyze the hydrolysis of 
N-(-L-glutamyl)-L-lysine cross-links (GGEL) isopeptide bonds in some soluble cross-linked 
proteins. Furthermore, it is likely that TGs can catalyze the exchange of polyamines onto proteins 
[2]. In TG2 other catalytic activities, such as the ability to hydrolyze GTP (or ATP) into GDP (or 
ADP) and inorganic phosphate (Figure 1, example IV), a protein disulfide isomerase activity (Figure 
1, example V), and a kinase activity which phosphorylates histones, retinoblastoma (RB) and P53 
(Figure 1, example VI), are present, while only some of these activities have been identified also in 
other TGs [5-8].  

Numerous experimental data indicate that some TGs are multifunctional proteins with distinct 
and regulated enzymatic activities. In fact, under physiological conditions, the transamidation 
activity of TGs is latent [9,10], while other activities, recently identified, could be present. For 
example, in some physiological states, when the concentration of Ca2+ increases, the crosslinking 
activity of TGs may contribute to important biological processes. As previously described, one of the 
most intriguing properties of some TGs, such as TG2, is the ability to bind and hydrolyze GTP and 
furthermore, to bind to GTP and Ca2+. GTP and Ca2+ regulate its enzymatic activities, including protein



401 

 

AIMS Molecular Science   Volume 4, Issue 4, 399-414. 

CH2CH2CH2CH2NH2
proteinH2

C
H2
C C NH2

O

+I)   protein

H2
C

H2
C C NH2

O

II)  protein

H2
C

H2
C C NH2

O

III)  protein

+

+

NH2 R

R =  monoamines,  polyamines

H2O

H2
C

H2
C C NH

O

     protein CH2CH2CH2CH2
protein

H2
C

H2
C C NH

O

H2
C

H2
C C OH

O

     protein

     protein

R

+ NH3

+ NH3

+ NH3

IV) GTP                                     GDP + P

      SH      SH                                                         S             S
       I           I                                                             I            I
V)   RNase A                                                           RNase A                

                           Protein  disulfide  isomerase activity

VI)     IGFBP-3 + ATP                             IGFBP-3-P + ADP

                              Protein  kinase activity  

Figure 1. Examples of reactions catalyzed by TG: (I) acyl transfer between the -carboxamide group of a protein/polypeptide glutaminyl 
residue and the -amino group of a protein/polypeptide lysyl residue; (II) attachment of a polyamine to the -carboxamide of a glutaminyl 
residue; (III) deamidation of the -carboxamide group of a protein/polypeptide glutaminyl residue; (IV) GTPase activity; (V) protein disulfide 
isomerase activity; (VI) protein kinase activity. 
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Figure 2. Schematic representation of a two-step transglutaminase reaction. Step 1: In 
the presence of Ca2+, the active-site cysteine residue reacts with the -carboxamide group 
of an incoming glutaminyl residue of a protein/peptide substrate to yield a 
thioacyl-enzyme intermediate and ammonia. Step 2: The thioacyl-enzyme intermediate 
reacts with a nucleophilic primary amine substrate, resulting in the covalent attachment 
of the amine-containing donor to the substrate glutaminyl acceptor and regeneration of 
the cysteinyl residue at the active site. If the primary amine is donated by the -amino 
group of a lysyl residue in a protein/polypeptide, a N-(-L-glutamyl)-L-lysine (GGEL) 
isopeptide bond is formed. 

cross-linking, in a reciprocal manner: the binding of Ca2+ inhibits GTP-binding and GTP-binding 
inhibits the transglutaminase cross-linking activity of the TG2 [5]. Interestingly, TG2 shows no 
sequence homology with heterotrimeric or low-molecular-weight G-proteins, but there is evidence that 
TG2 (TG2/Ghα) is involved in signal transduction, and, therefore, TG2/Ghα should also be 
classified as a large molecular weight G-protein. Other studies, along with ours, showed that 
TG2/Ghαcan mediate the activation of phospholipase C (PLC) by the α1b -adrenergic receptor [10] 

and can modulate adenylyl cyclase activity [11]. TG2/Ghαcan also mediate the activation of the 1 
isoform of PLC and of maxi-K channels [12]. Interestingly, the signaling function of TG2/Ghα is 
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preserved even with the mutagenic inactivation of its crosslinking activity by the mutation of the 
active site cysteine residue [13].  

2. Molecular Biology of the Transglutaminases 

At least eight different TGs, distributed in the human body, have been identified up to now 
(Table 1) [14-19]. Complex gene expression mechanisms regulate the physiological roles that these 
enzymes play in both the intracellular and extracellular compartments. In the Nervous System, for 
example, several forms of TGs are simultaneously expressed [20-22]. Moreover, in these last years, 
several alternative splice variants of TGs, mostly in the 3’-end regions, have been identified [23]. 
Interestingly, some of them are differently expressed in human pathologies, such as Alzheimer’s 
Disease (AD) [24]. On the basis of their ubiquitous expression and their biological roles, we may 
speculate that the absence of these enzymes would be lethal. However, this does not always seem to 
be the case, since, for example, null mutants of the TG2 are usually phenotypically normal at 
birth [12,25,26]. This result may be explained by the expression of other TG genes that may 
substitute the TG2 missing isoform, although other TG isoform mutations have been associated with 
severe phenotypes, such as lamellar ichthyosis for TG1 isoform mutations. Bioinformatic studies have 
shown that the primary structures of human TGs share some identities in only few regions, such as the 
active site and the calcium binding regions. However, high sequence conservation and, therefore, a 
high degree of preservation of secondary structure among TG2, TG3 and FXIIIa indicate that these 
TGs all share four-domain tertiary structures which could be similar to those of other TGs [27]. 

Table 1. TGs and their physiological roles when known. 

TG  Physiological role 
Gene map 

location 
Reference 

Factor XIIIa  Blood clotting 6p24-25 [14] 

TG 1 (Keratinocyte TG, kTG) Skin differentiation  14q11.2 [15] 

TG 2 (Tissue TG, tTG, cTG) Apoptosis, cell adhesion, signal transduction 20q11-12  [16] 

TG 3(Epidermal TG, eTG) Hair follicle differentiation 20p11.2 [17] 

TG 4 (Prostate TG, pTG) Suppression of sperm immunogenicity 3q21-2 [18] 

TG 5 (TG X)  Epidermal differentiation 15q15.2 [19] 

TG 6 (TG Y) Central Nervous System development 20p13 [19] 

TG 7 (TG Z) Unknown function 15q15.2 [19] 

3. Role of the Transglutaminases in Neurodegenerative Diseases 

Numerous scientific data suggest that the transglutaminase activity is involved in the 
pathogenesis of neurodegenerative diseases, but to date, however, still controversial experimental 
findings about the role of the TGs enzymes in these diseases have been obtained [28-30]. Protein 
aggregates in affected brain regions are histopathological hallmarks of many neurodegenerative 
diseases [31]. More than 20 years ago Selkoe et al. suggested that TG activity might contribute to the 
formation of protein aggregates in AD brain [32]. In support of this hypothesis, tau protein has been 
shown to be an excellent in vitro substrate of TGs and GGEL cross-links have been found in the 
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Table 2. List of polyglutamine (CAG-expansion) diseases. 

Disease Sites of neuropathology 
CAG triplet 

number 

Gene product 

(Intracellular 

localization of 

protein deposits) 

Reference 

Normal Disease 

Corea Major or 

Huntington’s Disease 

(HD) 

Striatum (medium spiny 

neurons) and cortex in late 

stage 

6–35 36–121 Huntingtin(n,c) [50] 

Spinocerebellar Ataxia 

Type 1 (SCA1) 

Cerebellar cortex (Purkinje 

cells), dentate nucleus and 

brain stem 

6–39 40–81 Ataxin-1(n,c) [51] 

Spinocerebellar Ataxia 

Type 2 (SCA2) 

Cerebellum, pontine nuclei, 

substantia nigra 
15–29 35–64 Ataxin-2 (c) [52] 

Spinocerebellar Ataxia 

Type 3 (SCA3) or 

Machado-Joseph disease 

(MJD) 

Substantia nigra, globus 

pallidus, pontine nucleus, 

cerebellar cortex 

13–42 61–84 Ataxin -3 (c) [53] 

Spinocerebellar Ataxia 

Type 6 (SCA6) 

Cerebellar and mild 

brainstem atrophy 
4–18 21–30 

Calcium channel 

Subunit ( 1A)(m) 
[54] 

Spinocerebellar Ataxia 

Type 7 (SCA7) 

Photoreceptor and bipolar 

cells, cerebellar cortex, 

brainstem 

7–17 37–130 Ataxin-7 (n) [55] 

Spinocerebellar Ataxia 

Type 12 (SCA12) 
Cortical, cerebellar atrophy 7–32 41–78 

Brain specific 

regulatory subunit of 

protein phosphatase 

PP2A (?)  

[56] 

Spinocerebellar Ataxia 

Type 17 (SCA17) 

Gliosis and neuronal loss in 

the Purkinje cell layer 
29–42 46–63 

TATA-binding 

protein (TBP) (n) 
[57] 

Spinobulbar Muscular 

Atrophy (SBMA) or 

Kennedy Disease 

Motor neurons (anterior 

horn cells, bulbar neurons) 

and dorsal root ganglia 

11–34 40–62 
Androgen receptor 

(n, c) 
[58] 

Dentatorubral-pallidoluy

sian Atrophy (DRPLA) 

Globus pallidus, 

dentato-rubral and 

subthalamic nucleus 

7–35 49–88 Atrophin (n, c) [59] 

Cellular localization: c, cytosol; m, membrane; n, nucleus; ?, unknown localization.  

neurofibrillary tangles and paired helical filaments of AD brains [33-35]. Interestingly, a recent work 
showed the presence of bis -glutamyl putrescine in human CSF, which was increased in 
Huntington’s Disease (HD) CSF [36]. This is an important evidence that protein/peptides 
crosslinking by polyamines does indeed occur in the brain, and that this is increased in HD brain. TG 
activity has been shown to induce also amyloid -protein oligomerization [37] and aggregation at 
physiologic levels [38]. By these molecular mechanisms, TGs could contribute to AD symptoms and 
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progression [38]. Moreover, there is evidence that TGs also contribute to the formation of 
proteinaceous deposits in Parkinson’s Disease (PD) [39, 40], in supranuclear palsy and in HD, a 
neurodegenerative disease caused by a CAG expansion in the affected gene [41-43]. For example, 
expanded polyglutamine domains have been reported to be substrates of TG2 and therefore aberrant 
TG activity could contribute to CAG-expansion diseases, including HD (Figure 3) [45-46]. However, 
although all these studies suggest the possible involvement of the TGs in the formation of deposits of 
protein aggregates in neurodegenerative diseases, they do not indicate whether aberrant TG activity 
per se directly determines the disease progression. For example, several experimental findings 
reported that TG2 activity in vitro leads to the formation of soluble aggregates of -synuclein or polyQ 
proteins [47-49]. To date, as previously reported, at least ten human CAG-expansion diseases have 
been described (Table 2) and in at least eight of them their neuropathology is caused by the expansion 
in the number of residues in the polyglutamine domain to a value beyond 35–40 [50-59]. Remarkably, 
the mutated proteins have no obvious similarities except for the expanded polyglutamine domain. In 
fact, in all cases except SCA 12, the mutation occurs in the coding region of the gene. However, in 
SCA12, the CAG triplet expansion occurs in the untranslated region at the 5’ end of the PPP2R2B gene. 
It has been proposed that the toxicity results from overexpression of the brain specific regulatory 
subunit of protein phosphatase PP2A [56]. Most of the mutated proteins are widely expressed both 
within the brain and elsewhere in the body. A major challenge then is to understand why the brain is 
primarily affected and why different regions within the brain are affected in the different 
CAG-expansion diseases, i.e., what accounts for the neurotoxic gain of function of each protein and for 
a selective vulnerability of each cell type. Possibly, the selective vulnerability [60] may be explained in 
part by the susceptibility of the expanded polyglutamine domains in the various CAG-expansion 
diseases to act as cosubstrates for a brain TG (Figure 4). To strengthen the possible central role of the 
TGs in neurodegenerative diseases, a study by Hadjivassiliou et al. showed that anti-TG2 IgA 
antibodies are present in the gut and brain of patients with gluten ataxia [61], a non-genetic sporadic 
cerebellar ataxia, but not in ataxia control patients. Recently, anti-TG2, -TG3 and -TG6 antibodies have 
been found in sera from CD patients, suggesting a possible involvement also of other TGs in the 
pathogenesis of dermatitis herpetiformis and gluten ataxia, two frequent extra intestinal manifestations 
of gluten sensitivity [62,63]. These last findings could suggest also a possible role of the “gut-brain 
axis” for the etiopathogenesis of human neurodegenerative diseases, in which the TG enzymes, in 
particular the TG2 enzyme, could play an important role [64-66]. 

In support of the hypothesis of the toxic effect of TG activity in other neurodegenerative 
diseases, such as Alzheimer’s disease and Parkinson’s Disease, TG activity has been shown to induce 
amyloid beta-protein and -synuclein oligomerization and aggregation at physiologic levels [67-69]. 
In fact, TG activity induces protofibril-like amyloid beta-protein assemblies that are 
protease-resistant and inhibit long-term potentiation [38]. Therefore, by these molecular mechanisms, 
TG activity could also contribute to Alzheimer's disease symptoms and progression. Very recently, 
TG2 and its product isopeptide have been found increased in Alzheimer’s disease and 
APPswe/PS1dE9 double transgenic mice brains [70], while catalytically active TG2 colocalizes with 
A pathology in Alzheimer’s disease mouse models [71]. Interestingly, other works are suggesting 
that also other TGs could be involved in the molecular mechanisms responsible for 
neurodegenerative diseases [72]. In particular, a recent work by Basso et al. found that in addition to 
TG2, TG1 gene expression level is significantly induced following stroke in vivo or due to oxidative 
stress in vitro [73]. Moreover, structurally diverse inhibitors, used at concentrations that inhibit TG1 
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and TG2 simultaneously, are neuroprotective. Together, these last studies suggested that multiple TG 
isoforms, not only TG2, participate in oxidative stress-induced cell death signalling, and that isoform 
nonselective inhibitors of TG will be most efficacious in combating oxidative death in neurological 
disorders. These are interesting and worthwhile studies, suggesting that multiple TG isoforms can 
participate in neuronal death processes. Therefore, all these studies suggest that the involvement of 
brain TGs could represent a common denominator in several neurological diseases, which can lead to 
the determination of pathophysiological consequences through different molecular mechanisms 
(Table 3). 

 

Figure 3. Possible physiopathological effects of the mutated huntingtin. Some of the 
physiopathological roles of mutated huntingtin, including the formation of nuclear 
inclusions, have been described in the Figure AP2 = adipocyte Protein 2; BAX = 
bcl-2-like protein 4; BDNF = brain-derived neurotrophic factor; CALM = calmodulin; 
CASP = caspases; CASP3 = caspase 3; CASP8 = caspase 8; CBP = CREB binding 
protein; CBS = cystathionine-β-synthase; DCTN1 = dynactin subunit 1; GAPD = 
glyceraldehyde-3-phosphate dehydrogenase; GRB2 = growth factor receptor-bound 
protein 2; HAP1 = huntingtin associated protein 1; HIP1 = huntingtin interacting protein 
1; HIP2 = huntingtin interacting protein 2; Hippi =; HIP1 protein interactor; NCOR1 = 
nuclear receptor corepressor 1; RasGAP = p21Ras protein and GTPase-activating protein 
complex; TGs = transglutaminases; TP53 = tumor protein 53. 

Table 3. Relations between TG2 and neurodegenerative diseases. 

Associations/cause Effects 

Gluten intolerance Gluten ataxia 

Neuroinflammation Alzheimer’s disease and other neurodegenerative diseases 
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4. Role of the Transglutaminase Activity in Neuroinflammation 

Neuroinflammation plays an important role in various chronic neurodegenerative diseases, 
characterized also by the pathological accumulation of specific protein aggregates. In particular, 
several of these proteins have been shown to be substrates of transglutaminases. Interestingly, it has 
recently been demonstrated that transglutaminase 2 (TG2) may also be involved in molecular 
mechanisms underlying inflammation. In the central nervous system, astrocytes and microglia are the 
cell types mainly involved in this inflammatory process. The transcription factor NF-κB is 
considered the main regulator of inflammation and it is activated by a variety of stimuli including 
calcium influx, oxidative stress and inflammatory cytokines. Recently, in addition to these stimuli, 
TG2 has been shown to activate NF-B both via a canonical pathway [74] and via a non-canonical 
pathway [75]. On the other hand, NF-B regulatory response elements are present also in the 
Transglutaminase 2 promoter [76]. Under these conditions, the over-expression of TG2 results in the 
sustained activation of NF-κB. Several findings emphasize the possible role of the TG2/NF-κB 
activation pathway in neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s 
disease, multiple sclerosis and amyotrophic lateral sclerosis. Together, these evidences suggest that 
TG2 could play a role in neuroinflammation and could contribute to the production of compounds 
that are potentially deleterious to neuronal cells [77]. 

5. Transglutaminase Inhibition as Possible Therapeutical Approach  

In consideration to the fact that up to now there have been no long-term effective treatments for 
the human neurodegenerative diseases previously reported, then the possibility that selective TG 
inhibitors may be of clinical benefit has been seriously considered. In this respect, some encouraging 
results have been obtained with TG inhibitors in preliminary studies with different biological models 
of CAG-expansion diseases. For example, cystamine (Figure 5) is a potent in vitro inhibitor of 
enzymes that require an unmodified cysteine at the active site [78]. Inasmuch as TGs contain a 
crucial active-site cysteine, cystamine has the potential to inhibit these enzymes by a 
sulfide-disulfide interchange reaction. A sulfide-disulfide interchange reaction results in the 
formation of cysteamine and a cysteamine-cysteine mixed disulfide residue at the active site. Recent 
studies have shown that cystamine decreases the number of protein inclusions in transfected cells 
expressing the atrophin (DRPLA) protein containing a pathological-length polyglutamine 
domain [79]. In other studies, cystamine administration to HD-transgenic mice resulted in an 
increase in life expectancy and amelioration of neurological symptoms [80,81]. Neuronal inclusions 
were decreased in one of these studies [81]. Although all these scientific reports seem to support the 
hypothesis of a direct role of transglutaminase activity in the pathogenesis of the polyglutamine 
diseases, cystamine is also found to act in the HD-transgenic mice by mechanisms other than the 
inhibition of TGs, such as the inhibition of caspases [82], suggesting that this compound can have an 
additive effect in the therapy of HD. Currently, cysteamine is already in phase I studies in humans 
with HD [83], but several side effects, such as nausea, motor impairment and dosing schedule have 
been reported as reasons for non-adherence during phase II studies in human patients affected by 
cystinosis [84,85]. Another critical problem in the use of TG inhibitors in treating neurological 
diseases relates to the fact that, as previously reported, the human brain contains at least four TGs, 
including TG1, 2, 3 and TG6, and a strong non-selective inhibitor of TGs might also inhibit plasma 
Factor XIIIa, causing a bleeding disorder [22,86]. Therefore, from a number of standpoints it would  
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Figure 4. Possible mechanisms responsible for protein aggregate formation catalyzed by 
TGs. Transglutaminase activity could produce insoluble aggregates both by the 
formation of N-(-L-glutamyl)-L-lysine (GGEL) isopeptide bonds (left side of the 
figure) and by the formation of N,N-bis-(-L-glutamyl)polyamine bridges (right side of 
the figure) in the mutated huntingtin. 

seem that a selective inhibitor, which discriminates between TGs, would be preferable to an 
indiscriminate TG inhibitor. In fact, although most of the TG activity in mouse brain, at least as 
assessed by an assay that measures the incorporation of radioactive putrescine (amine donor) into 
N,N-dimethyl casein (amine acceptor), seems to be due to TG2 [87], no conclusive data have been 
obtained by TG2 gene knock-out experiments about the involvement of this TG in the development 
of the symptoms in HD-transgenic mice [26,88,89]. Moreover, a recent scientific report showed that 
cystamine reduces aggregate formation in a mouse model of oculopharyngeal muscular dystrophy 
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(OMPD), in which also the TG2 knockdown is capable of suppressing the aggregation and the 
toxicity of the mutant protein PABPN1 [90], suggesting this compound as a possible therapeutic for 
OMPD. 

 

Figure 5. Chemical structure of cystamine. 

6. Conclusions 

Numerous scientific reports have implicated aberrant TG activity in neurodegenerative diseases, 
but still today we are looking for experimental findings which could definitely confirm the direct 
involvement of TGs in the pathogenetic mechanisms responsible for these diseases. However, as 
result of the putative role of specific TG isoforms, such as TG2, in some human diseases, there is a 
considerable interest in developing inhibitors of these enzymes [91,92]. Of those currently available, 
cystamine is the most commonly used experimentally to inhibit TG2 activity. In addition to 
cystamine, several types of TG2 inhibitors have been developed up to now [93]. Interestingly, some 
of these inhibitors have shown promising results in experimental diabetic models [94]. Therefore, the 
use of these inhibitors of TGs could be then useful also for other clinical approaches. To minimize 
the possible side effects, however, more selective inhibitors of the TGs should be required in the 
future. Progress in this area of research could be achieved, if possible, also through 
pharmaco-genetic approaches. 
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